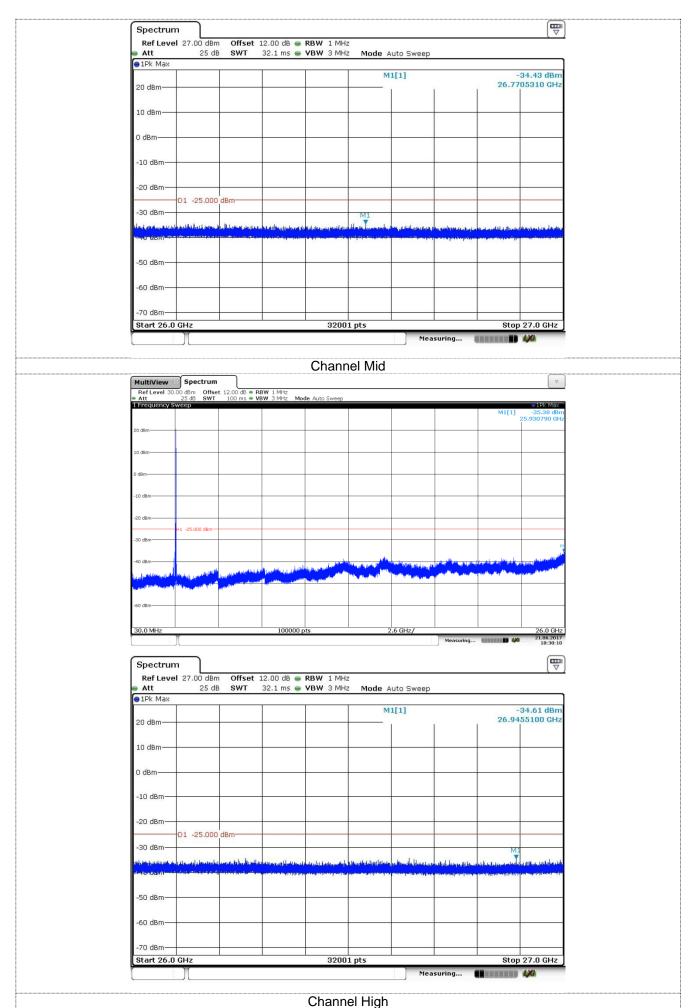


				LTE	E Band	41-15N	1Hz				
					QP						
	ultiView	Spectrum D0 dBm Offset 25 dB SWT	: 12.00 dB • RB	W 1 MHz						▽	
	tt requency Sv		100 ms 🖷 VB	WI3MHz Moo	le Auto Sweep				M1[1]	• 1Pk Max -35.03 dBm	
20 d	dBm									25.987140 GHz	
10 d	10										
0 dB	3m										
-10 0	dBm-										
-20 0		H1 -25.000 dBm									
-30 c										м	
-40 c	dBm			همین الم	الماسين التروين والمرية	and a second		g tail ^{an} dia mangana pa	and the spectrum designer	Charles States	
	الداريية الايكام. وأحور روحوص	an baran ya da an	and a second second second second	d same and same	Second and a second	Mudurut	and the strend have by the		and the part of the second	COLOR DE COL	
-60 (dBm										
20	.0 MHz			100000 p			6.01-1			26.0 (1)-	
30.				100000 p	.ca	2	.6 GHz/	Measuring	() 490	26.0 GHz 21.06.2017 18:25:30	
S	pectrum	,)									
	Ref Level Att	l 27.00 dBm 25 dB			RBW 1 MHz VBW 3 MHz		uto Sweep				
	1Pk Max		1				1[1]			34.46 dBm	
20) dBm							I		30070 GHz	
10) dBm										
01	dBm										
-1	.0 dBm										
-2	20 dBm										
-3	រណ្ដdBm	D1 -25.000	dBm								
	Lauralana	alle Manual Perter	والطلقي أرفعنا بمباقل	and the part of the		Reported	n Billichter parlier munik feit	ana a la	an angle Laksmin	Lapla, malinton	
, ease	angleng bangan	and and a start of the start of the	and a subsection of the subsec	a a a a a a a a a a a a a a a a a a a	and a state of the	ante de la composition	and a second	aga na sana sa	an fan an a	Alles - Research and a	
-5	i0 dBm—										
-6	i0 dBm—										
-7	'0 dBm	-				-					
	tart 26.0	GHz			3200	1 pts				27.0 GHz	
							Mea	suring [1/0	
		~			Chann	el Low				_	
	ultiView E	Spectrum O dBm Offset 25 dB SWT	12.00 dB • RB	W 1 MHz	le Auto Surces					▽	
	requency Sv	veep	100 ms 🖷 VB	MOC ≥191⊓∠ MIOC	ло мица ожеер				M1[1]	 1Pk Max -34.81 dBm 25.918580 GHz 	
20 d	dBm									.01910000 UHZ	
10 d	dBm										
0 dB	3m										
-10 0											
-20 0		H1 -25.000 dBm									
-30 c	dBm									M	
-40 c	dBm	المنافقة والمنافقة		a started and a started	Herney and the state of the		andra Naraha A _{bagdag} Ba	والغلولية فالمتألميني والعربية والمتألميني			
			a faran da an	in and the second s	Ganager and the second s	াল কাজা	a and				
-60 0	dBm										
30.	.0 MHz			100000 p	ts	2	.6 GHz/			26.0 GHz	
								Measuring	() 490	21.06.2017 18:23:29	



Report Template Version: H00 (2016-08)

