

Г

TEST REPORT							
Report Reference No	TRE1703011101 R/C:58916						
FCC ID:	YAMRCS-01						
Applicant's name:	Hytera Communications Corporation Limited						
Address:	Hytera Tower, Hi-Tech Industrial Park North,9108# Beihuan Road, Nanshan District, Shenzhen, China						
Manufacturer	Hytera Communications Corporation Limited						
Address	Hytera Tower, Hi-Tech Industrial Park North,9108# Beihuan Road, Nanshan District, Shenzhen, China						
Test item description:	Motorcycle Wireless Console						
Trade Mark	Hytera						
Model/Type reference:	RCS-01						
Listed Model(s):	-						
Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247							
Date of receipt of test sample:	Mar. 14, 2017						
Date of testing	Mar. 15, 2017-Apr. 12,2017						
Date of issue	Apr. 12,2017						
Result:	PASS						
Compiled by (position+printedname+signature):	File administrators Shayne Zhu						
Supervised by (position+printedname+signature):	Project Engineer Jeff Sun Jeff Sten Hours Hu						
Approved by (position+printedname+signature):	RF Manager Hans Hu						
Testing Laboratory Name:	Shenzhen Huatongwei International Inspection Co., Ltd.						
Address:	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China						
Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.							

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report Version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation State	6
3.4.	EUT Configuration	7
3.5.	Modifications	7
<u>4.</u>	TEST ENVIRONMENT	8
4.1.	Address OfThe Test Laboratory	8
4.2.	Test Facility	8
4.3.	Environmental Conditions	9
4.4.	Statement OfThe Measurement Uncertainty	9
4.5.	Test Equipment	10
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna Requirement	11
5.2.	Conducted Emissions (AC Mains)	12
5.3.	Conducted Peak Output Power	13
5.4.	20dB Emission Bandwidth	16
5.5.	Carrier Frequencies Separation	19
5.6.	Hopping Channel Number	21
5.7.	Dwell Time	23
5.8.	Pseudorandom Frequency Hopping Sequence	26
5.9.	Restricted Band (radiated)	27
5.10.	BandEdge and Spurious Emission (conducted)	29
5.11.	Spurious Emissions (radiated)	33
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	39
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	41

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

1.2. Report Version

Version No.	Date of issue	Description
00	Apr. 12, 2017	Original

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
Conducted Emissions(AC Mains)	15.207	N/A
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
Restricted band	15.247(d)/15.205	Pass
Radiated Emissions	15.247(d)/15.209	Pass

Note: The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Client Information

Applicant:	Hytera Communications Corporation Limited
Address:	Hytera Tower, Hi-Tech Industrial Park North,9108# Beihuan Road, Nanshan District, Shenzhen, China
Manufacturer:	Hytera Communications Corporation Limited
Address:	Hytera Tower, Hi-Tech Industrial Park North,9108# Beihuan Road, Nanshan District, Shenzhen, China

3.2. Product Description

Name of EUT	Motorcycle Wireless Console	
Trade Mark:	Hytera	
Model No.:	RCS-01	
Listed Model(s):	-	
Power supply:	DC12V	
Adapter information:	•	
Bluetooth		
Version: Bluetooth 4.0+EDR		
Modulation:	GFSK, π/4DQPSK, 8DPSK	
Operation frequency:	2402MHz~2480MHz	
Channel number:	79	
Channel separation:	1MHz	
Antenna type:	Internal Antenna	
Antenna gain:	-1.5dBi	

3.3. Operation State

Frequency list

79 channels are provided for bluetooth EDR mode:

Channel	Frequcncy (MHz)	Channel	Frequcncy (MHz)	Channel	Frequcncy (MHz)	Channel	Frequcncy (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

> Test channel

Channel	Frequcncy (MHz)
0	2402
39	2441
78	2480

> <u>Test mode</u>

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

the EUT was set to connect with the Bluetooth under large package sizes transmission.

For RF test axis

EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT Configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- \odot $\,$ supplied by the lab

• Vel	Vehicle station	Manufacturer :	Hytera Communications Corporation Limited
		Model No. :	MD650
O N/A		Manufacturer :	N/A
0	N/A	Model No. :	N/A

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address OfThe Test Laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
lative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement OfThe Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01"Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurementof mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweiis reported:

Test Items	MeasurementUncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-40 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Test Equipment

Condu	Conducted Emission (AC Main)						
Item	Test Equipment	Manufacturer Model No. Serial No. Last					
1	EMI Test Receiver	R&S	ESCI	101247	2016/11/13		
2	Artificial Mains	Shwarzbeck	NNLK 8121	573	2016/11/13		
3	Pulse Limiter	R&S	ESH3-Z2	101488	2016/11/13		
4	Test Software	R&S	ES-K1	N/A	N/A		
5	Test cable	ENVIROFLEX	3651	1101902	2016/11/13		

Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF Emission / Spurious RF Conducted Emission

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	2016/11/13
2	Power Meter	Anritsu	ML2480B	100798	2016/11/13
3	Power Sensor	Anritsu	MA2411B	100258	2016/11/13
4	Test cable	FARPU	MCX-J	N/A	2016/11/13
5	Temporary antenna connector	D-LENP	NJ-SMAK	N/A	2016/11/13

NOTE: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Restr	ricted Band/ Radiated Er	missions			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	Rohde&Schwarz	ESI 26	100009	2016/11/13
2	RF Test Panel	Rohde&Schwarz	TS / RSP	335015/0017	N/A
3	EMI Test Software	Rohde&Schwarz	ESK1	N/A	N/A
4	Loop Antenna	Rohde&Schwarz	HZ-9	838622\013	2016/11/13
5	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
6	Horn Antenna	ShwarzBeck	9120D	1011	2016/11/13
7	Broadband Horn Antenna	Shwarzbeck	BBHA9170	BBHA917047 2	2016/11/13
8	Preamplifier	Shwarzbeck	BBV9742	9742-196	2016/11/13
9	Broadband Preamplifer	Shwarzbeck	BBV 9721	9721-102	2016/11/13
10	Broadband Preamplifer	Shwarzbeck	BBV 9718	9718-247	2016/11/13
11	Turn Table	MATURO	TT2.0	/	N/A
12	Antenna Mast	MATURO	TAM-4.0-P	/	N/A
13	EMI Test Software	Audix	E3	N/A	N/A
14	Test Software	R&S	ES-K1	N/A	N/A
15	Test cable	Siva Cables Italy	RG 58A/U	W14.02	2016/11/13

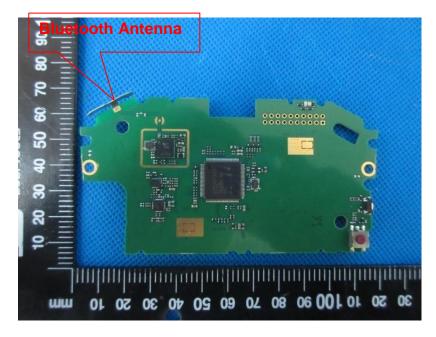
The Cal.Interval was one year

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling tothe intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer maydesign the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electricalconnector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

