

SAR EVALUATION REPORT

For

Hytera Communications Corporation Limited

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road, Nanshan District, Shenzhen, 518057 China

FCC ID: YAMVM690

Report Type:		Product Type:	
Original Report		Body Worn Camera	
Report Number:	DG2210722-3045	56E-20A	
Report Date:	2021-08-25		
Reviewed By:	Brave Lu SAR Engineer	Browe	Lu
Prepared By:	Bay Area Compli No.12, Pulong Ea Guangdong, Chin Tel: +86-769-868 Fax: +86-769-868 www.baclcorp.co	58888 358891	Dongguan) , Dongguan,

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

	A	ttestation of Test Results				
	EUT Description	Body Worn Camera				
	Tested Model	VM690 Pro				
EUT Information	Multiple Model	VM690				
	FCC ID	YAMVM690				
	Serial Number	DG2210722-30456E-SA-	.\$1			
	Test Date	2021-08-02 ~ 2021-08-03				
MO						
MO	WLAN 2.4G	Max. SAR Level(s)	· · · · ·	Limit (W/kg)		
	WLAN 2.4G WLAN 5.2G	1g Head SAR	0.17	_		
	WLAN 5.2G WLAN 5.3G	1g Head SAR	0.16	_		
Face Up Mode		1g Head SAR	0.15	_		
	WLAN 5.6G	1g Head SAR	0.13	_		
	WLAN 5.8G	1g Head SAR		-		
	Simultaneous WLAN 2.4G	1g Head SAR	0.23	1.6		
		1g Body SAR		_		
	WLAN 5.2G	1g Body SAR	0.38	_		
Body-worn Mode	WLAN 5.3G	1g Body SAR	0.24	_		
	WLAN 5.6G	1g Body SAR	0.24	_		
	WLAN 5.8G	1g Body SAR	0.17	_		
	Simultaneous	1g Body SAR	0.50			
	WLAN 2.4G	10g Extremity SAR	0.32	_		
	WLAN 5.2G	10g Extremity SAR	0.54	_		
Handheld Mode	WLAN 5.3G	10g Extremity SAR	0.30	4.0		
	WLAN 5.6G	10g Extremity SAR	0.31	_		
	WLAN 5.8G	10g Extremity SAR	0.34	_		
	Simultaneous FCC 47 CFR part 2.	10g Extremity SAR	0.59			
	· ·	tion exposure evaluation: p	ortable devices			
		dures: TCB Workshop Ap				
	IEEE Recommended	Practice for Determining th	ne Peak Spatial-Average			
		R) in the Human Head fron	n Wireless Communicati	ons Devices:		
	IEC 62209-1:2016	Measurement Techniques				
Applicable Standards	Measurement procedu	ure for the assessment of sp				
Stanuarus	to radio frequency fields from hand-held and body-mounted wireless communication					
	devices – Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)					
	KDB procedures					
	KDB 447498 D01 General RF Exposure Guidance v06					
	KDB 648474 D04 Handset SAR v01r03 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04					
	KDB 865664 D01 SAK Measurement 100 MHz to 0 GHz V01104 KDB 865664 D02 RF Exposure Reporting v01r02					
	KDB 248227 D01 80	2 11 Wi-Fi SAR v02r02				
for General Population/ accordance with the me	Uncontrolled Exposure asurement procedures	be capable of compliance for limits specified in FCC 47 specified in IEEE 1528-201	7 CFR part 2.1093 and 1 3 and RF exposure KDE	has been tested in		
The results and statem	ents contained in this	report pertain only to the	e device(s) evaluated.			

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
EUT DESCRIPTION	5
TECHNICAL SPECIFICATION	5
REFERENCE, STANDARDS, AND GUIDELINES	6
SAR LIMITS	7
FACILITIES	8
DESCRIPTION OF TEST SYSTEM	9
EQUIPMENT LIST AND CALIBRATION	
EQUIPMENTS LIST & CALIBRATION INFORMATION	
SAR MEASUREMENT SYSTEM VERIFICATION	16
LIQUID VERIFICATION	
SYSTEM ACCURACY VERIFICATION SAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	
TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR	
CHEEK/TOUCH POSITION	
EAR/TILT POSITION	
TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS TEST DISTANCE FOR SAR EVALUATION	
SAR EVALUATION PROCEDURE	
CONDUCTED OUTPUT POWER MEASUREMENT	
PROVISION APPLICABLE	
Provision Applicable Test Procedure	
PROVISION APPLICABLE	
Provision Applicable Test Procedure Maximum Target Output Power	
PROVISION APPLICABLE TEST PROCEDURE MAXIMUM TARGET OUTPUT POWER TEST RESULTS:	28 28 28 29 29 32 32
PROVISION APPLICABLE TEST PROCEDURE MAXIMUM TARGET OUTPUT POWER TEST RESULTS:	28 28 28 29 32 32 32
PROVISION APPLICABLE TEST PROCEDURE MAXIMUM TARGET OUTPUT POWER TEST RESULTS:	28 28 28 29 32 32 32 32 32
PROVISION APPLICABLE TEST PROCEDURE MAXIMUM TARGET OUTPUT POWER TEST RESULTS: STANDALONE SAR TEST EXCLUSION CONSIDERATIONS ANTENNAS LOCATION: ANTENNA DISTANCE TO EDGE STANDALONE SAR TEST EXCLUSION CONSIDERATIONS STANDALONE SAR TEST EXCLUSION CONSIDERATIONS STANDALONE SAR ESTIMATION: SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS DETAIL:	28 28 28 29 32 32 32 32 32 33 33 33
PROVISION APPLICABLE TEST PROCEDURE MAXIMUM TARGET OUTPUT POWER TEST RESULTS: STANDALONE SAR TEST EXCLUSION CONSIDERATIONS ANTENNAS LOCATION: ANTENNA DISTANCE TO EDGE STANDALONE SAR TEST EXCLUSION CONSIDERATIONS STANDALONE SAR TEST EXCLUSION CONSIDERATIONS STANDALONE SAR ESTIMATION: SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS DETAIL: SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT	28 28 29 29 32 32 32 32 33 33 33 33 33
PROVISION APPLICABLE Test Procedure MAXIMUM TARGET OUTPUT POWER Test Results: STANDALONE SAR TEST EXCLUSION CONSIDERATIONS ANTENNAS LOCATION: ANTENNA DISTANCE TO EDGE STANDALONE SAR TEST EXCLUSION CONSIDERATIONS STANDALONE SAR TEST EXCLUSION CONSIDERATIONS STANDALONE SAR ESTIMATION: SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS DETAIL: SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT SAR MEASUREMENT RESULTS	28 28 28 29 32 32 32 32 33 33 33 33 33 33 33 33 33
PROVISION APPLICABLE TEST PROCEDURE MAXIMUM TARGET OUTPUT POWER TEST RESULTS:	28 28 29 29 32 32 32 32 33 33 33 33 33 33 33 33 33
PROVISION APPLICABLE TEST PROCEDURE	28 28 28 29 32 32 32 32 33 33 33 33 33 33 33 44
PROVISION APPLICABLE TEST PROCEDURE	28 28 28 29 32 32 32 32 33 33 33 33 33 33 33 33 33
PROVISION APPLICABLE TEST PROCEDURE	28 28 28 29 32 32 32 32 33 33 33 33 33 33 33 33 33
PROVISION APPLICABLE TEST PROCEDURE	28 28 28 29 32 32 32 32 33 33 33 33 33 33 44 45 47
PROVISION APPLICABLE	28 28 28 29 32 32 32 32 32 33 33 33 33 33 33 33 33

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	DG2210722-30456E-20A	Original Report	2021-08-25

EUT DESCRIPTION

This report has been prepared on behalf of *Hytera Communications Corporation Limited* and their product *Body Worn Camera*, Model: *VM690 Pro*, FCC ID: *YAMVM690* or the EUT (Equipment under Test) as referred to in the rest of this report.

Note: The series product model VM690 is electrically identical with model VM690 Pro, we selected VM690 Pro for fully testing, the differences details was explained in the declaration letter.

*All measurement and test data in this report was gathered from production sample serial number: DG2210722-30456E-SA-S1(Assigned by BACL, Dongguan). The EUT supplied by the applicant was received on 2021-07-22.