			LTE	E Band	41-20N	1Hz			
				QP					
MultiView			aw 1 Mile						▽
 Att 1 Frequency 	0.00 dBm Offse 25 dB SWT Sweep	100 ms - Vi	3WF3MHz Moo	le Auto Sweep					1Pk Max
								M1[1]	-35.45 dBm 25.954160 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
	H1 -25.000 dBm-								
-30 dBm									N
-40 dBm		استاطر الديدين	مريد الدراسية	ما والما معالم المحمد التيرام والمارية	and a state of the second	and a figure of the second stands		and and start and starting of the second	
ng gaar di kestin daga ba Kaaran di kestin daga ba		and a second	and the second s	to sta, a sa a finistanta	1994 Barrister	Martin Martin and American			
-60 dBm									
30.0 MHz			100000 p	to		.6 GHz/			26.0 GHz
30.0 MHZ	J		100000 p	nd.	Z		Measuring	() 40	
Spectru	m								
Ref Lev	el 27.00 dBn		12.00 dB 👄						(*
Att 1Pk Max	25 di	SWT	32.1 ms 👄	VBW 3 MHz	2 Mode A	uto Sweep			
20 dBm-					M	1[1]			34.47 dBm 28450 GHz
20 0011									
10 dBm—									
0 dBm									
-10 dBm—									
-10 0800-									
-20 dBm—		In							
-30 dBm—	D1 -25.000	ubili	1	11					
ما س ولارام مرزول می ر	w. w. H. Halla Burr		and dealer planter				unith lith supervised	al and he dilder to be died	Berleste av Rich Strate
manuficture in			No. 1 Street Street	ayaa haxaa ahaa ahaa ahaa ahaa ahaa ahaa		and a second	Allahasintikan singulifi	and the second second	anato (algo pato (algo (algo)
-50 dBm—									
-60 dBm—	_			-					
-70 dBm— Start 26.	0 GHz			3200	1 pts			Stop	27.0 GHz
						Mea	suring		
				Chann					
MultiView	Spectrum			Undriff					▽
Ref Level 3 ● Att I Frequency	0.00 dBm Offse 25 dB SWT		3WI1 MHz 3WI3 MHz Moo	le Auto Sweep					1 Ple Marr
Threquency								M1[1]	 1Pk Max -35.30 dBm 25.969740 GHz
20 dBm	1								
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	H1 -25.000 dBm-								
-30 dBm									N.
-40 dBm	· .		لىقىرى بى يىلارىن ۋ	a a start and a start of the star	and a second second	and the state of the	phan Managelastic	and the second	and the second second second second
Here the fill at the second		المراجعة والمراجعة المراجع المراجع والمراجع والمراجع والمراجع ومراجع والمراجع والمراجع والمراجع والمراجع والمر منهم مراجع ومراجع ومراجع والمراجع ومراجع والمراجع ومراجع ومراجع ومراجع ومراجع ومراجع ومراجع ومراجع ومراجع ومراجع	A statistics and the second	Contraction and Contraction	Market Market	the free of the second	and the second		
-60 dBm		r							
30.0 MHz	T		100000 p	ts	2	.6 GHz/	Measuring	()	26.0 GHz 21.06.2017 18:27:48
									18:27:48

			I TI	E Band	41-20M	1H7				
					2010 2011					
	Spectrum		aw 1 MHz						▽	
● Att ■ Frequency	00 dBm Offse 25 dB SWT	100 ms = VE	W 3 MHz Mo	de Auto Sweep			1	M1[1]	 1Pk Max -35.29 dBm 	
20 dBm								MILLI S	25.985590 GHz	
10 dBm										
0 dBm										
-10 dBm										
-20 dBm	-H1 -25.000 dBm									
-30 dBm									M	
-40 dBm			فاست الم	المربقة المربقة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة الم	Property Paper	ta Hangara (Manada an	and the second second	and shall be de participar	and the second data the	
			Landble in a statistic			Marine Construction of the				
-60 dBm										
30.0 MHz			100000 p	hts		.6 GHz/			26.0 GHz	
][]		100000		2		Measuring	444		
Spectru	n									
Ref Leve Att	el 27.00 dBm 25 dB			RBW 1 MH: VBW 3 MH:		uto Sweep				
• 1Pk Max						1[1]			34.23 dBm	
20 dBm									30520 GHz	
10 dBm										
0 dBm										
-10 dBm—										
-20 dBm—										
-30 dBm-	D1 -25.000									
later a grant a the design and a	V		NUMARIA ALIA, AMMARKA	Linut dia minimatri			ing the galance of the sec	and the data based on the Res	In all the second day	
here of constraints	D. Construction of the second	and a second	an antification of the second	a de a como de la departamente	an a	and a start for the second	فرقسا ميتقديمين محراب	ang menghang pang pang pang pang pang pang pang p	and the second second second	
-50 dBm										
-60 dBm—										
-70 dBm—										
Start 26.0	GHz	1	1	3200	1 pts				27.0 GHz	
L						Mea	suring 📗		eyu	
				Chann	el Low					
MultiView Ref Level 30 Att	Spectrum 0.00 dBm Offse 25 dB SWT	t 12.00 dB = RE 100 ms = VF	3W 1 MHz 3W 3 MHz Mo	de Auto Sween					▽	
1 Frequency S	Sweep							M1[1]	 1Pk Max -35.35 dBm 25.947670 GHz 	
20 dBm										
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
	H1 -25.000 dBm									
-30 dBm									M	
-40 dBm	المتقلمين ورواوات	la data da stanta da seta da s	li and a star and a star and a star a st			aline and the second second				
and a set of the set o	and the second second second	Sandra and a second	and the second							
-60 dBm										
30.0 MHz			100000 p	ots	2	.6 GHz/			26.0 GHz	
][Measuring		21.06.2017 18:28:27	