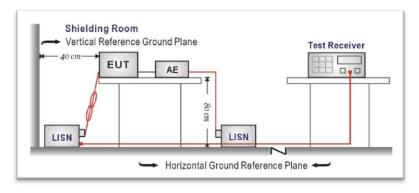
(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations mayemploy transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

☑ Passed □ Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. Conducted Emissions (AC Mains)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

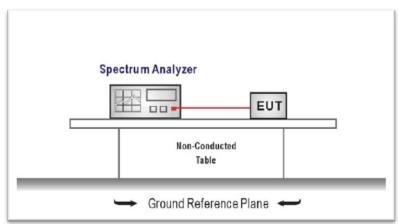
TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above theconducting ground plane. The vertical conductingplane was located 40 cm to the rear of theEUT. All other surfaces of EUT were at least 80 cm from any other grounded conductingsurface.
- 3. The EUT and simulators are connected to the main power through a line impedancestabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment.
- 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHzusing a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS


5.3. Conducted Peak Output Power

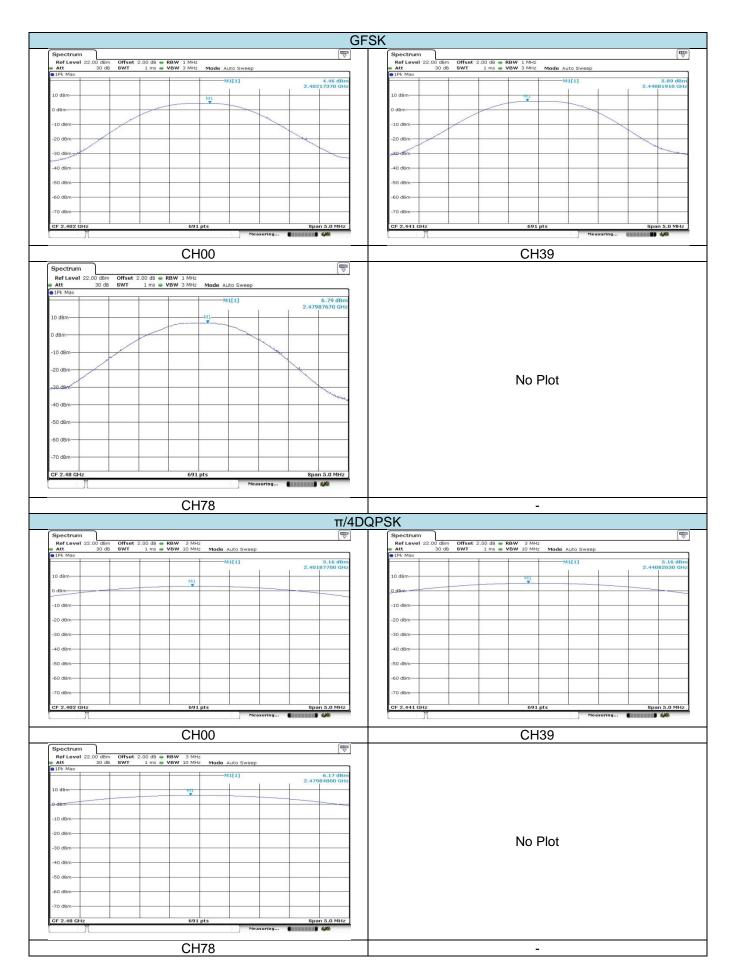
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

TEST CONFIGURATION

TEST PROCEDURE

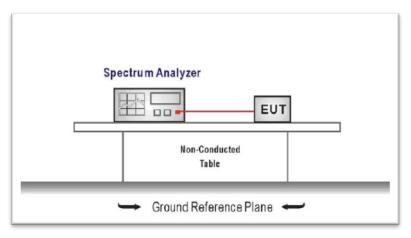

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW≥ the 20 dB bandwidth of the emission being measured, VBW≥RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel	Output power (dBm)	Limit (dBm)	Result
	00	4.46		
GFSK	39	5.89	30.000	Pass
	78	6.79		
	00	3.16		
π/4DQPSK	39	5.16	21.000	Pass
	78	6.17		
	00	3.45		
8DPSK	39	5.35	21.000	Pass
	78	6.40		


Spectrum			Spectrum		
Ref Level 22.00 dBm Offs	et 2.00 dB 👄 RBW 3 MHz		Ref Level 22.00 dBm O	ffset 2.00 dB 🖷 RBW 3 MHz	
Att 30 dB SW1	1 ms 👄 VBW 10 MHz Mode Auto	i Sweep	Att 30 dB S' 9 1Pk Max	WT 1 ms VBW 10 MHz Mode Auto	Sweep
	MILI] 3.45 dBm		-M1[1]] 5.35 dBn
100-1000		2,40198550 GHz			2,44103620 GH
10 dBm	мр		10 dBm-	6/11	
0 dBm			0_dBm		
-10 dBm			-10 dBm		
-20 dBm			-20 dBm		
-20 0bm			120 dbm		
-30 dBm			-30 dBm		
1000000000					
-40 dBm			-40 dBm		
-50 dBm			-50 dBm-		
-60 dBm			-60 dBm		
30.00					
-70 dBm			-70 dBm		
CF 2.402 GHz	691 pts	Span 5.0 MHz	CF 2.441 GHz	691 pts	Span 5.0 MHz
π		Measuring			Measuring 📲 🖬 🚧
Ch IA					
	CH00			CH39	
	CH00	(11)		CH39	
Spectrum		(m) V		CH39	
Ref Level 22.00 dBm Offs Att 30 dB SW1	et 2.00 dB 🖷 RBW 3 MHz			CH39	
Ref Level 22.00 dBm Offs	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto	sweep		CH39	
Ref Level 22.00 dBm Offs Att 30 dB SW1	et 2.00 dB 🖷 RBW 3 MHz	sweep		CH39	
Ref Level 22.00 dBm Offs Att 30 dB SW1	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep		CH39	
Ref Level 22.00 dBm Offs Att 30 dB BWT 1Pk Max 10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep		CH39	
Ref Level 22.00 dBm Offs Att 30 dB SWT 1Pk Max	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep		CH39	
Ref Level 22.00 dBm Offs 1Pk Max 30 dB 8WI 10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep		CH39	
Ref Level 22.00 dBm Offs Att 30 dB BWT 1Pk Max 10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep		CH39	
Ref Level 22.00 dBm Offs 1Pk Max 30 dB 8WI 10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep			
Ref Level 22.00 dBm Offs 9 IPk Max 30 dB SWT 10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep		CH39 No Plot	
Ref Level 22.00 dfm Offs Att 30.0b BWT 0 BWT 10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep			
Ref Level 22.00 dBm Offs 9 IPk Max 30 dB SWT 10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep			
Ref Level 22.00 dBm Offs 9 IPk Max 30 dB SWT 10 dBm 0 dBm 0 -10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep			
Ref Level 22.00 dBm Offs 9 IPk Max 30 dB SWT 30 dB SWT 10 dBm 0 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep			
Bort Level 22.00 Gem Offs 9 IPk Max 30 dB SWT 10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep			
Ref Level 22.00 dBm Offs 9 IPk Max 30 dB SWT 10 dBm 0 dBm 0 -10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep			
Bort Level 22.00 Gem Offs 9 IPk Max 30 dB SWT 10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep			
Bert Level 22.00 Gem Offs 9 IPk Max 30 dB SWT 10 dBm	et 2.00 db e PBW 3 MHz 1 ms e VBW 10 MHz Mode Auto M111 1 ms e VBW 10 MHz Mode Auto 1 ms e VBW 10 MHz MHz Mode Auto 1 ms e VBW 10 MHz Mode Auto 1 ms e VBW 10 MHz Mode Auto 1 ms e VBW 10 MHz MHz Mode Auto 1 ms e VBW 10 MHz MHz Mode Auto 1 ms e VBW 10 MHz MHz Mode Auto 1 ms e VBW 10 MHz Mode Auto	1 Sweep			
Bert Level 22.00 Gem Offs 0 IPk Max 30 dB SWT 10 dBm	et 2.00 dB • RBW 3 MHz f 1 ms • VBW 10 MHz Mode Auto) Sweep			