Technical Specification

Device Type:	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Body-Worn Accessories:	None
Face-Head Accessories:	None
Operation Mode :	WLAN, Bluetooth
Frequency Band:	WLAN 2.4G: 2412 -2462 MHz WLAN 5.2G: 5180-5240 MHz/5190-5230 MHz/5210 MHz WLAN 5.3G: 5260-5320 MHz/5270-5310 MHz/5290 MHz WLAN 5.6G: 5500-5720 MHz/5510-5710 MHz/5530-5690 MHz WLAN 5.8G: 5745-5825 MHz/5755-5795 MHz/5775 MHz Bluetooth : 2402 MHz-2480 MHz
Conducted RF Power:	WLAN 2.4G: 15.49 dBm WLAN 5.2G: 11.69 dBm WLAN 5.3G: 11.41 dBm WLAN 5.6G: 11.67 dBm WLAN 5.8G: 11.06 dBm Bluetooth(BDR/EDR): 4.13 dBm BLE: 3.83 dBm
Power Source:	3.85 VDC Rechargeable Battery
Normal Operation:	Face Up, Handheld and Body-worn

REFERENCE, STANDARDS, AND GUIDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Limits

FCC/IC Limit

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

CE Limit

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 10 g of tissue)	2.0	10	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC&IC) & 4 W/kg (CE) applied to the EUT.

FACILITIES

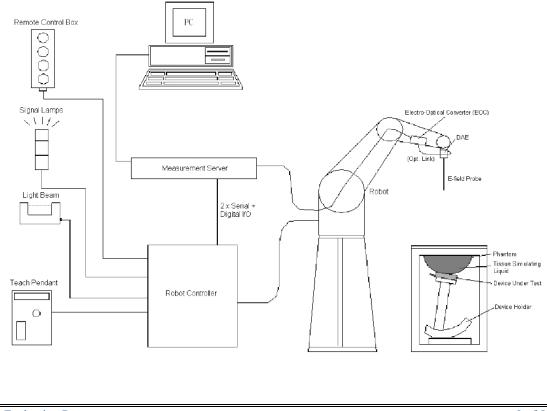
The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218, the FCC Designation No. : CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier : CN0022.

The test sites and measurement facilities used to collect data are located at:

SAR Lab 1	🖾 SAR Lab 2
-----------	-------------


DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical

processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized point out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	\pm 0.3 dB in TSL (rotation around probe axis) \pm 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7329 Calibrated: 2020/11/30

Calibration Frequency	Frequency Range(MHz)		Conversion Factor		
Point(MHz)	From	То	X	Y	Z
750 Head	650	850	10.13	10.13	10.13
900 Head	850	1000	9.79	9.79	9.79
1450 Head	1350	1550	8.66	8.66	8.66
1750 Head	1650	1850	8.41	8.41	8.41
1900 Head	1850	2000	8.14	8.14	8.14
2100 Head	2000	2200	8.15	8.15	8.15
2300 Head	2200	2400	7.80	7.80	7.80
2450 Head	2400	2550	7.44	7.44	7.44
2600 Head	2550	2700	7.29	7.29	7.29
5200 Head	5090	5250	5.55	5.55	5.55
5300 Head	5250	5410	5.28	5.28	5.28
5600 Head	5490	5700	4.76	4.76	4.76
5800 Head	5700	5910	4.72	4.72	4.72

SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness

increases to 6 mm). The phantom has three measurement areas: Left Head

- Right Head
- Flat phantom

The phantom table for the DASY systems based on the robots have the size of $100 \times 50 \times 85$ cm (L x W x H). For easy dislocation these tables have fork lift cut outs at the bottom.

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the

standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids)

A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

Robots

The DASY5 system uses the high precision industrial robot. The robot offers the same features important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The above mentioned robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is contained on the CDs delivered along with the robot. Paper manuals are available upon request direct from Staubli.

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEC 62209-1:2016

Recommended Tissue Dielectric Parameters for Head liquid

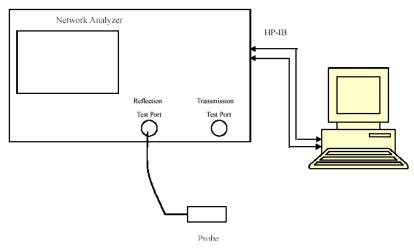
Table A.3 – Dielectric properties of the head tissue-equivalent liquid

Frequency	Relative permittivity	Conductivity (o)
MHz	ε _r	S/m
300	45,3	0,87
450	43,5	0,87
750	41,9	0,89
835	41,5	0,90
900	41,5	0,97
1 450	40,5	1,20
1 500	40,4	1,23
1 6 4 0	40,2	1,31
1 750	40,1	1,37
1 800	40,0	1,40
1 900	40,0	1,40
2 000	40,0	1,40
2 100	39,8	1,49
2 300	39,5	1,67
2 450	39,2	1,80
2 600	39,0	1,96
3 000	38,5	2,40
3 500	37,9	2,91
4 000	37,4	3,43
4 500	36,8	3,94
5 000	36,2	4,45
5 200	36,0	4,66
5 400	35,8	4,86
5 600	35,5	5,07
5 800	35,3	5,27
6 000	35,1	5,48

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown *in italics*). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.

Note:

- 1, Effective February 19, 2019, FCC has permitted the use of single head-tissue simulating liquid specified in IEC 62209-1 for all SAR tests.
- 2, Mix and Match of traditional FCC SAR TSLs and IEC 62209-1 TSL in a single application is not permitted TSL can be changed in a Permissive Change.
- 3, If SAR increases and original SAR > 1.2 W/kg, additional SAR measurements will be required IEC 62209-1 TSL is an alternative, not mandatory at this time.
- 4, In this case, IEC parameters applied, the tolerance is $\pm 10\%$.


EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52.10	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 4.5.12	1567	NCR	NCR
Data Acquisition Electronics	DAE4	1354	2020/9/30	2021/9/29
E-Field Probe	EX3DV4	7329	2020/11/30	2021/11/29
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
Twin SAM	Twin SAM V5.0	1412	NCR	NCR
Dipole, 2450 MHz	D2450V2	971	2021/6/28	2024/6/27
Dipole,5GHz	D5GHzV2	1246	2019/11/19	2022/11/18
Simulated Tissue 2450 MHz Head and Body	TS-2450HB	2009245001	Each Time	/
Simulated Tissue 5250 MHz Head and Body	TS-5250HB	2001525001	Each Time	/
Simulated Tissue 5300 MHz Head and Body	TS-5300HB	2001530001	Each Time	/
Simulated Tissue 5600 MHz Head and Body	TS-5600HB	2001560001	Each Time	/
Simulated Tissue 5800 MHz Head and Body	TS-5800HB	2001580001	Each Time	/
Network Analyzer	8753C	3033A02857	2020/9/12	2021/9/11
Dielectric assessment kit	1253	SM DAK 040 CA	NCR	NCR
synthesized signal generator	8665B	3438a00584	2020/9/12	2021/9/11
EPM Series Power Meter	E4419B	MY45103907	2020/9/12	2021/9/11
Power Amplifier	ZVA-183-S+	5969001149	NCR	NCR
Directional Coupler	441493	520Z	NCR	NCR
Attenuator	20dB, 100W	LN749	NCR	NCR
Attenuator	6dB, 150W	2754	NCR	NCR

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	Liquid Type	Liquid Type Liquid T		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	٤ _r	0' (S/m)	٤ _r	0' (S/m)	$\Delta \epsilon_r$	ΔƠ (S/m)	(%)
			()		()		()	
2412	Simulated Tissue 2450 MHz	39.572	1.776	39.28	1.77	0.74	0.34	± 10
2437	Simulated Tissue 2450 MHz	39.363	1.785	39.23	1.79	0.34	-0.28	±10
2450	Simulated Tissue 2450 MHz	39.307	1.794	39.2	1.8	0.27	-0.33	±10
2462	Simulated Tissue 2450 MHz	38.893	1.809	39.18	1.81	-0.73	-0.06	±10

*Liquid Verification above was performed on 2021/08/02.

Frequency	Liquid Type	Liquid Tar Parameter		Target	Target Value		elta 6)	Tolerance
(MHz)	Liquid Type	£ _r	0 (S/m)	8r	0' (S/m)	$\Delta \epsilon_r$	ΔƠ (S/m)	(%)
5180	Simulated Tissue 5250 MHz	36.303	4.594	36.02	4.64	0.79	-0.99	±10
5200	Simulated Tissue 5250 MHz	36.289	4.643	36	4.66	0.8	-0.36	±10
5240	Simulated Tissue 5250 MHz	36.033	4.676	35.96	4.7	0.2	-0.51	±10
5250	Simulated Tissue 5250 MHz	36.014	4.685	35.95	4.71	0.18	-0.53	±10

*Liquid Verification above was performed on 2021/08/02.