	el 27.00 dBr		12.00 dB 👄			uto Sueca			
Att 1Pk Max	25 di	B SWT	32.1 ms 👄	YDW 3 MH	< Mode A	uto Sweep			
					M	1[1]			34.38 dBm 31780 GHz
20 dBm—							I	20.00	
10 dBm—									
0 dBm									
O UBIII									
-10 dBm—			-						
-20 dBm—									
Lo della	D1 -25.000	dBm							
-30 dBm—									
alle al Litz bits fit al many concernent	مدينة، معدمة، إز باللغان مدينة، معدمة، إز باللغان	ilitetore de coma poste	1940 (1940) (194	And the second second	danga anta dan t	ل التي الي والتي يكن التي العالمية التي التي التي التي التي التي التي التي	and the state of t	Langer and the state of the sta	مادة المعالية، بالداد المراجع من مرجعه محرومة مرجع محرومة
-50 dBm—									
-60 dBm—			-						
70 dBee									
-70 dBm— Start 26.	0 GHz			3200	1 pts			Stop	27.0 GHz
						Mea	asuring		
				Chann	nel Mid				
MultiView	😑 Spectrum	\neg		Unant					▼
	0.00 dBm Offse 25 dB SWT		RBW 1 MHz /BW 3 MHz Mo	de Auto Sweep					
1 Frequency	Sweep							M1[1]	 1Pk Max -35.45 dBn 25.986630 GH
20 dBm									23.960630 GH
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm	—H1 -25.000 dBm—								
							المراجع المرزي		المرابقة المحربا والم
-40 dBm	and the second second	الملفق أبقدتهم وارب	and a state of the second second						a fan de la compañía
and the second	a first second and a second	and the strength of the second	and a second	and the second					
-60 dBm									
30.0 MHz			100000 p		<u> </u>	2.6 GHz/			26.0 GHz
30.0 MHZ][]		100000	713			Measuring.		
Spectru	m								
Ref Lev	el 27.00 dBr		12.00 dB 👄						(\
Att 1Pk Max	25 di	SWT	32.1 ms 👄	VBW 3 MH	z Mode A	uto Sweep			
					M	1[1]			33.97 dBm 10310 GHz
20 dBm—								20.70	
10 dBm									
0 dBm									
o dom									
-10 dBm—	-								
-20 dBm—				u					
	D1 -25.000	dBm							
-30 dBm—		Gel Carlo			MI				
and the first of the second	and an equilation of the part of the	hinderesk restabili Teneroperation		nan an	an a	Line det line es un	n han selected and selected as Digen and selected and selected as	Alarat States de States de Las Algune Constantino de Las	فالطافينان أيتر والترجي والم
EQ do									
-50 dBm—									
-60 dBm—			-						
1									
-70 dBm-			-						
-70 dBm— Start 26.	0 GHz			3200	1 pts			Stop	27.0 GHz

5.4. Band Edge

LIMIT


Part 24.238 and Part 22.917 and Part 27.53h(1) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

LTE Band 7

Part 27.53 m(4) For mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P) dB$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log (P) dB$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- The band edges of low and high channels for the highest RF powers were measured. Set RBW>= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 3. Set spectrum analyzer with RMS detector.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

🛛 Passed

Not Applicable

MultiView	🗄 Spectrum								
Ref Level 30			00 dB = RBW 3						
Att	20 dB SWT		2 ms) • VBW 10		ito FFT				Count 100/100
1 Frequency	sweep							M1[1]	1Sa Avg -23.93 dB
									1.85000000 GH
20 dBm									
10 dBm						$\neg \neg$			
0 dBm					<u>├</u>				
-10 dBm									
	H1 -13.000 dBm-								
-20 dBm					1		\sim		
					*			$ \land $	
-30 dBm								+++	
-40 dBm								$\rightarrow \rightarrow \rightarrow$	
/	\checkmark								
-50 dBm		``````````````````````````````````````	\sim						
\sim									
-60 dBm									
CF 1.85 GHz						0.0 kHz/			Span 2.0 MH
][1001 p		_ow-1RB#		Aborted		
MultiView		L L		Channel			Aborted		17.06.201
MultiView Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.	1001 p 00 dB ● RBW 3 2 ms) ● VBW 100		_ow-1RB#		Aborted		17.06.201 13:42:5
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3		_ow-1RB#		Aborted		
MultiView Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3		_ow-1RB#		Aborted	M1[1]	17.06.201 13:42:5
MultiView Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3		_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att I Frequency	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3		_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att I Frequency	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3		_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm—	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3		_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm—	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3		_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3		_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3		_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att I Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3		_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3	Channel	_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att I Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3	Channel	_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att I Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3	Channel	_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 3(Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3	Channel	_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 3(Att I Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3	Channel	_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att 1 Frequency 4 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3	Channel	_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 3(Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3	Channel	_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att 1 Frequency 4 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3	Channel	_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att 1 Frequency 4 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3	Channel	_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att 1 Frequency 1 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3	Channel	_ow-1RB#		Aborted		¥A 17.06.201 13:42:5 ▼ Count 100/100 ● 1 Sa Avg -23.75 dB
MultiView Ref Level 30 Att 1 Frequency 1 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3	Channel	LO FFT		Aborted		17.06.201 13:42:5
MultiView Ref Level 30 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB = RBW 3 2 ms) = VBW 10	Channel	LO FFT		Aborted		17.06.201 13:42:5 Count 100/100 • 153 Avg -23.75 dB 1.91000000 GF