5.4. 20dB Emission Bandwidth

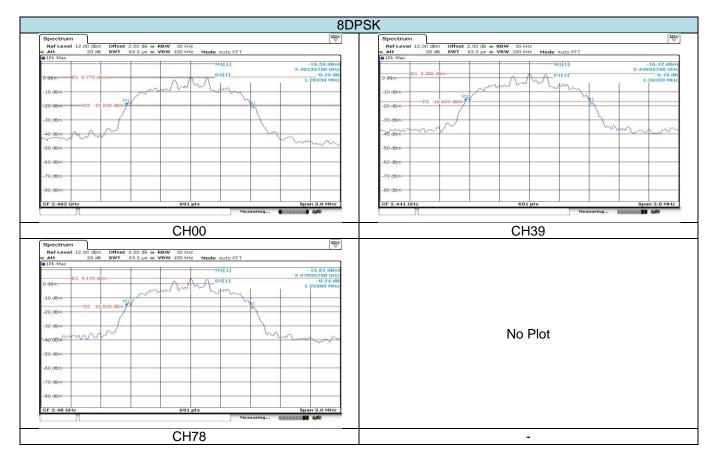
LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

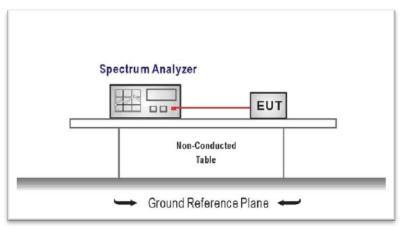

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW≥1% of the 20 dB bandwidth, VBW≥RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel	20dB Bandwidth (MHz)	Limit (MHz)	Result
	00	0.925		
GFSK	39	0.925	-	Pass
	78	0.929		
	00	1.246		
π/4DQPSK	39	1.276	-	Pass
	78	1.237		
	00	1.263		
8DPSK	39	1.263	-	Pass
	78	1.259		


5.5. Carrier Frequencies Separation

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)

Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

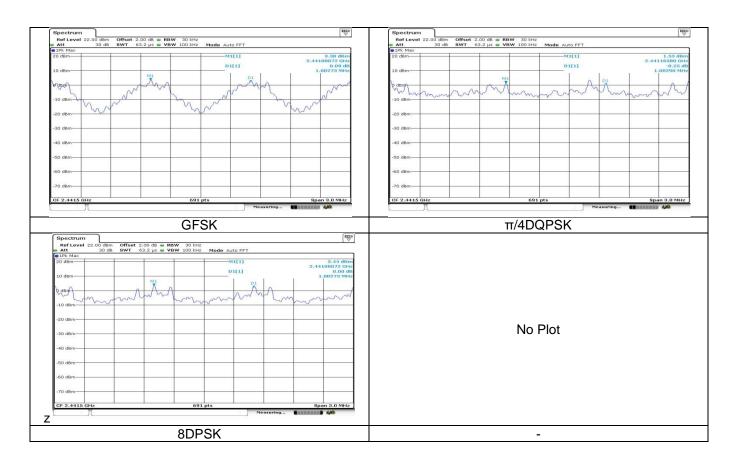
(1)Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz orthe 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating inthe 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power nogreater than 125 mW.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

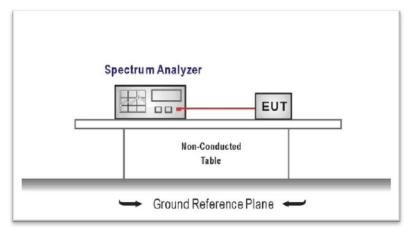
Span = wide enough to capture the peaks of two adjacent channels RBW≥1% of the span, VBW≥RBW


- Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS


Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
GFSK	39	1.003	0.925	Pass
π/4DQPSK	39	1.003	0.851	Pass
8DPSK	39	1.003	0.839	Pass

5.6. Hopping Channel Number

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1): Frequency hopping systems in the 2400–2483.5 MHz band shall use at least **15** channels.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = the frequency band of operation RBW≥1% of the span, VBW≥RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

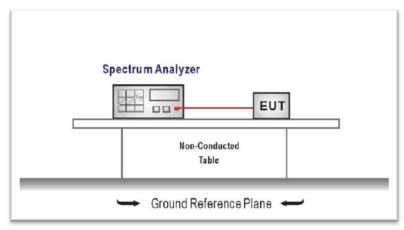
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel number	Limit	Result
GFSK	79		
π/4DQPSK	79	15	Pass
8DPSK	79		