Bay Area Compliance Laboratories Corp. (Dongguan)

Report No.: DG2210722-30456E-20A

Frequency	/		Liquid Type		Target Value		Delta (%)		Tolerance
(MHz)	Liquiu Type	٤ _r	0 (S/m)	٤ _r	0' (S/m)	$\Delta \epsilon_r$	ΔƠ (S/m)	(%)	
5260	Simulated Tissue 5300 MHz	35.98	4.691	36.02	4.64	-0.11	1.1	±10	
5280	Simulated Tissue 5300 MHz	35.894	4.705	36	4.66	-0.29	0.97	±10	
5300	Simulated Tissue 5300 MHz	35.849	4.711	35.96	4.7	-0.31	0.23	±10	
5320	Simulated Tissue 5300 MHz	35.836	4.715	35.95	4.71	-0.32	0.11	±10	

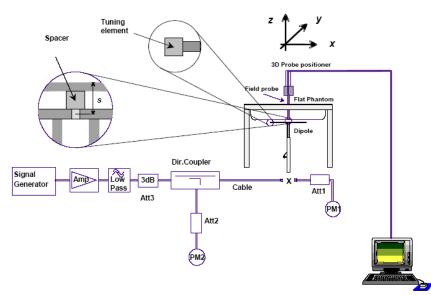
*Liquid Verification above was performed on 2021/08/02.

Frequency	y Liquid Tupe		Liquid Liquid Type		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	e	Ø	e	Ø	Δer	ΔO	(%)	
		ε _r	ϵ_{r} (S/m) ϵ_{r}		(S/m)	Δcr	(S/m)		
5500	Simulated Tissue 5600 MHz	35.684	4.721	35.94	4.72	-0.71	0.02	±10	
5580	Simulated Tissue 5600 MHz	35.674	4.73	35.92	4.74	-0.68	-0.21	±10	
5600	Simulated Tissue 5600 MHz	35.653	4.737	35.9	4.76	-0.69	-0.48	±10	
5700	Simulated Tissue 5600 MHz	35.578	4.74	35.88	4.78	-0.84	-0.84	±10	

*Liquid Verification above was performed on 2021/08/03.

Frequency	Liquid Ta Liquid Type		Target Value		Delta (%)		Tolerance	
(MHz)	Liquiu Type	c	Ø	c	Ø	$\Delta \epsilon_r$	ΔO	(%)
		ϵ_r (S/m) ϵ_r		8 _r	(S/m)	Δe _r	(S/m)	
5745	Simulated Tissue 5800 MHz	35.498	4.978	35.65	4.97	-0.43	0.16	±10
5785	Simulated Tissue 5800 MHz	35.478	5.071	35.53	5.05	-0.15	0.42	±10
5800	Simulated Tissue 5800 MHz	35.385	5.095	35.5	5.07	-0.32	0.49	±10
5825	Simulated Tissue 5800 MHz	35.187	5.18	35.4	5.17	-0.6	0.19	±10

*Liquid Verification above was performed on 2021/08/03.


System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s=15~mm\pm0.2~mm$ for 300 MHz $\leq f\leq1$ 000 MHz;
- b) $s=10\ mm\pm0.2\ mm$ for 1 000 MHz $< f \leq 3$ 000 MHz;
- c) $s=10~mm\pm0.2~mm$ for 3 000 MHz $< f \le 6$ 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

Date	Frequenc y Band	Liquid Type	Input Power (mW)	SA	sured AR /kg)	Normalize d to 1W (W/kg)	Target Value (W/kg)	Delta (%)	Tolerance (%)
2021/08/02	2450 MHz	Simulated Tissue	100	1g	5.48	54.8	53.5	2.43	±10
2021/08/02	2430 MITZ	2450 MHz	100	10g	24.6	24.6	24.2	1.65	±10
2021/08/02	5250 MHz	Simulated Tissue	100	lg	7.86	78.6	75.0	4.80	±10
2021/08/02	5250 MHZ	5250 MHz	100	10g	2.19	21.9	21.3	2.82	±10
2021/08/02	5200 MIL-	Simulated Tissue	100	1g	7.94	79.4	77.2	2.85	±10
2021/08/02	5300 MHz	5300 MHz	100	10g	2.31	23.1	21.9	5.48	±10
2021/08/03	5600 MHz	Simulated Tissue	100	lg	8.14	81.4	79.8	2.01	±10
2021/08/03	3000 MHZ	5600 MHz	100	10g	2.34	23.4	22.7	3.08	±10
2021/08/03	5800 MHz	Simulated Tissue	100	1g	8.06	80.6	77.9	3.47	±10
2021/08/03	JOUU MINZ	5800 MHz	100	10g	2.27	22.7	22.0	3.18	±10

*The SAR values above are normalized to 1 Watt forward power.

SAR SYSTEM VALIDATION DATA

System Performance 2450MHz;

DUT: D2450V2; Type: 2450 MHz; Serial: 971

Communication System: CW ; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.794 S/m; ϵ_r = 39.307; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.44, 7.44, 7.44) @ 2450 MHz; Calibrated: 2020/11/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2020/9/30
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (51x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 10.1 W/kg

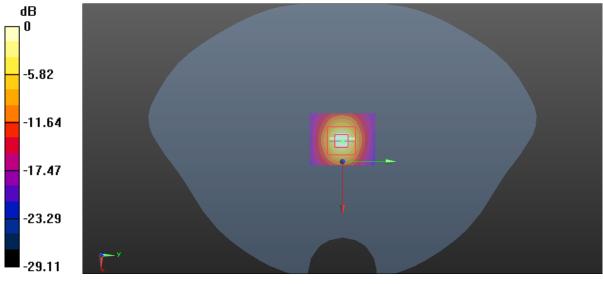
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.78 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 11.7 W/kg SAR(1 g) = 5.48 W/kg; SAR(10 g) = 2.46 W/kg Maximum value of SAR (measured) = 9.06 W/kg

0 dB = 9.06 W/kg = 9.57 dBW/kg

SAR Evaluation Report

System Performance 5250MHz

DUT: D5GHzV2; Type: 5250MHz; Serial: 1246


Communication System: CW; Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 4.685 S/m; ϵ_r = 36.014; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(5.55, 5.55, 5.55) @ 5250 MHz; Calibrated: 2020/11/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2020/9/30
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (41x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 23.1 W/kg

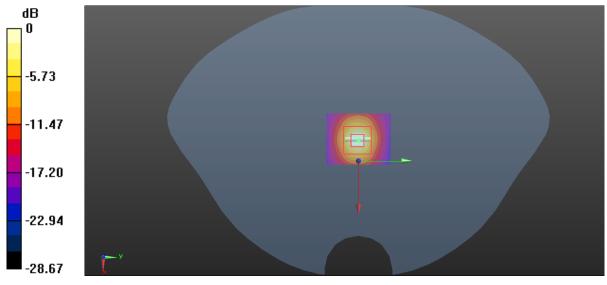
Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 44.07 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 36.5 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.19 W/kg Maximum value of SAR (measured) = 21.3 W/kg

0 dB = 21.3 W/kg = 13.28 dBW/kg

SAR Evaluation Report

System Performance 5300MHz

DUT: D5GHzV2; Type: 5300MHz; Serial: 1246


Communication System: CW; Frequency: 5300 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5300 MHz; σ = 4.711 S/m; ϵ_r = 35.849; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(5.28, 5.28, 5.28) @ 5300 MHz; Calibrated: 2020/11/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2020/9/30
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (41x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 24.5 W/kg

Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 45.19 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 36.6 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 21.5 W/kg

0 dB = 21.5 W/kg = 13.32 dBW/kg

System Performance 5600MHz

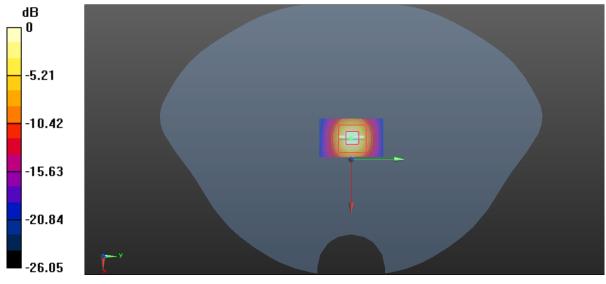
DUT: D5GHzV2; Type: 5600MHz; Serial: 1246

Communication System: CW; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 4.737 S/m; ϵ_r = 35.653; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(4.76, 4.76, 4.76) @ 5600 MHz; Calibrated: 2020/11/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2020/9/30
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (31x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 21.8 W/kg


Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm

Reference Value = 41.26 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 31.0 W/kg