		1							
MultiView									
Att		t 12.00 140 µs (~7.2	0 dB ● RBW 30 ms) ● VBW 100)kHz Mode A	uto FFT				Count 100/100
1 Frequency S	Sweep							M1[1]	1Sa Avg -27.53 dBr
									-27.53 dBr 1.85000000 GH
20 dBm									
10 dBm									
0 dBm						<u> </u>		<u> </u>	~~~~
-10 dBm									
	-H1 -13.000 dBm								
-20 dBm									
					MI				
-30 dBm				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*				
			\int						
-40 dBm									
-58.dBm									
-3830011									
-60 dBm									
-60 dBm									
CF 1.85 GHz			1001 pt	te .	21	00.0 kHz/			Span 2.0 MH
MultiView	B Spectrum				ow-Full RE		Aborted		
Ref Level 30	0.00 dBm Offse	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		17.06.201 13:43:11
	0.00 dBm Offse 20 dB SWT	t 12.00	C		ow-Full RE		Aborted		Count 100/100 • 15a Avg
RefLevel 30 Att	0.00 dBm Offse 20 dB SWT	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted	M1[1]	17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		Count 100/100 • 15a Avg
RefLevel 30 Att	0.00 dBm Offse 20 dB SWT	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att I Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	0.00 dBm Offse 20 dB SWT	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att I Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30		ow-Full RE		Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30				Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30				Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30				Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30				Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30				Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30				Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30				Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm -50 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30				Aborted		17.06.201 13:43:19 ▼ Count 100/100 ● 15a Avg -29.91 dBr
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	C D dB • RBW 3(ms) • VBW 100	Channel L		3#	Aborted		17.06.201 13:43:13
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm -50 dBm	DOD dBm Offse 20 dB SWT Sweep	t 12.00	() dB ● RBW 30	Channel L			Aborted		

MultiView	😁 Spectrum	ı)							~
Ref Level 3	0.00 dBm Offse	et 12.0	0 dB • RBW 30) kHz					
Att 1 Frequency		140 µs (~7.2	ms) - VBW 100	rHz Mode A∟	ito FFT				Count 100/100 1Sa Avg
								M1[1]	-25.61 dBr
									1.85000000 GH
20 dBm									
10 dBm					<u>с</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
0 dBm									
-10 dBm	H1 -13.000 dBm-								
	101000 4011								
-20 dBm									
				~	*			$ \land $	
-30 dBm								+++	
-40 dBm	· _ ~						, 	+	
		·	l	\sim					
-50 dBm		\vdash	\downarrow					+	~~~~~~
-60 dBm									
CF 1.85 GHz			1001 pt	S	20	00.0 kHz/			Span 2.0 MH
	Spectrum			Channel I	Low-1RB#		Aborted	000000	13.41.22
MultiView Ref Level 3	0.00 dBm Offse	-t <u>120</u>	0 dB = BBW 30) kHz		:	Aborted		13:41:22
MultiView	0.00 dBm Offse 20 dB SWT	-t <u>120</u>) kHz			Aborted		13:41:22
MultiView Ref Level 3 Att	0.00 dBm Offse 20 dB SWT	-t <u>120</u>	0 dB = BBW 30) kHz			Aborted	M1[1]	■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	-t <u>120</u>	0 dB = BBW 30) kHz			Aborted		Count 100/100
MultiView Ref Level 3 Att	0.00 dBm Offse 20 dB SWT	-t <u>120</u>	0 dB = BBW 30) kHz			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 30 Att 1 Frequency 20 dBm—	0.00 dBm Offse 20 dB SWT	-t <u>120</u>	0 dB = BBW 30) kHz			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	-t <u>120</u>	0 dB = BBW 30) kHz			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	-t <u>120</u>	0 dB = BBW 30) kHz			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 30 Att 1 Frequency 20 dBm—	0.00 dBm Offse 20 dB SWT	-t <u>120</u>	0 dB = BBW 30) kHz			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	-t <u>120</u>	0 dB = BBW 30) kHz			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	-t <u>120</u>	0 dB = BBW 30) kHz			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3 Att 1 Frequency 20 dBm	Sweep	-t <u>120</u>	0 dB = BBW 30) kHz			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3 Att 1 Frequency 20 dBm	Sweep	-t <u>120</u>	0 dB = BBW 30) kHz kHz Mode AL			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3: Att 1 Frequency 20 dBm	Sweep	-t <u>120</u>	0 dB = BBW 30) kHz kHz Mode AL			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3 Att 1 Frequency 20 dBm- 10 dBm- 0 dBm- -10 dBm-	Sweep	-t <u>120</u>	0 dB = BBW 30) kHz kHz Mode AL			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 30 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	Sweep	-t <u>120</u>	0 dB = BBW 30) kHz kHz Mode AL			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3: Att 1 Frequency 20 dBm	Sweep	-t <u>120</u>	0 dB = BBW 30) kHz kHz Mode AL			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3t Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Sweep	-t <u>120</u>	0 dB = BBW 30) kHz kHz Mode AL			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 30 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	Sweep	-t <u>120</u>	0 dB = BBW 30) kHz kHz Mode AL			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3' Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Sweep	-t <u>120</u>	0 dB = BBW 30) kHz kHz Mode AL			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3t Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Sweep	-t <u>120</u>	0 dB = BBW 30) kHz kHz Mode AL			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3' Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Sweep	-t <u>120</u>	0 dB = BBW 30) kHz kHz Mode AL			Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr
MultiView Ref Level 3' Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Sweep	-t <u>120</u>	0 dB = BBW 30	kHz Mode AL		0.0 kHz/	Aborted		■ 13:41:22 © Count 100/100 ● 1\$3 Avg -24.65 dbr