Spectrum								Spectrur	n								
Ref Level 22.00 dBm	Offset 2.00 dB 🖷 F	RBW 1 MHz						Ref Leve	22.00 dBm	Offset 2.	00 dB 🖷 RB	W 1 MHz					(
Att 30 dB	SWT 1 ms 👄	BW 3 MHz	Mode Auto	Sweep				Att	30 dB	SWT	1 ms 🖷 VE	W 3 MHz	Mode Aut	o Sweep			
1Pk Max 20 dBm							4.43 dBm	1Pk Max 20 dBm									2.53 dB
20 dam			NI J	1[1]			2170 GHz	20 dBm						M1[1]		2.4	2.53 dB
			D1	[1]			2.57 dB							01[1]			3.15 d
10 dBm		-	<u> </u>	T.	12		.888 <u>9</u> МН2	10 dBm	-		-		-	3	Ϋ́.		8.120 MH
M1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			······	********	mg	M1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		m	······		mil
g dBm		_						0 dBm						_		-	
																	1
10 dBm								-10 dBm									
																	1
-20 dBm-								-20 dBm-						-			
1000000000								10000000000					1				
-30 dBm			· · · · · · · · · · · · · · · · · · ·					-30 dBm-	2				-	-	_		
							Y						1				
-40 dBm								-40 dBm-									
-to upin								-40 uBm-									
													1				
-50 dBm						-		-50 dBm									
-60 dBm								-60 dBm					1	1	-		
-70 dBm								-70 dBm-						-	-	2	
Start 2.4 GHz		691	pts			Stop 2.48		Start 2.4	Hz			691	pts				4835 GHz
1				Mean	suring 📲	REFERENCE A	NG.		1					N	teasuring	AND ADDRESS OF ADDRESS	4,70
	Offset 2.00 dB = F		SK								T	т/4D0	QPSI	<			
Ref Level 22.00 dBm Att 30 dB	Offset 2.00 dB ● F SWT 1 ms ● V			Sweep							T	т/4D(QPSI	<			
Ref Level 22.00 dBm Att 30 dB 1Pk Max	Offset 2.00 dB F SWT 1 ms V	RBW 1 MHz	Mode Auto								Т	т/4D0	QPSI	<			
Ref Level 22.00 dBm Att 30 dB	Offset 2.00 dB = F SWT 1 ms = V	RBW 1 MHz	Mode Auto	Sweep		2.401	₩ 2.72 dBm				T	т/4D0	QPSI	<			
Ref Level 22.00 dBm Att 30 dB 1Pk Max 20 dBm	0 Offset 2.00 dB ● F SWT 1 ms ● N	RBW 1 MHz	Mode Auto			2.401	2.77 dBm 1930 GHz 3.16 dB				T	т/4D(QPSI	<			
Ref Level 22.00 dBm Att 30 dB 1Pk Max 20 dBm 10 dBm	Offset 2.00 dB SWT 1 ms Y	RBW 1 MHz	Mode Auto	1[1]		2.401	₩ 2.77 d8m 1930 GHz 3.16 d8 1.220 MHz				Т	т/4D(QPSI	<			
Att 30 dB 1Pk Max 20 dBm 10 dBm 10 mm	Offset 2.00 dB = F SWT 1 ms V	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	₩ 2.77 d8m 1930 GHz 3.16 d8 1.220 MHz				Т	т/4D0	QPSI	<			
Ref Level 22.00 dBm Att 30 dB 1Pk Max 20 dBm 10 dBm	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	₩ 2.77 d8m 1930 GHz 3.16 d8 1.220 MHz				T	т/4D0	QPSI	<			
Ref Level 22.00 dBm Att 30 dB JPk Max 20 dBm 10 dBm 10 dBm M1 400 dBm	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	₩ 2.77 d8m 1930 GHz 3.16 d8 1.220 MHz				T	т/4D0	QPSI	<			
Ref Level 22.00 dBm Att 30 dB 1PRk 30 dB 10 dBm M1	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]	~~~~~	2.401	₩ 2.77 d8m 1930 GHz 3.16 d8 1.220 MHz				T	т/4D0	QPSI	<			
Ref Level 22.00 dBm Att 30 dB IRk Max 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	₩ 2.77 d8m 1930 GHz 3.16 d8 1.220 MHz				Т	т/4D0	QPSI	<			
Ref Level 22.00 dBm Att 30 dB JPk Max 20 dBm 10 dBm 10 dBm M1 400 dBm	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				Ţ			<u></u>			
Ref Level 22.05 dm # Att 30 db # JFK Max 20 dbm 10 dbm	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				T			Κ			
Ref Level 22.00 dBm Att 30 dB IPR: Max 20 dBm 10 dBm 0 dBm 10 dBm 10 dBm	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				T		QPSI Plot	<			
Ref Level 22.05 dm # Att 30 db # JFK Max 20 dbm 10 dbm	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				T			Κ			
Ref Lovel 22.00 dm #Att 30 dB #FF Max 20 dBm 10 dBm 10 dBm +10 dBm	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				1			<			
Ref Lovel 22.00 dem #Att 30 db #JPK Max 20 dbm 10 dbm	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				Ţ			<			
Ref Lovel 22.00 dem Att 30 db PIPk Max 20 dbm 10 dbm 10 dbm 10 dbm	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				<u>T</u>			<			
Ref Level 22.05 dem Att 30 db PFk Max 30 db 20 dem	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				Ţ			<			
Ref Level 22.05 dem Att 30 db D FK Max 30 db 20 dam	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				T			<			
Ref Level 22.05 dem Att 30 db PFk Max 30 db 20 dem	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				T			<			
Ref Level 22.05 dem Att 30 db 20 dam	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				T			<			
Ref Level 22.05 dem Att 30 db 20 dam 10 dbm 10 dbm	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto	1[1]		2.401	2.77 d8m 1930 GHz 3.16 d8 1.120 MHz				T			<			
Ref Level 22.05 dem #Att 30 de #IPE Max 200 10 dem 10 dem 110 dem	SWT 1 ms		Mode Auto	1[1]		2.403	2.77 dbm 1930 644 3.36 db 120 MHz 120 MHz				T			<			
Ref Level 22.05 dem Att 30 db PFk Max 30 db 20 dam	SWT 1 ms	RBW 1 MH2 VBW 3 MH2	Mode Auto			2.403 78. 	(\$\$) 2.77 dBm 1930 GH2 3.16 dB 1200 H2 1200				1			<			
Ref Level 22.05 dem Att 30 db JFK Max 30 db Z0 dem 10 dbm 10 dbm 10 dbm -20 dbm -30 db -30 dbm -30 dbm -40 dbm -30 dbm -50 dbm -30 dbm -70 dbm -70 dbm	SWT 1 ms		Mode Auto			2.403	(\$\$) 2.77 dBm 1930 GH2 3.16 dB 1200 H2 1200				T			ζ			
Ref Level 22.0 dam Att 30 db BTR Max 30 db BTR Max 40 db 10 dbm	SWT 1 ms		Mode Auto			2.403 78. 	(\$\$) 2.77 dBm 1930 GH2 3.16 dB 1200 H2 1200				T			<			