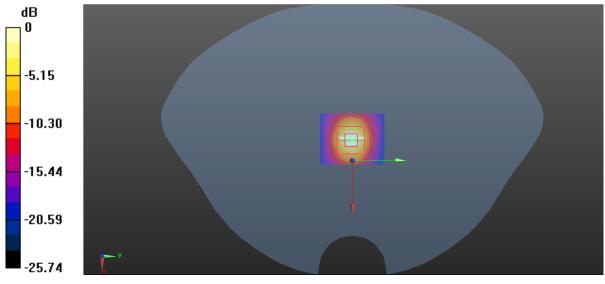
SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.34 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.88 dBW/kg

System Performance 5800MHz

DUT: D5GHzV2; Type: 5800MHz; Serial: 1246

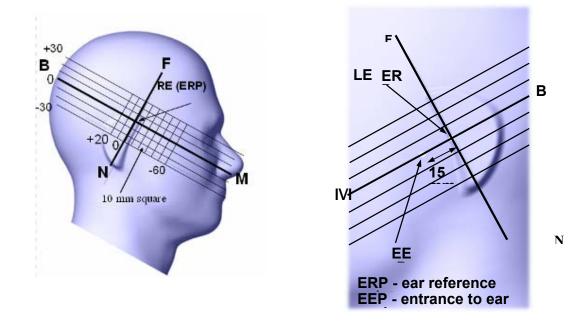

Communication System: CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 5.095 S/m; ϵ_r = 35.385; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(4.72, 4.72, 4.72) @ 5800 MHz; Calibrated: 2020/11/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2020/9/30
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (41x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 24.7 W/kg

Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 41.47 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 42.8 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 23.2 W/kg


0 dB = 23.2 W/kg = 13.65 dBW/kg

EUT TEST STRATEGY AND METHODOLOGY

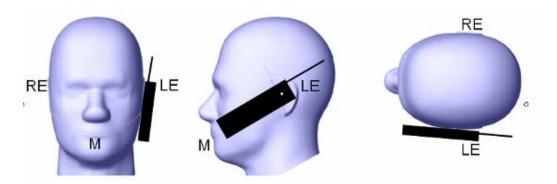
Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper 1/4 of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.


This test position is established:

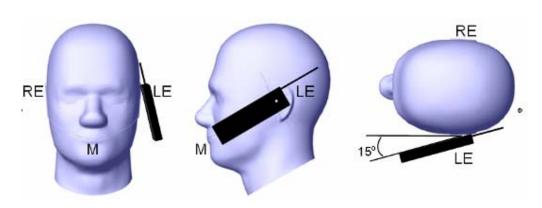
When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.

(or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek /Touch Position

Ear/Tilt Position


With the handset aligned in the "Cheek/Touch Position":

1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.

2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

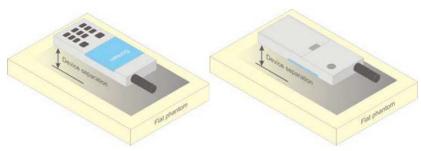


Figure 5 – Test positions for body-worn devices

Test Distance for SAR Evaluation

For Handheld mode(10g Extremity SAR) and body-worn mode (1g Body SAR)the EUT(Equipment Under Test) is set directly against the phantom, the test distance is 0mm; For Face Up mode(1g Head SAR) the EUT is set 10mm away from the phantom, the test distance is 10mm.

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

CONDUCTED OUTPUT POWER MEASUREMENT

Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

Test Procedure

The RF output of the transmitter was connected to the input port of the Power Meter through Connector.

Maximum Target Output Power

	Max Target Power(dBm)						
Mode/Band		Channel					
wioue/Banu	Low	Middle	High				
WLAN 2.4G(802.11b)	15.6	15.6	15.6				
WLAN 2.4G(802.11g)	14.5	14.5	14.5				
WLAN 2.4G(802.11n HT20)	12.9	12.9	12.9				
WLAN 5.2G(802.11a)	11.8	11.8	11.8				
WLAN 5.2G(802.11n20)	10.5	10.5	10.5				
WLAN 5.2G(802.11n40)	10.2	/	10.2				
WLAN 5.2G(802.11ac80)	/	10	/				
WLAN 5.3G(802.11a)	11.5	11.5	11.5				
WLAN 5.3G(802.11n20)	10.8	10.8	10.8				
WLAN 5.3G(802.11n40)	10	/	10				
WLAN 5.3G(802.11ac80)	/	9.6	/				
WLAN 5.6G(802.11a)	12	12	12				
WLAN 5.6G(802.11n20)	12	12	10				
WLAN 5.6G(802.11n40)	12	12	11				
WLAN 5.6G(802.11ac80)	9.5	9.5	9.5				
WLAN 5.8G(802.11a)	11.2	11.2	10				
WLAN 5.8G(802.11n20)	10.5	10	10				
WLAN 5.8G(802.11n40)	9.5	/	9.5				
WLAN 5.8G(802.11ac80)	/	8.5	/				
Bluetooth BDR/EDR	4.5	4.5	4.5				
Bluetooth LE	4.5	4.5	4.5				

Test Results:

WLAN 2.4G:

Mode	Channel frequency	Data Rate	Conducted Average Output Power(dBm)
	2412		14.61
802.11b	2437	1Mbps	14.98
	2462		15.49
	2412		13.1
802.11g	2437	6Mbps	13.92
	2462		14.36
000 11	2412		12.11
802.11n HT20	2437	MCS0	12.76
11120	2462		12.27

WLAN 5.2G:

Mode	Channel frequency	Data Rate	Conducted Average Output Power(dBm)
	5180	6Mbps	11.34
802.11a	5200		11.47
	5240		11.69
	5180		10.08
802.11n20	5200	MCS0	10.11
	5240		10.37
902 11-40	5190	MCS0	10.05
802.11n40	5230		9.91
802.11ac80	5210	MCS0	9.78

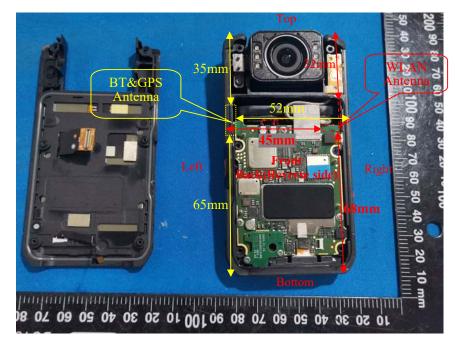
WLAN 5.3G:

Mode	Channel frequency	Data Rate	Conducted Average Output Power(dBm)
	5260		11.41
802.11a	5280	6Mbps	11.35
	5320	-	11.25
	5260		10.29
802.11n20	5280	MCS0	10.7
	5320		10.34
802 11-40	5270	MCSO	9.81
802.11n40	5310	MCS0	9.57
802.11ac80	5290	MCS0	9.42

WLAN 5.6G:

Mode	Channel frequency	Data Rate	Conducted Average Output Power(dBm)
	5500		11.67
802.11a	5580	6Mhma	11.63
802.11a	5700	6Mbps	11.54
	5720		11.52
	5500		11.65
802.11n20	5580	MCCO	11.55
802.111120	5700	MCS0	9.76
	5720		9.25
	5510		11.45
802.11n40	5550	MCSO	11.41
802.11n40	5670	MCS0	10.49
	5710		10.39
	5530		9.24
802.11ac80	5610	MCS0	9.21
	5690		9.19

WLAN 5.8G:


Mode	Channel frequency	Data Rate	Conducted Average Output Power(dBm)
	5745		11.06
802.11a	5785	6Mbps	10.92
	5825	9.83	
	5745		10.21
802.11n20	5785	MCS0	9.34
	5825		9.62
802.11n40	5755	MCS0	8.83
802.11n40	5795 MCS0	MCS0	9.32
802.11ac80	5775	MCS0	8.16

Bluetooth:

Mode	Channel frequency (MHz)	RF Output Power (dBm)
	2402	3.05
BDR(GFSK)	2441	3.89
	2480	4.13
	2402	1.51
EDR(π /4-DQPSK)	2441	2.59
	2480	2.83
	2402	1.79
EDR(8DPSK)	2441	2.77
	2480	3.02
	2402	2.55
Bluetooth LE	2440	3.45
	2480	3.83

Standalone SAR test exclusion considerations

Antennas Location:

Antenna Distance To Edge

Antenna Distance To Edge(mm)									
Antenna	Back	Front	Left	Right	Тор	Bottom			
WLAN Antenna	< 5	< 5	45	< 5	32	68			
BT&GPS Antenna	< 5	< 5	< 5	52	35	65			

Standalone SAR test exclusion considerations

Mode	Frequency (MHz)	Pavg (dBm)	Pavg (mW)	Distance (mm)	Calculated value	Threshold (1-g)	SAR Test Exclusion
BT	2480	4.5	2.82	0	0.9	3	YES
Wi-Fi 2.4G	2462	15.6	36.31	0	11.4	3	No
Wi-Fi 5.2G	5240	11.8	15.14	0	6.9	3	No
Wi-Fi 5.3G	5320	11.5	14.13	0	6.5	3	No
Wi-Fi 5.6G	5700	12	15.85	0	7.6	3	No
Wi-Fi 5.8G	5825	11.2	13.18	0	6.4	3	No

Note: The bluetooth based peak power for calculation, and Wi-Fi based average power for calculation.