MultiView	B Spectrum	l							
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.00	0 dB ● RBW 30 ms) ● VBW 100) kHz) kHz Mode Au	ito FET				Count 100/100
1 Frequency		110 µ3 ().2							.●1Sa Avg
								M1[1]	-29.66 dBr 1.85000000 GH
20 dBm									
10 dBm									
0 dBm								\downarrow	
-10 dBm	Ut to opp days								
	H1 -13.000 dBm								
-20 dBm									
				P	1				
-30 dBm					¥				
			$ \sim $						
-40 dBm									
En do	1								
-50 dBm									
-60 dBm									
55 dbm									
				IS	20	00.0 kHz/			Span 2.0 MHz
CF 1.85 GHz	Υ		1001 pt				Aborted	0000000000000	17.06.2017
	Spectrum				ow-Full RB	3#	Aborted		13:43:44
MultiView	0.00 dBm Offse	t 12.00	C ⊃dB ● RBW 30			3#	Aborted		13:43:44
MultiView Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.00 140 µs (~7.2	C			3#	Aborted		13:43:44
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3#	Aborted	M1[1]	■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	t 12.00 140 μs (~7.2	C ⊃dB ● RBW 30			3#	Aborted		13:43:44
MultiView Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.00 140 μs (~7.2	C ⊃dB ● RBW 30			3#	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm—	0.00 dBm Offse 20 dB SWT	t 12.00 140 μs (~7.2	C ⊃dB ● RBW 30			3#	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3# 	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm—	0.00 dBm Offse 20 dB SWT	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3#	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3# 	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3#	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 31 Att 1 Frequency 20 dBm 10 dBm 8 dBm	0.00 dBm Offse 20 dB SWT	t 12.00 140 μs (~7.2	C ⊃dB ● RBW 30			3#	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 31 Att 1 Frequency 20 dBm 10 dBm 8 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3# 	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm- -10 dBm-	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3# 	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm- -10 dBm-	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3# 	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm- -10 dBm- -20 dBm-	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3#	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm- -10 dBm- -20 dBm-	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3#	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 3(Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3# 	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3# 	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3# 	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 3(Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3# 	Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 μs (~7.2	C ⊃dB ● RBW 30				Aborted		■ 13:43:44 © Count 100/100 ■ 1\$3 Avg -31.36 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00 140 µs (~7.2	C ⊃dB ● RBW 30			3#	Aborted		Count 100/100 • 13:43:44 Count 100/100 • 15a Avg • 31.36 dBr 1.91000000 GH

MultiView		L L							
Att	0.00 dBm Offs 20 dB SWT	et 12.0 140 µs (~7.2	00 dB = RBW 30 2 ms) = VBW 100) kHz) kHz Mode AL	ito FFT				Count 100/100
1 Frequency S	sweep							M1[1]	1Sa Avg -23.93 dBn
									1.85000000 GH
20 dBm									
10 dBm					ļ,	<u></u>			
0 dBm						+			
-10 dBm	H1 -13.000 dBm-								
	111 -13,000 4811								
-20 dBm				P	1				
-30 dBm									
55 dbm									
-40 dBm								<u> </u>	
-50-dBm									
~									
-60 dBm									
CF 1.85 GHz			1001 pt	S	20	00.0 kHz/			Span 2.0 MHz
MultiView	B Spectrun	1		Channel I	_ow-1RB#	2	Aborted		17.06.2017 13:55:08
Ref Level 30	0.00 dBm Offs	et 12.0	00 dB = RBW 30) kHz		Ŀ	Aborted		▽
	0.00 dBm Offs 20 dB SWT	et 12.0) kHz			Aborted		⊂ Count 100/100 ● 1Sa Avg
Ref Level 30 Att	0.00 dBm Offs 20 dB SWT	et 12.0	00 dB = RBW 30) kHz		2	Aborted	M1[1]	Count 100/100
Ref Level 30 Att	0.00 dBm Offs 20 dB SWT	et 12.0	00 dB = RBW 30) kHz		<u>.</u>	Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency 3 20 dBm-	0.00 dBm Offs 20 dB SWT	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency (0.00 dBm Offs 20 dB SWT	et 12.0	00 dB = RBW 30) kHz		E	Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency 9 20 dBm	0.00 dBm Offs 20 dB SWT	et 12.0	00 dB = RBW 30) kHz		E	Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency 3 20 dBm-	0.00 dBm Offs 20 dB SWT	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency 9 20 dBm	Sweep	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm 0 dBm	Sweep	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm -10 dBm -20 dBm	Sweep	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm 0 dBm	Sweep	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm -10 dBm -20 dBm	Sweep	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm -10 dBm -20 dBm	Sweep	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm -10 dBm -20 dBm	Sweep	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Sweep	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Sweep	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm	Sweep	et 12.0	00 dB = RBW 30) kHz			Aborted		Count 100/100 • 1Sa Avg -22,41 dBn
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm	Sweep	et 12.0	00 dB = RBW 30	0 kHz kHz Mode AL		E	Aborted		Count 100/100