5.7. Dwell Time

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST CONFIGURATION

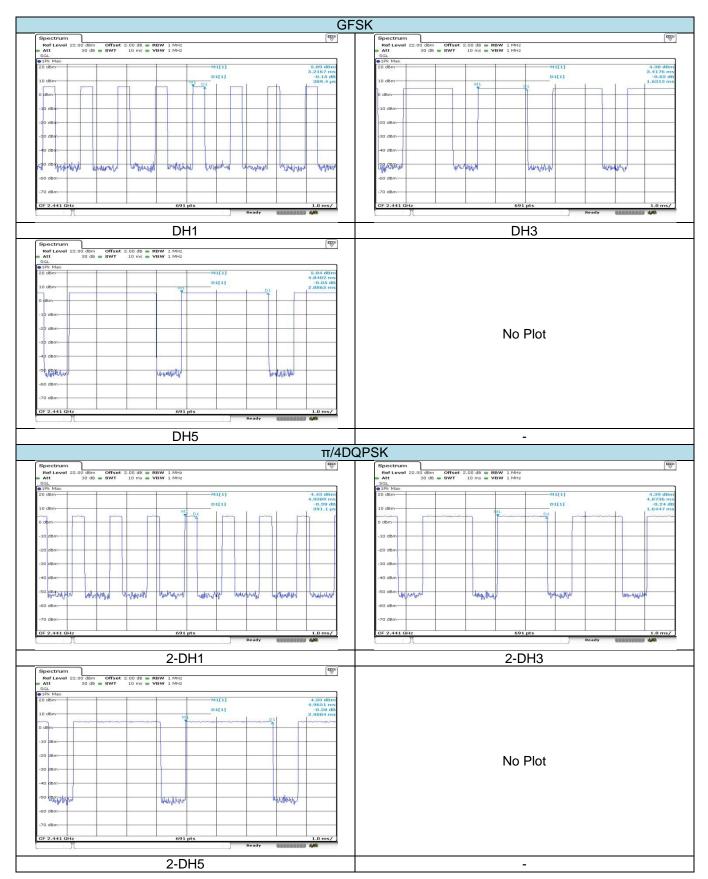
TEST PROCEDURE

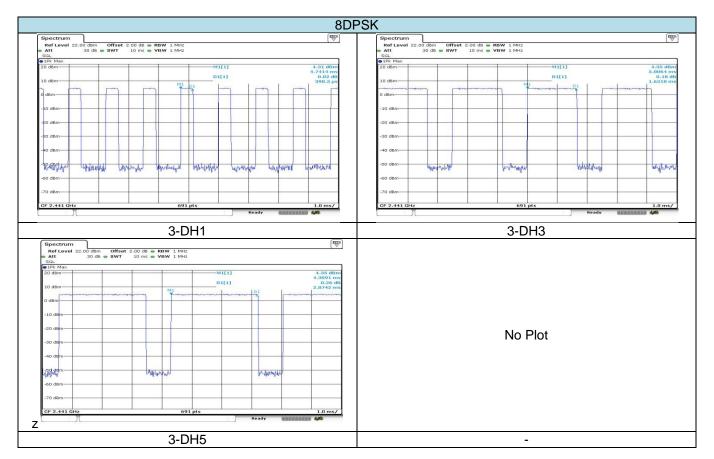
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW≥RBW Sweep = as necessary to capture the entire dwell time per hopping channel, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS


☑ Passed □ Not Applicable


Modulation type	Channel	Dwell time (Second)	Limit (Second)	Result
	DH1	0.125		
GFSK	DH3	0.261	0.40	Pass
	DH5	0.308		
	2-DH1	0.125		
π/4DQPSK	2-DH3	0.263	0.40	Pass
	2-DH5	0.309		
	3-DH1	0.125		
8DPSK	3-DH3	0.261	0.40	Pass
	3-DH5	0.307	1	

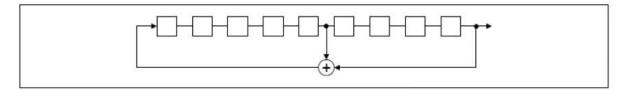
Note:

1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1
 Dwell time=Pulse time (ms) x (1600 ÷ 4 ÷ 79) x31.6 Second for DH3, 2-DH3, 3-DH3
 Dwell time=Pulse time (ms) x (1600 ÷ 6 ÷ 79) x31.6 Second for DH5, 2-DH5, 3-DH5

5.8. Pseudorandom Frequency Hopping Sequence

LIMIT


FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the friststage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

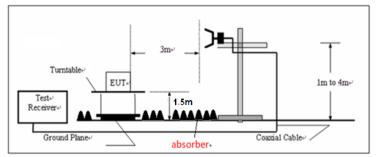
- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

0	2	4	6	62 64	78 1	73 75 77
٦						

Each frequency used equally one the average by each transmitter. The system receiver have input bandwidths that match the hopping channel bandwidths of their correspondingly transmitter and shift frequencies in synchronization with the transmitted signals.


5.9. Restricted Band (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

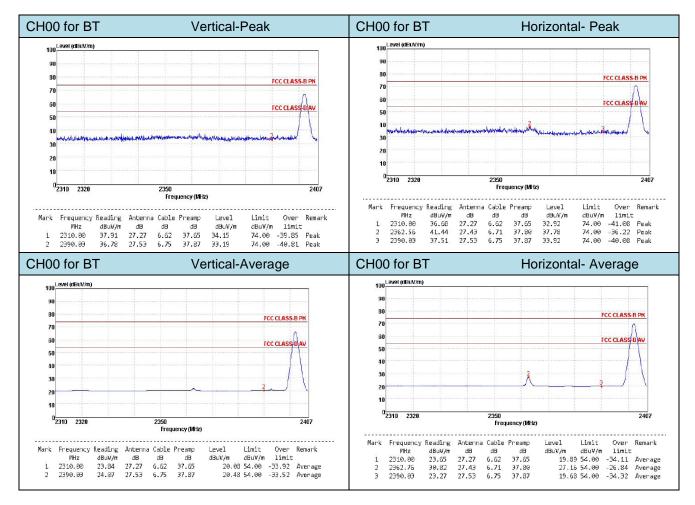
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

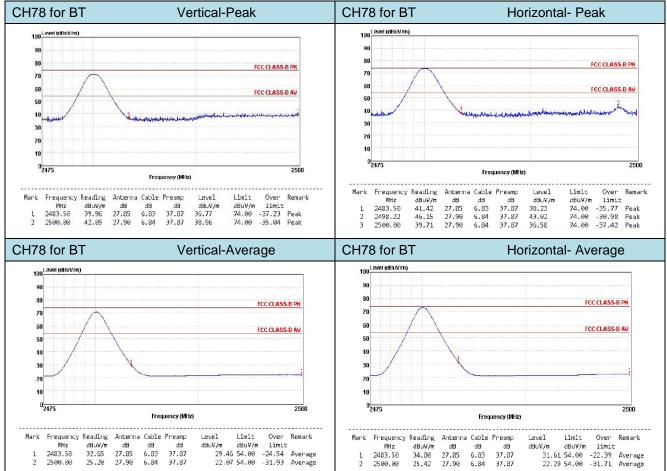
TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground plane. The turn table is rotated360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHzPeak detector for Peak value RBW=1MHz, VBW=10HzPeak detector for Average value.

TEST MODE:

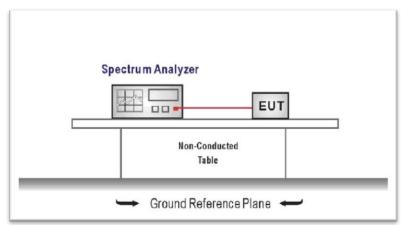

Please refer to the clause 3.3


TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor
- 2) Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.