NOTE:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

SAR Evaluation Report

Bay Area Compliance Laboratories Corp. (Dongguan)

Standalone SAR estimation:

Mode	Frequency (MHz)	Pavg (dBm)	Pavg (mW)	Distance (mm)	Estimated (W/kg)
BT Face Up	2480	4.5	2.82	10	0.06(1g)
BT Body Back	2480	4.5	2.82	0	0.12(1g)
BT Handheld	2480	4.5	2.82	0	0.05(10g)

Note: The bluetooth based peak power for calculation.

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)] ·

 $\left[\sqrt{f(GHz)/x}\right]$

W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

SAR test exclusion for the EUT edge considerations detail:

Mode	Frequency (MHz)	Pavg (dBm)	Pavg (mW)	Test exclusion Threshold (mm)
Wi-Fi 2.4G	2462	15.6	36.31	19
Wi-Fi 5.2G	5240	11.8	15.14	11.6
Wi-Fi 5.3G	5320	11.5	14.13	11
Wi-Fi 5.6G	5700	12	15.85	12.7
Wi-Fi 5.8G	5825	11.2	13.18	10.7

SAR test exclusion for the EUT edge considerations Result

Mode	Back Edge	Front Edge	Left Edge	Right Edge	Top Edge	Bottom Edge
Wi-Fi 2.4G	Required	Required	Exclusion	Required	Exclusion	Exclusion
Wi-Fi 5.2G	Required	Required	Exclusion	Required	Exclusion	Exclusion
Wi-Fi 5.3G	Required	Required	Exclusion	Required	Exclusion	Exclusion
Wi-Fi 5.6G	Required	Required	Exclusion	Required	Exclusion	Exclusion
Wi-Fi 5.8G	Required	Required	Exclusion	Required	Exclusion	Exclusion

SAR test exclusion for the EUT edge considerations detail:

Distance< 50mm(To Edges)

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

5. The Time based average Power is used for calculation

SAR Evaluation Report

Distance> 50mm(To Edges)

At 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following:

a) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) \cdot (f(MHz)/150)] mW, at 100 MHz to 1500 MHz

b) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) \cdot 10] mW at > 1500 MHz and \leq 6 GHz.

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	23.6-24.8 ℃	23.4-24.7 ℃
Relative Humidity:	43 %	51 %
ATM Pressure:	99.5 kPa	99.7 kPa
Test Date:	2021/08/02	2021/08/03

Testing was performed by Gaochao Gong, Jaime Zong, Vayne Lu.

WLAN 2.4G:

Operation	Mode:	Face	Un :	and I	Body	Worn
operation	muuuu.	1 acc	$\mathbf{v}\mathbf{p}$	unu i	buug	,, 01 II

EUT	Frequency	Test	Max. Meas.	Max. Rated	1 g SAR (W/kg), Limit=1.6W/kg				
Position	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Corrected SAR	Plot
	2412	802.11b	14.61	15.6	1.256	0.135	0.17	0.17	1#
Face Up(Front) (10mm)	2437	802.11b	14.98	15.6	1.153	0.128	0.148	0.15	2#
(1011111)	2462	802.11b	15.49	15.6	1.026	0.117	0.12	0.12	3#
	2412	802.11b	/	/	/	/	/	/	/
Face Up(Back) (10mm)	2437	802.11b	14.98	15.6	1.153	0.115	0.133	0.13	4#
(101111)	2462	802.11b	/	/	/	/	/	/	/
Body Back With Belt(0mm)	2412	802.11b	14.61	15.6	1.256	0.069	0.087	0.09	5#
	2437	802.11b	14.98	15.6	1.153	0.077	0.089	0.09	6#
	2462	802.11b	15.49	15.6	1.026	0.070	0.072	0.07	7#

Operation Mode: Handheld

EUT	Frequency	Test	Max. Meas.	Max. Rated	10	g SAR (V	V/kg), Lir	nit=4.0W/k	g
Position	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Corrected SAR	Plot
	2412	802.11b	/	/	/	/	/	/	/
Handheld Back (0mm)	2437	802.11b	14.98	15.6	1.153	0.118	0.136	0.14	8#
(omm)	2462	802.11b	/	/	/	/	/	/	/
	2412	802.11b	14.61	15.6	1.256	0.248	0.311	0.31	9#
Handheld Front (0mm)	2437	802.11b	14.98	15.6	1.153	0.279	0.322	0.32	10#
	2462	802.11b	15.49	15.6	1.026	0.31	0.318	0.32	11#
Handheld Right (0mm)	2412	802.11b	/	/	/	/	/	/	/
	2437	802.11b	14.98	15.6	1.153	0.244	0.281	0.28	12#
()	2462	802.11b	/	/	/	/	/	/	/

Note:

- 1. When the SAR value is less than half of the limit, testing for other channels are optional.
- 2.When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.
- 3.KDB 248227 D01-SAR measurement is not required for 2.4 GHz OFDM(801.11g/n) when the highest reported SAR for DSSS(802.11b) is \leq 1.2 W/kg, and the output power for DSSS is not less than that for OFDM.
- 4. According to IEC 62209-2:2010 ,If the correction Δ SAR has a positive sign, the measured SAR results shall not be corrected.

WLAN 5.2G:

Operation	Mode	Face	Un	and	Rody	Worn
Operation	mout.	race	$\mathbf{v}\mathbf{p}$	anu	Duuy	W UI II

EUT	Frequency	Test	Max. Meas.	Max. Rated Power (dBm)	1 g SAR (W/kg), Limit=1.6W/kg					
Position	(MHz)	Mode	Power (dBm)		Scaled Factor	Meas. SAR	Scaled SAR	Corrected SAR	Plot	
	5180	802.11a	11.34	11.8	1.112	0.145	0.161	0.16	13#	
Face Up(Front) (10mm)	5200	802.11a	11.47	11.8	1.079	0.119	0.128	0.13	14#	
(Tomm)	5240	802.11a	11.69	11.8	1.026	0.145	0.149	0.15	15#	
	5180	802.11a	/	/	/	/	/	/	/	
Face Up(Back) (10mm)	5200	802.11a	11.47	11.8	1.079	0.089	0.096	0.10	16#	
(101111)	5240	802.11a	/	/	/	/	/	/	/	
	5180	802.11a	11.34	11.8	1.112	0.338	0.376	0.38	17#	
Body Back With Belt(0mm)	5200	802.11a	11.47	11.8	1.079	0.312	0.337	0.34	18#	
()	5240	802.11a	11.69	11.8	1.026	0.357	0.366	0.37	19#	

Operation Mode: Handheld

EUT	Frequency	Test	Max. Meas.	Max. Rated	10 g SAR (W/kg), Limit=4.0W/kg					
Position	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Corrected SAR	Plot	
	5180	802.11a	/	/	/	/	/	/	/	
Handheld Back (0mm)	5200	802.11a	11.47	11.8	1.079	0.41	0.442	0.44	20#	
(omm)	5240	802.11a	/	/	/	/	/	/	/	
	5180	802.11a	/	/	/	/	/	/	/	
Handheld Front (0mm)	5200	802.11a	11.47	11.8	1.079	0.19	0.205	0.21	21#	
	5240	802.11a	/	/	/	/	/	/	/	
	5180	802.11a	11.34	11.8	1.112	0.487	0.542	0.54	22#	
Handheld Right (0mm)	5200	802.11a	11.47	11.8	1.079	0.424	0.457	0.46	23#	
()	5240	802.11a	11.69	11.8	1.026	0.463	0.475	0.48	24#	

WLAN 5.3G:

EUT	Frequency	Test	Max. Meas.	Max. Rated	1 g SAR (W/kg), Limit=1.6W/kg					
Position	(MHz)	Mode Power (dBm)		Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Corrected SAR	Plot	
	5260	802.11a	11.41	11.5	1.021	0.093	0.095	0.10	25#	
Face Up(Front) (10mm)	5280	802.11a	11.35	11.5	1.035	0.127	0.131	0.13	26#	
()	5320	802.11a	11.25	11.5	1.059	0.089	0.094	0.09	27#	
	5260	802.11a	/	/	/	/	/	/	/	
Face Up(Back) (10mm)	5280	802.11a	11.35	11.5	1.035	0.105	0.109	0.11	28#	
(101111)	5320	802.11a	/	/	/	/	/	/	/	
Body Back With Belt(0mm)	5260	802.11a	11.41	11.5	1.021	0.205	0.209	0.21	29#	
	5280	802.11a	11.35	11.5	1.035	0.191	0.198	0.20	30#	
	5320	802.11a	11.25	11.5	1.059	0.224	0.237	0.24	31#	