MultiView									
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.00 140 µs (~7.2 r) dB = RBW 30 ms) = VBW 100	kHz kHz Mode Au	ito FFT				Count 100/100
1 Frequency S	Sweep							M41541	●1Sa Avg
								M1[1]	-30.89 dBı 1.85000000 GH
20 dBm									
10 dBm									
0 dBm									
					-		f		
-10 dBm									
	H1 -13.000 dBm								
-20 dBm									
-30 dBm				1	1,				
				~~~~	1				
-40 dBm									
-50 dBm									
50 abiii									
-60 dBm									
-00 UBIII									
CF 1.85 GHz			1001 pts		20	0.0 kHz/			Span 2.0 MH
	) [				ow-Full RB		Aborted		17.06.201 13:55:5
MultiView Ref Level 30	0.00 dBm Offse	t 12.00	C	hannel Lo	ow-Full RB		Aborted		13:55:5
MultiView	0.00 dBm Offse 20 dB SWT	t 12.00	С	hannel Lo	ow-Full RB		Aborted		Count 100/100
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12.00	C	hannel Lo	ow-Full RB		Aborted	M1[1]	■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 30 Att I Frequency 8	0.00 dBm Offse 20 dB SWT	t 12.00	C	hannel Lo	ow-Full RB		Aborted		Count 100/100
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12.00	C	hannel Lo	ow-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.00	C	hannel Lo	ow-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 30 Att I Frequency 8	0.00 dBm Offse 20 dB SWT	t 12.00	C	hannel Lo	ow-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.00	C	hannel Lo	ow-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.00	C	hannel Lo	ow-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 3C Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.00	C	hannel Lo	ow-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.00	C	hannel Lo	ow-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm- 10 dBm- 0 dBm- -10 dBm-	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	ow-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 3C Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	ow-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 30 Att Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	DW-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm- 10 dBm- 0 dBm- -10 dBm-	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	ow-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	DW-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView Ref Level 30 Att Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	DW-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView           Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	DW-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	DW-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView           Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	DW-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView           Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	DW-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView           Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	DW-Full RB		Aborted		■ 13:55:5.          ▼         Count 100/100         ● 1Sa Avg         -33.75 dB
MultiView           Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	pw-Full RB		Aborted		
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.00	C	hannel Lo	pw-Full RB	#	Aborted		Count 100/100 ● 13a Avg - 33.75 dBi 1.91000000 GF

MultiView	B Spectrum	(	0 dB = RBW 30	1 kHz					
<ul> <li>Att</li> <li>1 Frequency :</li> </ul>	20 dB SWT	140 µs (~7.2	2 ms) • VBW 100	OkHz Mode Au	to FFT				Count 100/100 • 1Sa Avg
Threquency	Sweep							M1[1]	-25.75 dBn
20 dBm									1.85000000 GH
20 UBIII									
10 dBm									
					~				
0 dBm									
-10 dBm	-H1 -13.000 dBm-								
	H1 -13,000 08m								
-20 dBm				Ν	1				
-30 dBm									
-40 dBm									
10 000									
_50 dBm				<b>-</b>					
		h							
-60 dBm									
CF 1.85 GHz			1001 pt	ts	20	) 0.0 kHz/			Span 2.0 MHz
MultiView	B Spectrum	Ī		Channel I	_ow-1RB#		Aborted		17.06.2017 13:54:43
Ref Level 30	D.00 dBm Offse	et 12.0	00 dB • RBW 30	) kHz			Aborted		13:54:43
	D.00 dBm Offso 20 dB SWT	et 12.0		) kHz			Aborted		13:54:43
Ref Level 30 Att	D.00 dBm Offso 20 dB SWT	et 12.0	00 dB • RBW 30	) kHz			Aborted	M1[1]	13:54:43
Ref Level 30 Att	D.00 dBm Offso 20 dB SWT	et 12.0	00 dB • RBW 30	) kHz			Aborted		Count 100/100 ●1Sa Avg -24.71 dBr
Ref Level 30 Att 1 Frequency :	D.00 dBm Offso 20 dB SWT	et 12.0	00 dB • RBW 30	) kHz			Aborted		Count 100/100 ●1Sa Avg -24.71 dBr
Ref Level 30 Att 1 Frequency :	D.00 dBm Offso 20 dB SWT	et 12.0	00 dB • RBW 30	) kHz			Aborted		Count 100/100 ●1Sa Avg -24.71 dBr
Ref Level 30 Att 1 Frequency 4 20 dBm	D.00 dBm Offso 20 dB SWT	et 12.0	00 dB • RBW 30	) kHz			Aborted		Count 100/100 ●1Sa Avg -24.71 dBr
Ref Level 30 Att 1 Frequency 30 20 dBm-	D.00 dBm Offso 20 dB SWT	et 12.0	00 dB • RBW 30	) kHz			Aborted		Count 100/100 ●1Sa Avg -24.71 dBr
Ref Level         3(           Att         1           1 Frequency         20           20 dBm	D.00 dBm Offso 20 dB SWT	et 12.0	00 dB • RBW 30	) kHz			Aborted		Count 100/100 ●1Sa Avg -24.71 dBr
Ref Level 30 Att 1 Frequency 4 20 dBm	D.00 dBm Offso 20 dB SWT	et 12.0	00 dB • RBW 30	) kHz			Aborted		13:54:43 ▼ Count 100/100 ● 1\$3 Avg -24.71 dBn
Ref Level         3(           Att         1           1 Frequency         20           20 dBm	Sweep	et 12.0	00 dB • RBW 30	) kHz ) kHz Mode Au	to FFT		Aborted		13:54:43 ▼ Count 100/100 ● 1\$3 Avg -24.71 dBn
Ref Level         3(           Att         1           1 Frequency         20           20 dBm	Sweep	et 12.0	00 dB • RBW 30	) kHz ) kHz Mode Au			Aborted		13:54:43 ▼ Count 100/100 ● 1\$3 Avg -24.71 dBn
Ref Level         3(           Att         1           1 Frequency         20           20 dBm	Sweep	et 12.0	00 dB • RBW 30	) kHz ) kHz Mode Au	to FFT		Aborted		13:54:43 ▼ Count 100/100 ● 1\$3 Avg -24.71 dBn
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	Sweep	et 12.0	00 dB • RBW 30	) kHz ) kHz Mode Au	to FFT		Aborted		13:54:43 ▼ Count 100/100 ● 1\$3 Avg -24.71 dBn
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	Sweep	et 12.0	00 dB • RBW 30	) kHz ) kHz Mode Au	to FFT		Aborted		13:54:43 ▼ Count 100/100 ● 1\$3 Avg -24.71 dBn
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	Sweep	et 12.0	00 dB • RBW 30	) kHz ) kHz Mode Au	to FFT		Aborted		13:54:43 ▼ Count 100/100 ● 1\$3 Avg -24.71 dBn
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	Sweep	et 12.0	00 dB • RBW 30	) kHz ) kHz Mode Au	to FFT		Aborted		13:54:43 ▼ Count 100/100 ● 1\$3 Avg -24.71 dBn
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	Sweep	et 12.0	00 dB • RBW 30	) kHz ) kHz Mode Au	to FFT		Aborted		13:54:43 ▼ Count 100/100 ● 1\$3 Avg -24.71 dBn
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	Sweep	et 12.0	00 dB • RBW 30	) kHz ) kHz Mode Au	to FFT		Aborted		13:54:43 ▼ Count 100/100 ● 1\$3 Avg -24.71 dBn
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm	Sweep	et 12.0	00 dB • RBW 300 rms) • VBW 100	D kHz D kHz Mode Au	to FFT		Aborted		I3:54:43         ▼         Count 100/100         ● 153 Avg         -24.71 dBn         1.91000000 GH
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	Sweep	et 12.0	00 dB • RBW 30	D kHz D kHz Mode Au	to FFT	)0.0 kHz/	Aborted		13:54:43