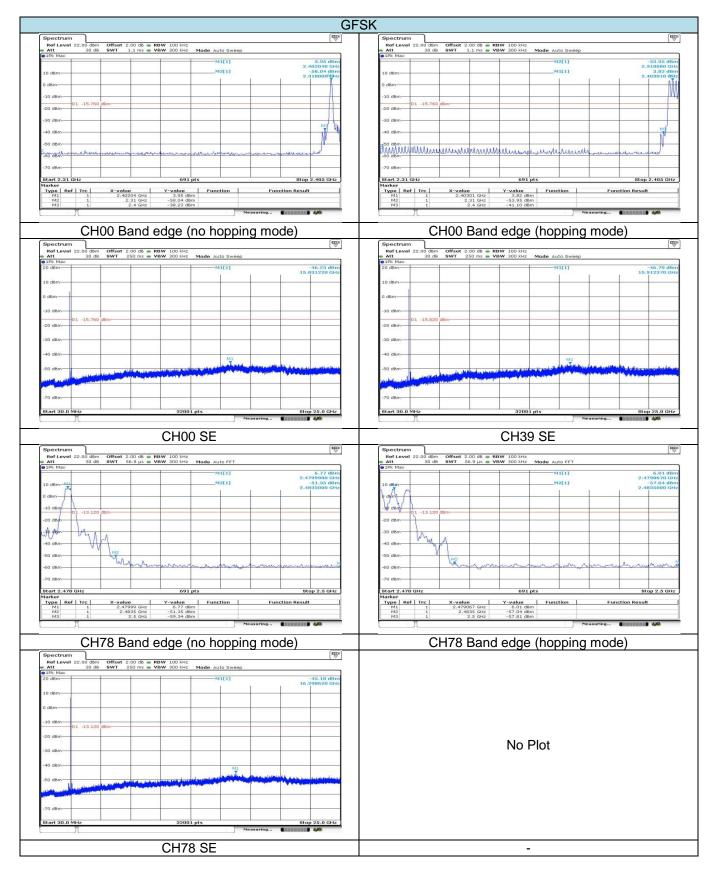

5.10. BandEdge and Spurious Emission (conducted)

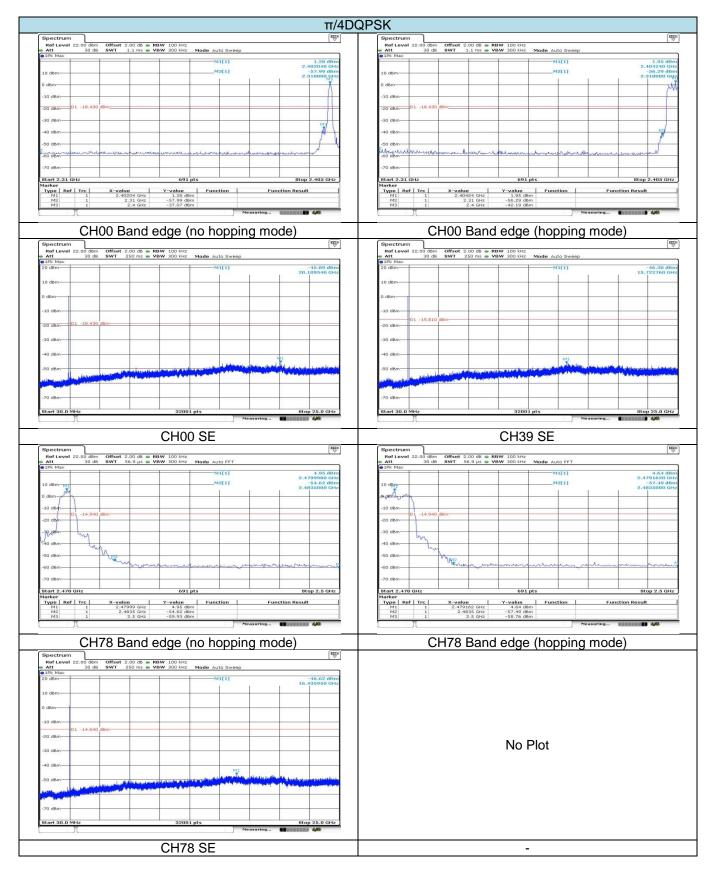
LIMIT

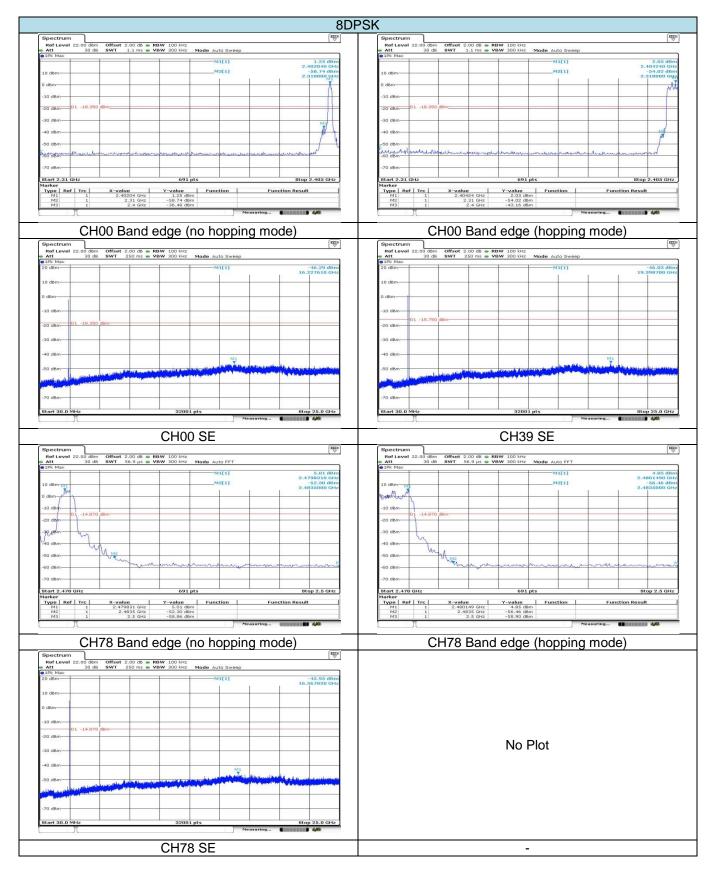
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION


TEST PROCEDURE


- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW= 100 KHz, VBW≥RBW
 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

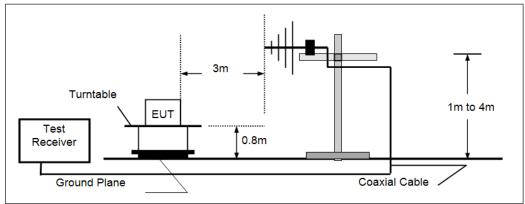

TEST MODE:

Please refer to the clause 3.3

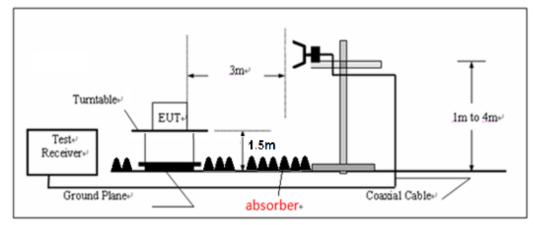
TEST RESULTS

5.11. Spurious Emissions (radiated)

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION


➢ 9KHz ~30MHz

> 30MHz ~ 1GHz

> Above 1GHz

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground plane. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz, RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detectoris 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) Above 1GHz, RBW=1MHz, VBW=3MHz Peak detectorfor Peak value RBW=1MHz, VBW=10Hz Peak detectorfor Average value.