Operation Mode: Handheld

EUT	Frequency	Test	Max. Meas.	Max. Rated	10 g SAR (W/kg), Limit=4.0W/kg					
Position	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Corrected SAR	Plot	
	5260	802.11a	/	/	/	/	/	/	/	
Handheld Back (0mm)	5280	802.11a	11.35	11.5	1.035	0.286	0.296	0.30	32#	
(onin)	5320	802.11a	/	/	/	/	/	/	/	
	5260	802.11a	/	/	/	/	/	/	/	
Handheld Front (0mm)	5280	802.11a	11.35	11.5	1.035	0.135	0.14	0.14	33#	
	5320	802.11a	/	/	/	/	/	/	/	
	5260	802.11a	11.41	11.5	1.021	0.237	0.242	0.24	34#	
Handheld Right (0mm)	5280	802.11a	11.35	11.5	1.035	0.293	0.303	0.30	35#	
()	5320	802.11a	11.25	11.5	1.059	0.229	0.243	0.24	36#	

WLAN 5.6G:

Operation	Mode:	Face	Un	and	Body	Worn
operation	muuuu.	1 acc	$\mathbf{v}\mathbf{p}$	unu	Dudy	,, 0 1 H

EUT	Frequency	Test	Max. Meas.	Max. Rated	1 g SAR (W/kg), Limit=1.6W/kg					
Position	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Corrected SAR	Plot	
	5500	802.11a	11.67	12	1.079	0.138	0.149	0.15	37#	
Face Up(Front) (10mm)	5580	802.11a	11.63	12	1.089	0.141	0.154	0.15	38#	
(Tomm)	5700	802.11a	11.54	12	1.112	0.11	0.122	0.12	39#	
	5500	802.11a	/	/	/	/	/	/	/	
Face Up(Back) (10mm)	5580	802.11a	11.63	12	1.089	0.092	0.1	0.10	40#	
()	5700	802.11a	/	/	/	/	/	/	/	
	5500	802.11a	11.67	12	1.079	0.225	0.243	0.24	41#	
Body Back With Belt(0mm)	5580	802.11a	11.63	12	1.089	0.201	0.219	0.22	42#	
	5700	802.11a	11.54	12	1.112	0.101	0.112	0.11	43#	

Operation Mode: Handheld

EUT	Frequency	Test	Max. Meas.	Max. Rated	10 g SAR (W/kg), Limit=4.0W/kg					
Position	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Corrected SAR	Plot	
	5500	802.11a	/	/	/	/	/	/	/	
Handheld Back (0mm)	5580	802.11a	11.63	12	1.089	0.135	0.147	0.15	44#	
(onin)	5700	802.11a	/	/	/	/	/	/	/	
	5500	802.11a	/	/	/	/	/	/	/	
Handheld Front (0mm)	5580	802.11a	11.63	12	1.089	0.278	0.303	0.30	45#	
	5700	802.11a	/	/	/	/	/	/	/	
	5500	802.11a	11.67	12	1.079	0.262	0.283	0.28	46#	
Handheld Right (0mm)	5580	802.11a	11.63	12	1.089	0.284	0.309	0.31	47#	
()	5700	802.11a	11.54	12	1.112	0.263	0.292	0.29	48#	

WLAN 5.8G:

EUT	Frequency	Test	Max. Meas.	Max. Rated	1 g SAR (W/kg), Limit=1.6W/kg					
Position	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Corrected SAR	Plot	
	5745	802.11a	11.06	11.2	1.033	0.119	0.123	0.12	49#	
Face Up(Front) (10mm)	5785	802.11a	10.92	11.2	1.067	0.128	0.137	0.14	50#	
(Tomm)	5825	802.11a	9.83	10	1.04	0.102	0.106	0.11	51#	
	5745	802.11a	/	/	/	/	/	/	/	
Face Up(Back) (10mm)	5785	802.11a	10.92	11.2	1.067	0.124	0.132	0.13	52#	
(101111)	5825	802.11a	/	/	/	/	/	/	/	
	5745	802.11a	11.06	11.2	1.033	0.161	0.166	0.17	53#	
Body Back With Belt(0mm)	5785	802.11a	10.92	11.2	1.067	0.15	0.16	0.16	54#	
(*****)	5825	802.11a	9.83	10	1.04	0.117	0.122	0.12	55#	

Operation Mode: Handheld

EUT	Frequency	Test	Max. Meas.	Max. Rated	10 g SAR (W/kg), Limit=4.0W/kg					
Position	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Corrected SAR	Plot	
	5745	802.11a	/	/	/	/	/	/	/	
Handheld Back (0mm)	5785	802.11a	10.92	11.2	1.067	0.163	0.174	0.17	56#	
(omm)	5825	802.11a	/	/	/	/	/	/	/	
	5745	802.11a	/	/	/	/	/	/	/	
Handheld Front (0mm)	5785	802.11a	10.92	11.2	1.067	0.105	0.112	0.11	57#	
	5825	802.11a	/	/	/	/	/	/	/	
	5745	802.11a	11.06	11.2	1.033	0.333	0.344	0.34	58#	
Handheld Right (0mm)	5785	802.11a	10.92	11.2	1.067	0.29	0.309	0.31	59#	
()	5825	802.11a	9.83	10	1.04	0.259	0.269	0.27	60#	

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

3. According to IEC 62209-2:2010, If the correction Δ SAR has a positive sign, the measured SAR results shall not be corrected.

Report No.: DG2210722-30456E-20A

Corrected SAR Evaluation

62209-2 © IEC:2010

- 89 -

Annex F (normative)

SAR correction for deviations of complex permittivity from targets

F.2 SAR correction formula

From [13] and [14], a linear relationship was found between the percent change in SAR (denoted ΔSAR) and the percent change in the permittivity and conductivity from the target values in Table 1 (denoted $\Delta \varepsilon_r$ and $\Delta \sigma$, respectively). This linear relationship agrees with the results of Kuster and Balzano [48] and Bit-Babik et al. [2]. The relationship is given by:

$$\Delta SAR = c_{\epsilon} \Delta \varepsilon_r + c_{\sigma} \Delta \sigma \tag{F.1}$$

where

$c_{\varepsilon} = \partial (\Delta SAR) / \partial (\Delta \varepsilon)$	is the coefficients representing the sensitivity of SAR to permittivity where SAR is normalized to output power;
$c_{\sigma} = \partial (\Delta SAR) / \partial (\Delta \sigma)$	is the coefficients representing the sensitivity of SAR to conductivity, where SAR is normalized to output power.

The values of c_{ϵ} and c_{σ} have a simple relationship with frequency that can be described using polynomial equations. For the 1 g averaged SAR c_{ϵ} and c_{σ} are given by

$$c_{\varepsilon} = -7,854 \times 10^{-4} f^3 + 9,402 \times 10^{-3} f^2 - 2,742 \times 10^{-2} f - 0,2026$$
 (F.2)

$$c_{\alpha} = 9,804 \times 10^{-3} f^3 - 8,661 \times 10^{-2} f^2 + 2,981 \times 10^{-2} f + 0,782 9$$
 (F.3)

where

f is the frequency in GHz.