	$\neg$								
MultiView									
Ref Level 30 Att			dB = RBW 30 (s) = VBW 100	⊧kHz ⊧kHz <b>Mode</b> Au	to FFT				Count 100/100
1 Frequency	Sweep		,					M1[1]	●1Sa Avg
								M1[1]	-32.48 dBr 1.85000000 GH
20 dBm									
10 dBm									
0 dBm									
					$ \sim$				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-10 dBm	H1 -13.000 dBm								
-20 dBm									
-30 dBm									
-40 dBm		<u> </u>	<u> </u>						
-50 dBm									
-60 dBm									
			1001		<u>່</u> ວດ	)0.0 kHz/			Span 2.0 MH
CF 1.85 GHz			1001 pt	3					
CF 1.85 GHz	Spectrum		1001 pt		ow-Full RB		Aborted		17.06.2017 13:56:23
MultiView Ref Level 30	0.00 dBm Offset	12.00	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		17.06.2017 13:56:23
MultiView Ref Level 30 Att	0.00 dBm Offset 20 dB SWT	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		17.06.2017 13:56:23 ▼ Count 100/100
MultiView Ref Level 30	0.00 dBm Offset 20 dB SWT	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted	M1[1]	17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView Ref Level 30 Att I Frequency	0.00 dBm Offset 20 dB SWT	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		Count 100/100
MultiView Ref Level 30 Att	0.00 dBm Offset 20 dB SWT	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView Ref Level 30 Att I Frequency	0.00 dBm Offset 20 dB SWT	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offset 20 dB SWT	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offset 20 dB SWT	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offset 20 dB SWT	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm	Sweep	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offset 20 dB SWT	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm	Sweep	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm- -10 dBm- -20 dBm-	Sweep	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo	ow-Full RB		Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView Ref Level 30 Att 1 Frequency 1 20 dBm- 0 dBm- -10 dBm-	Sweep	12.00 140 μs (~7.2 m	С dв • <b>RBW</b> 30		ow-Full RB		Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView           Ref Level 3( Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	Sweep	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30				Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm- -10 dBm- -20 dBm-	Sweep	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30				Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView           Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -40 dBm	Sweep	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30				Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView           Ref Level 3( Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	Sweep	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30				Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView           Ref Level 3( Att           1 Frequency 1           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	Sweep	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30				Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView           Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -40 dBm	Sweep	12.00 140 µs (~7.2 m	С dв • <b>RBW</b> 30				Aborted		17.06.201 13:56:23 ▼ Count 100/100 ■1Sa Avg -34.70 dBr
MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm	Sweep	12.00 140 μs (~7.2 m	C	Channel Lo		#	Aborted		17.06.201; 13:56:23 Count 100/100 • 153 Avg -34,70 dBr 1.91000000 GH
MultiView           Ref Level 3( Att           1 Frequency 1           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	Sweep	12.00 140 μs (~7.2 m	С dв • <b>RBW</b> 30	Channel Lo			Aborted		17.06.201 13:56:23 Count 100/100 9153 Avg -34.70 dBr 1.91000000 GH

Marcheller		<u> </u>	<b>L</b> 1		·5MHz-QP				
MultiView	B Spectrum	L L	0 dB = RBW 10	00 kH-					
Att	20 dB SWT	42.04 µs (~9.1	. ms) • VBW 3	00 kHz Mode	Auto FFT				Count 100/100
1 Frequency	sweep							M1[1]	1Sa Avg -28.06 dBr
									1.85000000 GH
20 dBm									
10 dBm						$\sim$			
TO UBIII									
0 dBm					(	1			
-10 dBm							$ \rightarrow $		
	-H1 -13.000 dBm-								
-20 dBm									
				r	1			$\square$	
-30 dBm				/	1			$\vdash$	
-40 dBm									
-50 dBm									
-60 dBm									
CF 1.85 GHz			1001 pt	s	20	00.0 kHz/	Aborted		Span 2.0 MHz 17.06.2017
MultiViow	Spectrum			Channel	Low-1RB#				
MultiView Ref Level 30	D.00 dBm Offse	et 12.0	00 dB • RBW 10	D0 kHz					13:58:2€
Ref Level 30 Att	D.00 dBm Offse 20 dB SWT		00 dB • RBW 10	D0 kHz					⊽ Count 100/100
Ref Level 30	D.00 dBm Offse 20 dB SWT	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30 Att 1 Frequency 9	D.00 dBm Offse 20 dB SWT	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30 Att	D.00 dBm Offse 20 dB SWT	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30 Att 1 Frequency 9	D.00 dBm Offse 20 dB SWT	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm	D.00 dBm Offse 20 dB SWT	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm	D.00 dBm Offse 20 dB SWT	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30 Att I Frequency 9 20 dBm	D.00 dBm Offse 20 dB SWT	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30 Att I Frequency 9 20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           0 dBm	D.00 dBm Offse 20 dB SWT	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           0 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	00 dB • RBW 10	D0 kHz				M1[1]	Count 100/100 • 1Sa Avg -27.82 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	D0 dB • RBW 11 . ms) • VBW 31	D0 kHz 00 kHz Mode	Auto FFT			M1[1]	Count 100/100
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.0	00 dB • RBW 10	D0 kHz 00 kHz Mode	Auto FFT	)0.0 kHz/	Aborted	M1[1]	Count 100/100