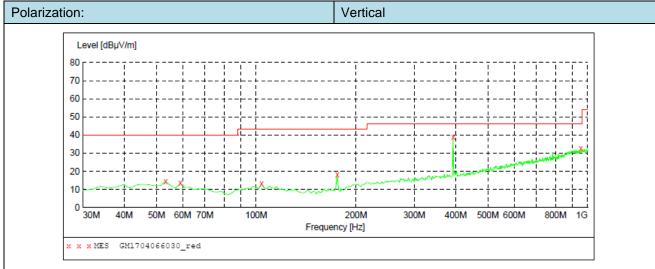
Remark: "floor-standing equipment" Where possible, the antenna(s) of the EUT shall be located at a height of 1.5 m above the floor, and the intentional radiator circuitry shall be located within the system at a height of at least 0.8 m above the floor.

TEST MODE:

Please refer to the clause 3.3

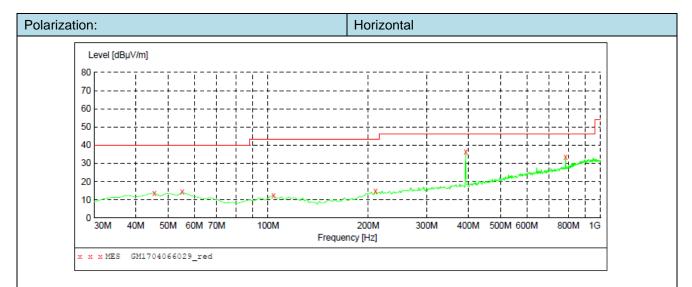
TEST RESULTS

☑ Passed □ Not Applicable

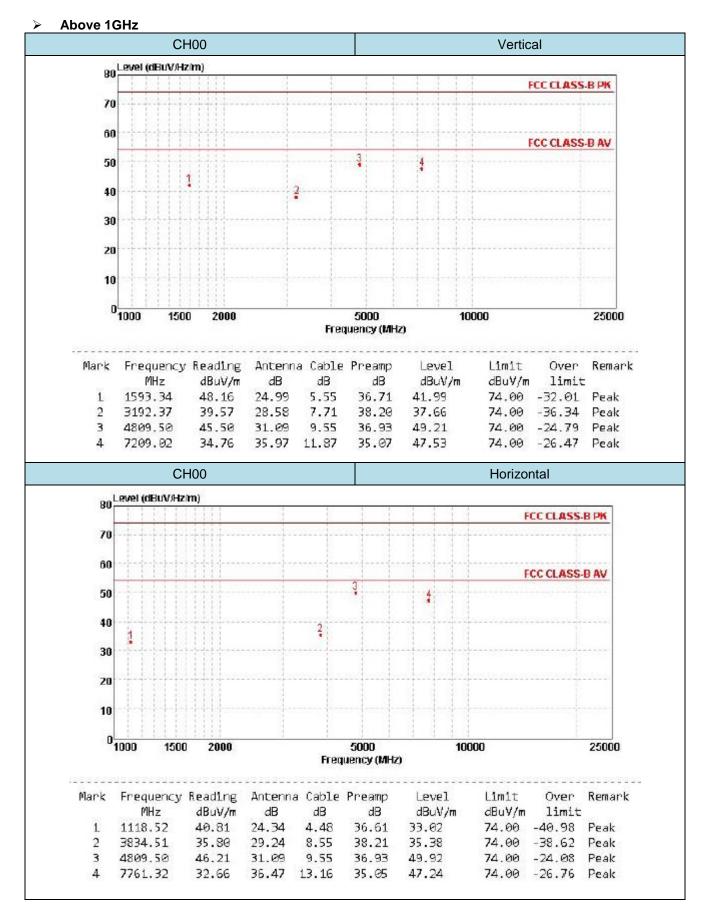

Note:

- 1) Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3) Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.

> 9kHz ~ 30MHz


The EUT was pre-scanned the frequency band (9KHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

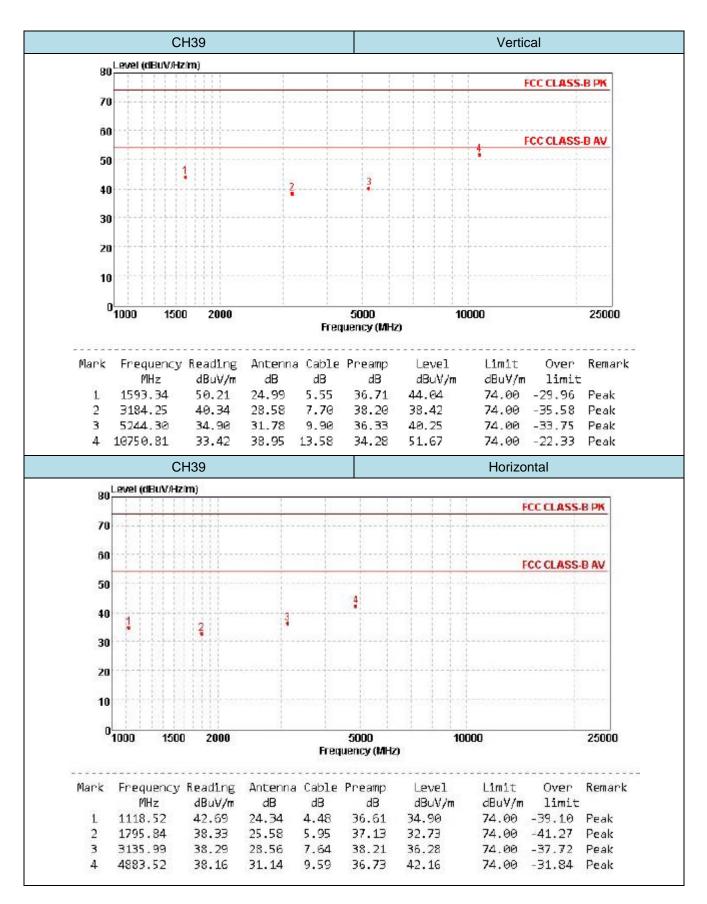
> 30MHz ~ 1GHz


MEASUREMENT RESULT: "GM1704066030_red"

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
53.280000	14.40	-16.5	40.0	25.6	QP	100.0	174.00	VERTICAL
59.100000	13.60	-17.1	40.0	26.4	QP	100.0	360.00	VERTICAL
103.720000	13.20	-17.5	43.5	30.3	QP	100.0	3.00	VERTICAL
175.500000	18.00	-18.7	43.5	25.5	QP	100.0	126.00	VERTICAL
392.780000	38.90	-10.8	46.0	7.1	QP	100.0	189.00	VERTICAL
953.440000	32.50	1.6	46.0	13.5	QP	100.0	223.00	VERTICAL

MEASUREMENT RESULT: "GM1704066029_red"