For the 10 g averaged SAR, the variables c_{ε} and c_{σ} are given by:

$$c_{\varepsilon} = 3,456 \times 10^{-3} f^3 - 3,531 \times 10^{-2} f^2 + 7,675 \times 10^{-2} f - 0,186 0$$
 (F.4)

$$c_{\sigma} = 4,479 \times 10^{-3} f^3 - 1,586 \times 10^{-2} f^2 - 0,197 2f + 0,771 7$$
 (F.5)

Frequency (MHz)	Liquid Type	Cε	∆٤r	Сб	Δδ	∆SAR (%)
2412	1g Head	-0.225	0.74	0.489	0.34	0.00
2437	1g Head	-0.225	0.34	0.483	-0.28	-0.21
2450	1g Head	-0.225	0.27	0.480	-0.33	-0.22
2462	1g Head	-0.225	-0.73	0.478	-0.06	0.14
5180	1g Head	-0.202	0.79	-0.024	-0.99	-0.14
5200	1g Head	-0.201	0.8	-0.026	-0.36	-0.15
5240	1g Head	-0.201	0.2	-0.028	-0.51	-0.03
5250	1g Head	-0.201	0.18	-0.029	-0.53	-0.02
5260	1g Head	-0.201	-0.11	-0.030	1.1	-0.01
5280	1g Head	-0.201	-0.29	-0.031	0.97	0.03
5300	1g Head	-0.201	-0.31	-0.032	0.23	0.05
5320	1g Head	-0.201	-0.32	-0.034	0.11	0.06
5500	1g Head	-0.200	-0.71	-0.042	0.02	0.14
5580	1g Head	-0.199	-0.68	-0.044	-0.21	0.14
5600	1g Head	-0.199	-0.69	-0.045	-0.48	0.16
5700	1g Head	-0.199	-0.84	-0.046	-0.84	0.21
5745	1g Head	-0.199	-0.43	-0.045	0.16	0.08
5785	1g Head	-0.199	-0.15	-0.045	0.42	0.01
5800	1g Head	-0.199	-0.32	-0.045	0.49	0.04
5825	1g Head	-0.199	-0.6	-0.044	0.19	0.11
Frequency (MHz)	Liquid Type	Cε	∆٤r	Сб	Δδ	△SAR (%)
		С є -0.158	Δ ε r 0.74	С б 0.267	Δδ 0.34	
(MHz)	Туре					(%)
(MHz) 2412	Type10g Head	-0.158	0.74	0.267	0.34	(%) -0.03
(MHz) 2412 2437	Type10g Head10g Head	-0.158 -0.159	0.74 0.34	0.267 0.262	0.34 -0.28	(%) -0.03 -0.13
(MHz) 2412 2437 2450	Type10g Head10g Head10g Head	-0.158 -0.159 -0.159	0.74 0.34 0.27	0.267 0.262 0.259	0.34 -0.28 -0.33	(%) -0.03 -0.13 -0.13
(MHz) 2412 2437 2450 2462	Type 10g Head 10g Head 10g Head 10g Head	-0.158 -0.159 -0.159 -0.159	0.74 0.34 0.27 -0.73	0.267 0.262 0.259 0.257	0.34 -0.28 -0.33 -0.06	(%) -0.03 -0.13 -0.13 0.10
(MHz) 2412 2437 2450 2462 5180	Type10g Head10g Head10g Head10g Head10g Head	-0.158 -0.159 -0.159 -0.159 -0.256	0.74 0.34 0.27 -0.73 0.79	0.267 0.262 0.259 0.257 -0.053	0.34 -0.28 -0.33 -0.06 -0.99	(%) -0.03 -0.13 0.13 0.10 -0.15
(MHz) 2412 2437 2450 2462 5180 5200	Type10g Head10g Head10g Head10g Head10g Head10g Head10g Head	-0.158 -0.159 -0.159 -0.159 -0.256 -0.256	0.74 0.34 0.27 -0.73 0.79 0.8	0.267 0.262 0.259 0.257 -0.053 -0.053	0.34 -0.28 -0.33 -0.06 -0.99 -0.36	(%) -0.03 -0.13 0.10 -0.15 -0.19
(MHz) 2412 2437 2450 2462 5180 5200 5240	Type 10g Head 10g Head 10g Head 10g Head 10g Head 10g Head	-0.158 -0.159 -0.159 -0.159 -0.256 -0.256 -0.256	0.74 0.34 0.27 -0.73 0.79 0.8 0.2	0.267 0.262 0.259 0.257 -0.053 -0.053 -0.053	0.34 -0.28 -0.33 -0.06 -0.99 -0.36 -0.51	(%) -0.03 -0.13 -0.13 -0.15 -0.19
(MHz) 2412 2437 2450 2462 5180 5200 5240 5250	Type10g Head10g Head10g Head10g Head10g Head10g Head10g Head10g Head10g Head	-0.158 -0.159 -0.159 -0.159 -0.256 -0.256 -0.256 -0.256	0.74 0.34 0.27 -0.73 0.79 0.8 0.2 0.18	0.267 0.262 0.259 0.257 -0.053 -0.053 -0.053 -0.053	0.34 -0.28 -0.33 -0.06 -0.99 -0.36 -0.51 -0.53	(%) -0.03 -0.13 -0.13 -0.15 -0.19 -0.02
(MHz) 2412 2437 2450 2462 5180 5200 5240 5250 5260	Type10g Head10g Head	-0.158 -0.159 -0.159 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256	0.74 0.34 0.27 -0.73 0.79 0.8 0.2 0.18 -0.11	0.267 0.262 0.259 0.257 -0.053 -0.053 -0.053 -0.053 -0.053	0.34 -0.28 -0.33 -0.06 -0.99 -0.36 -0.51 -0.53 1.1	(%) -0.03 -0.13 -0.13 0.10 -0.15 -0.19 -0.02 -0.03
(MHz) 2412 2437 2450 2462 5180 5200 5240 5250 5260 5260 5280	Type10g Head10g Head	-0.158 -0.159 -0.159 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256	0.74 0.34 0.27 -0.73 0.79 0.8 0.2 0.18 -0.11 -0.29	0.267 0.262 0.259 0.257 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.052	0.34 -0.28 -0.33 -0.06 -0.99 -0.36 -0.51 -0.53 1.1 0.97	(%) -0.03 -0.13 -0.13 -0.15 -0.19 -0.02 -0.03 0.02
(MHz) 2412 2437 2450 2462 5180 5200 5240 5250 5260 5260 5280 5300	Type10g Head10g Head	-0.158 -0.159 -0.159 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.257	0.74 0.34 0.27 -0.73 0.79 0.8 0.2 0.18 -0.11 -0.29 -0.31	0.267 0.262 0.259 0.257 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.052 -0.052	0.34 -0.28 -0.33 -0.06 -0.99 -0.36 -0.51 -0.53 1.1 0.97 0.23	(%) -0.03 -0.13 -0.13 -0.15 -0.19 -0.02 -0.03 0.02 0.07
(MHz) 2412 2437 2450 2462 5180 5200 5240 5250 5260 5260 5280 5300 5320	Type10g Head10g Head	-0.158 -0.159 -0.159 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.257 -0.257	0.74 0.34 0.27 -0.73 0.79 0.8 0.2 0.18 -0.11 -0.29 -0.31 -0.32	0.267 0.262 0.259 0.257 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.052 -0.052 -0.052	0.34 -0.28 -0.33 -0.06 -0.99 -0.36 -0.51 -0.53 1.1 0.97 0.23 0.11	(%) -0.03 -0.13 -0.13 0.10 -0.15 -0.19 -0.02 -0.03 0.02 0.07 0.08
(MHz) 2412 2437 2450 2462 5180 5200 5240 5250 5260 5260 5280 5320 5320 5320	Type10g Head10g Head	-0.158 -0.159 -0.159 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.257 -0.257 -0.257 -0.257	0.74 0.34 0.27 -0.73 0.79 0.8 0.2 0.18 -0.11 -0.29 -0.31 -0.32 -0.71	0.267 0.262 0.259 0.257 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.052 -0.052 -0.052 -0.052 -0.052 -0.047	0.34 -0.28 -0.33 -0.06 -0.99 -0.36 -0.51 -0.53 1.1 0.97 0.23 0.11 0.02	(%) -0.03 -0.13 -0.13 0.10 -0.15 -0.19 -0.02 -0.03 0.02 0.07 0.08 0.18
(MHz) 2412 2437 2450 2462 5180 5200 5240 5250 5260 5260 5280 5300 5320 5320 5320 5320	Type10g Head10g Head	-0.158 -0.159 -0.159 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.257 -0.257 -0.257 -0.257 -0.257	0.74 0.34 0.27 -0.73 0.79 0.8 0.2 0.18 -0.11 -0.29 -0.31 -0.32 -0.71 -0.68	0.267 0.262 0.259 0.257 -0.053 -0.053 -0.053 -0.053 -0.053 -0.052 -0.052 -0.052 -0.052 -0.047 -0.044	0.34 -0.28 -0.33 -0.06 -0.99 -0.36 -0.51 -0.53 1.1 0.97 0.23 0.11 0.02 -0.21	(%) -0.03 -0.13 -0.13 0.10 -0.15 -0.19 -0.02 -0.03 0.02 0.07 0.08 0.18
(MHz) 2412 2437 2450 2450 2462 5180 5200 5240 5250 5260 5280 5300 5320 5500 5580 5600	Type10g Head10g Head	-0.158 -0.159 -0.159 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.257 -0.257 -0.257 -0.257 -0.257 -0.257	0.74 0.34 0.27 -0.73 0.79 0.8 0.2 0.18 -0.11 -0.29 -0.31 -0.32 -0.71 -0.68 -0.69	0.267 0.262 0.259 0.257 -0.053 -0.053 -0.053 -0.053 -0.053 -0.052 -0.052 -0.052 -0.052 -0.047 -0.044 -0.043	0.34 -0.28 -0.33 -0.06 -0.99 -0.36 -0.51 -0.53 1.1 0.97 0.23 0.11 0.02 -0.21 -0.48	(%) -0.03 -0.13 -0.13 0.10 -0.15 -0.19 -0.02 -0.03 0.02 -0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03
(MHz) 2412 2437 2450 2450 2450 5260 5260 5280 5300 5320 5500 5580 5600 5700	Type10g Head10g Head	-0.158 -0.159 -0.159 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.257 -0.257 -0.257 -0.257 -0.257 -0.257 -0.257 -0.257 -0.257 -0.257	0.74 0.34 0.27 -0.73 0.79 0.8 0.2 0.18 -0.11 -0.29 -0.31 -0.32 -0.71 -0.68 -0.69 -0.84	0.267 0.262 0.259 0.257 -0.053 -0.053 -0.053 -0.053 -0.053 -0.052 -0.052 -0.047 -0.043 -0.038	0.34 -0.28 -0.33 -0.06 -0.99 -0.36 -0.51 -0.53 1.1 0.97 0.23 0.11 0.02 -0.21 -0.48 -0.84	(%) -0.03 -0.13 -0.13 0.10 -0.15 -0.19 -0.02 -0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.04 0.18 0.20 0.25
(MHz) 2412 2437 2450 2450 2462 5180 5200 5240 5250 5260 5280 5300 5320 5500 5580 5600 5700 5745	Type10g Head10g Head	-0.158 -0.159 -0.159 -0.256 -0.256 -0.256 -0.256 -0.256 -0.256 -0.257 -0.257 -0.257 -0.257 -0.257 -0.257 -0.257 -0.255	0.74 0.34 0.27 -0.73 0.79 0.8 0.2 0.18 -0.11 -0.29 -0.31 -0.32 -0.71 -0.68 -0.69 -0.84 -0.43	0.267 0.262 0.259 0.257 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.052 -0.052 -0.047 -0.043 -0.038	0.34 -0.28 -0.33 -0.06 -0.99 -0.36 -0.51 -0.53 1.1 0.97 0.23 0.11 0.02 -0.21 -0.48 -0.84 0.16	(%) -0.03 -0.13 -0.13 -0.13 -0.15 -0.19 -0.02 -0.03 0.02 0.07 0.08 0.18 0.20 0.25 0.10