4/6/2017 1:08 Frequency MHz			Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
45.520000	13.80	-16.5	40.0	26.2	QP	100.0	49.00	HORIZONTAL
55.220000	14.30	-16.7	40.0	25.7	QP	100.0	266.00	HORIZONTAL
103.720000	12.30	-17.5	43.5	31.2	QP	300.0	294.00	HORIZONTAL
210.420000	14.80	-15.6	43.5	28.7	QP	300.0	360.00	HORIZONTAL
392.780000	36.30	-10.8	46.0	9.7	QP	100.0	290.00	HORIZONTAL
784.660000	33.70	-1.4	46.0	12.3	QP	100.0	290.00	HORIZONTAL

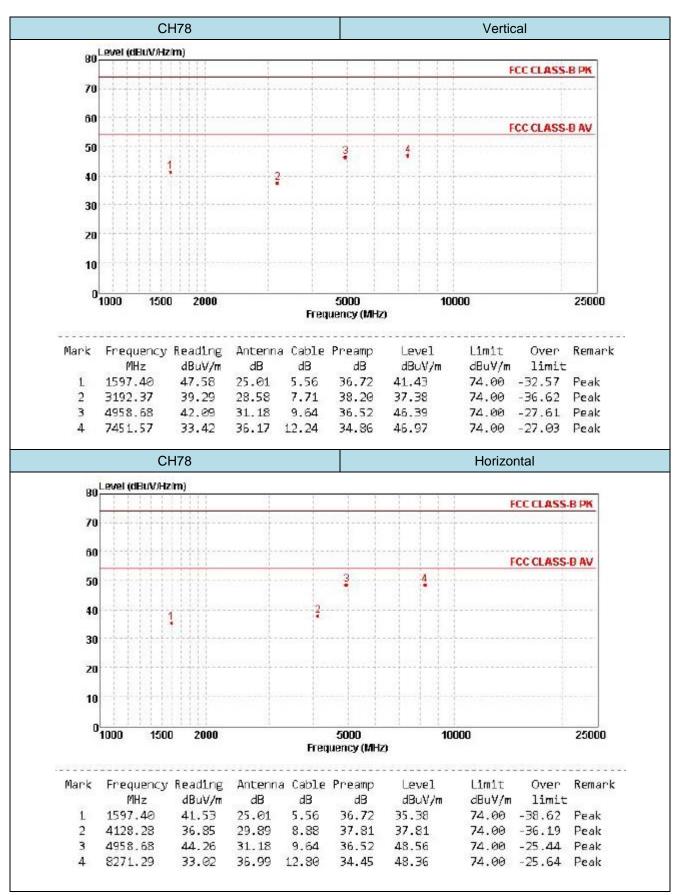


Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The peak level is lower than average limit(54dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies are very lower than the limit and not show in test report.



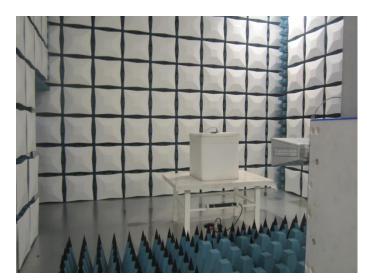
Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

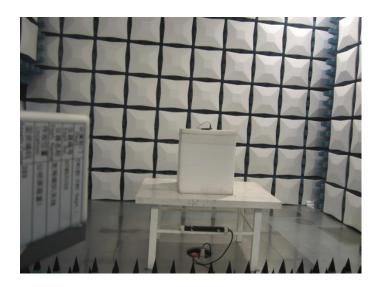
2. The peak level is lower than average limit(54dBuV/m), this data is the too weak instrument of signal is unable to test.

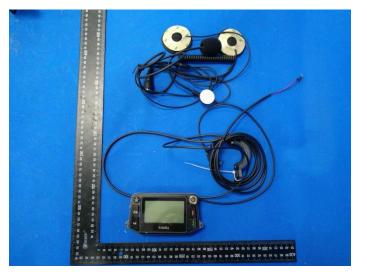
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Remark:

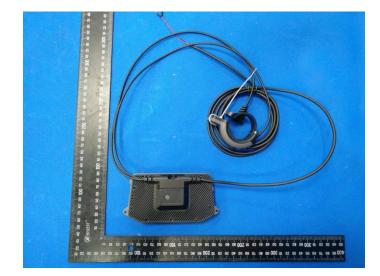

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

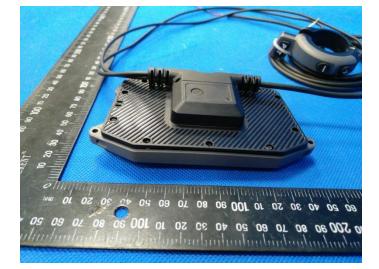
6. <u>Test Setup Photos of the EUT</u>


Radiated Emission

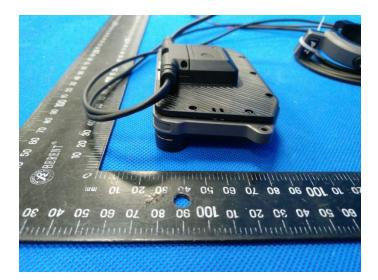


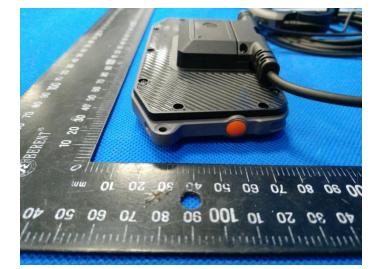
Report Template Version: H01 (2017-03)



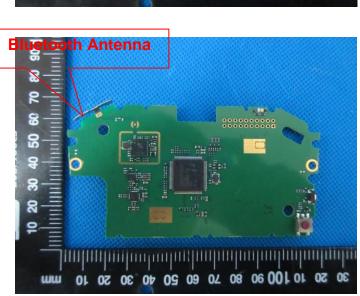

7. External and Internal photos of the EUT

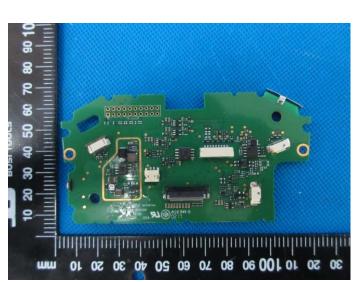
External photos

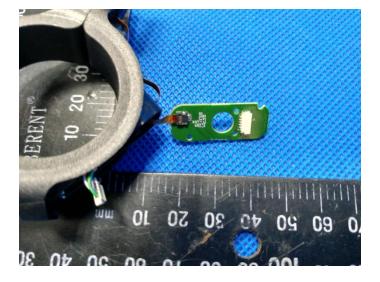


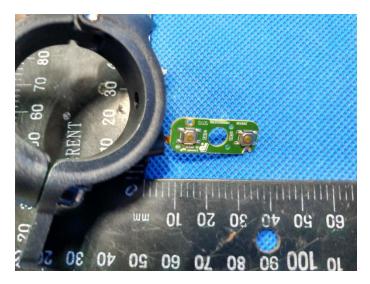


Internal Photos








Report Template Version: H01 (2017-03)

.....End of Report.....