Report No.: DG2210722-30456E-20A

 $\Delta SAR = c_{\varepsilon} \Delta \varepsilon_{r} + c_{\sigma} \Delta \sigma$ where

f is the frequency in GHz.

Corrected SAR = Measured SAR * $((100 + (\Delta SAR \times -1))/100)$

SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The Highest Measured SAR Configuration in Each Frequency Band

Head

SAR probe	Frequency	Freq.(MHz)	EUT Position	Meas. SA	Largest to	
calibration point	Band			Original	Repeated	Smallest SAR Ratio
/	/	/	/	/	/	/

Body

-	Frequency	Frequency Band Freq.(MHz)	EUT Position	Meas. SA	Largest to Smallest	
	Band		EUT Position	Original	Repeated	SAR Ratio
/	/	/	/	/	/	/

Handheld

	Frequency		EUT Position	Meas. SAF	Largest to Smallest	
	Band Freq.(MHz)		EUT POSITION	Original	Repeated	SAR Ratio
/	/	/	/	/	/	/

Note:

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.
- 3. SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements..

SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

Simultaneous Transmission:

Description of Simultaneous Transmit Capabilities							
Transmitter Combination	Simultaneous?	Hotspot?					
WLAN 2.4G/5G + Bluetooth	\checkmark	×					

Simultaneous SAR test exclusion considerations:

Operation Mode: Face Up and Body Worn

Mode(SAR1+SAR2)	Position	Reported S	$\Sigma SAR <$	
(Shirit Shirit)	i ostion	SAR1	SAR2	1.6W/kg
	Face Up(Front)	0.17	0.06	0.23
WLAN 2.4G +Bluetooth	Face Up(Back)	0.13	0.06	0.19
	Body BackWith Belt	0.09	0.12	0.21
	Face Up(Front)	0.16	0.06	0.22
WLAN 5.2G + Bluetooth	Face Up(Back)	0.10	0.06	0.16
	Body BackWith Belt	0.38	0.12	0.50
	Face Up(Front)	0.13	0.06	0.19
WLAN 5.3G + Bluetooth	Face Up(Back)	0.11	0.06	0.17
	Body BackWith Belt	0.24	0.12	0.36
	Face Up(Front)	0.15	0.06	0.21
WLAN 5.6G + Bluetooth	Face Up(Back)	0.10	0.06	0.16
	Body BackWith Belt	0.24	0.12	0.36
	Face Up(Front)	0.14	0.06	0.20
WLAN 5.8G + Bluetooth	Face Up(Back)	0.13	0.06	0.19
	Body BackWith Belt	0.17	0.12	0.29

Conclusion:

Sum of SAR: Σ SAR \leq 1.6 W/kg therefore simultaneous transmission SAR with Volume Scans is not required.

Bay Area Compliance Laboratories Corp. (Dongguan)

Mode(SAR1+SAR2)	Position	Reported S	Reported SAR(W/kg)		
moue(ontre) ontre)	i osition	SAR1	SAR2	4.0W/kg	
	Handheld Back	0.14	0.05	0.19	
WLAN 2.4G +Bluetooth	Handheld Front	0.32	0.05	0.37	
	Handheld Right	0.28	0.05	0.33	
	Handheld Back	0.44	0.05	0.49	
WLAN 5.2G + Bluetooth	Handheld Front	0.21	0.05	0.26	
	Handheld Right	0.54	0.05	0.59	
	Handheld Back	0.30	0.05	0.35	
WLAN 5.3G + Bluetooth	Handheld Front	0.14	0.05	0.19	
	Handheld Right	0.30	0.05	0.35	
	Handheld Back	0.15	0.05	0.20	
WLAN 5.6G + Bluetooth	Handheld Front	0.30	0.05	0.35	
	Handheld Right	0.31	0.05	0.36	
	Handheld Back	0.17	0.05	0.22	
WLAN 5.8G + Bluetooth	Handheld Front	0.11	0.05	0.16	
	Handheld Right	0.34	0.05	0.39	

Operation Mode: Handheld

Conclusion:

Sum of SAR: Σ SAR \leq 4.0 W/kg therefore simultaneous transmission SAR with Volume Scans is not required.

SAR Plots

Please Refer to the Attachment.

APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)
		Measuremer	nt system				
Probe calibration	6.55	Ν	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Linearity	4.7	R	√3	1	1	2.7	2.7
Detection limits	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	Ν	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	√3	1	1	0.6	0.6
RF ambient conditions–reflections	1.0	R	√3	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9
Post-processing	2.0	R	√3	1	1	1.2	1.2
	•	Test sample	e related				
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8
Device holder uncertainty	6.3	Ν	1	1	1	6.3	6.3
Drift of output power	5.0	R	√3	1	1	2.9	2.9
		Phantom an	id set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1
Liquid permittivity target)	5.0	R	√3	0.6	0.49	1.7	1.4
Liquid permittivity meas.)	2.5	N	1	0.6	0.49	1.5	1.2
Combined standard uncertainty		RSS				12.2	12.0
Expanded uncertainty 95 % confidence interval)						24.3	23.9

Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)
		Measureme	nt system				
Probe calibration	6.55	Ν	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Linearity	4.7	R	√3	1	1	2.7	2.7
Detection limits	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	N	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	√3	1	1	0.6	0.6
RF ambient conditions–reflections	1.0	R	√3	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9
Post-processing	2.0	R	√3	1	1	1.2	1.2
		Test sampl	e related				
Test sample positioning	2.8	N	1	1	1	2.8	2.8
Device holder uncertainty	6.3	N	1	1	1	6.3	6.3
Drift of output power	5.0	R	√3	1	1	2.9	2.9
	1	Phantom ar	nd set-up	1			
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1
Liquid permittivity target)	5.0	R	√3	0.6	0.49	1.7	1.4
Liquid permittivity meas.)	2.5	N	1	0.6	0.49	1.5	1.2
Combined standard uncertainty		RSS				12.2	12.0
Expanded uncertainty 95 % confidence interval)						24.3	23.9

Measurement uncertainty evaluation for IEC62209-1 SAR test

APPENDIX B EUT TEST POSITION PHOTOS

Please Refer to the Attachment.

APPENDIX C CALIBRATION CERTIFICATES

Please Refer to the Attachment.

***** END OF REPORT *****