Multildian	Snectrum								$\nabla$
MultiView	Spectrum	. ட	00 dB • RBW 1	00 kH≠					Ľ
Att	20 dB SWT	. 12. . 42.04 µs (~9.	1 ms) • VBW 1 1 ms) • VBW 3	00 kHz Mode	Auto FFT				Count 100/100
1 Frequency S	Sweep							M1[1]	1Sa Avg -30.74 dBr
									1.85000000 GH
20 dBm									
10 dBm									
10 000									
0 dBm									
-10 dBm	H1 -13.000 dBm					1			
	112 101000 4011								
-20 dBm									
-30 dBm					M1				
~	<u> </u>	L	+						
-40 dBm									
-50 dBm									
60 ID									
-60 dBm									
CF 1.85 GHz	1		1001 pt	s	20	0.0 kHz/	1		Span 2.0 MHz
			1001 pt	5					
	) Spectrum				ow-Full RB		Aborted		17.06.2017 13:59:37
MultiView Ref Level 30	0.00 dBm Offse	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		13:59:37
MultiView Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.	C	Channel Lo	ow-Full RB		Aborted		13:59:37
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted	M1[1]	Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 30 Att I Frequency S	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100
MultiView Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 30 Att I Frequency S	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 30 Att I Frequency S	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 3C Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 3C Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 3C Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 3C Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 3C Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 3C Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 3C Att 1 Frequency S 20 dBm 10 dBm -10 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 3C Att I Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 3C Att 1 Frequency S 20 dBm 10 dBm -10 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView           Ref Level 3C           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView Ref Level 3C Att I Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView           Ref Level 3C           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView           Ref Level 3C           Att           1 Frequency 2           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo	ow-Full RB		Aborted		Count 100/100 ● 1Sa Avg -31.89 dBr
MultiView           Ref Level 3C           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT	t 12.	C	Channel Lo		#	Aborted		Count 100/100 ● 15a Avg -31.89 dBr 1.91000000 GH
MultiView           Ref Level 3C           Att           1 Frequency 2           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1	Channel Lo			Aborted		Count 100/100 ● 15a Avg -31.89 dBr 1.91000000 GH

MultiView									
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12. 42.04 µs (~9.	.00 dB • RBW 10 .1 ms) • VBW 30	00 kHz 00 kHz <b>Mode</b>	Auto FFT				Count 100/100
1 Frequency 8	Sweep							M1[1]	●1Sa Avg
								M1[1]	-29.35 dBn 1.85000000 GH
20 dBm									
10 dBm							<u>\</u>		
0 dBm						ł			
o ubili									
-10 dBm	H1 -13.000 dBm-								
-20 dBm							$\downarrow$		
					M1			$\square$	
-30 dBm					*				
				$\downarrow$ /				$  \setminus$	
-40 dBm								+	$\sim$
		ļ ,	X						
-50 dBm		<u>├</u> ──∕							
-60 dBm		L					ļ		
CF 1.85 GHz	X		1001 pt	s	20	0.0 kHz/	\		Span 2.0 MHz
MultiView	Spectrum			Channel	Low-1RB#		Aborted		17.06.2017 13:58:44
Ref Level 30	0.00 dBm Offse	et 12	.00 dB • RBW 10	00 kHz			Aborted		13:58:44
	0.00 dBm Offse 20 dB SWT	et 12		00 kHz			Aborted		13:58:44 ▼ Count 100/100 ● 1Sa Avg
Ref Level 30	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted	M1[1]	Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		13:58:44 ▼ Count 100/100 ● 1Sa Avg
Ref Level 30	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30 Att I Frequency & 20 dBm	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30 Att I Frequency & 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30           • Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30           • Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 1S3 Avg -29.08 dBn
Ref Level 30           • Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 10	00 kHz 00 kHz Mode		0.0 kHz/	Aborted		Count 100/100 • 13:58:44 • 29:08 dBn 1.91000000 GH
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	00 dB • RBW 11 1 ms) • VBW 3	00 kHz 00 kHz Mode			Aborted		

MultiView	🔠 Spectrum								$\nabla$
	0.00 dBm Offse		2.00 dB • RBW 1	00 kHz					
Att 1 Frequency S	20 dB SWT	42.04 µs (~9	.1 ms) 🗕 VBW 3	00 kHz Mod	e Auto FFT				Count 100/100 1Sa Avg
T ITEquency (	зчеер							M1[1]	-34.96 dB
									1.85000000 GF
20 dBm									
10 dBm									
0 dBm									
-10 dBm	H1 -13.000 dBm-					/			
	H1 -13.000 UBM								
-20 dBm									
-30 dBm					MI				
					-F				
-40 dBm						+			
-50 dBm									
-60 dBm									
				te te	2	00.0 kHz/			Span 2.0 MH
CF 1.85 GHz					_ow-Full RE		Aborte	d <b>())))))</b>	13:59:1
MultiView Ref Level 30	0.00 dBm Offse	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		▼ 13:59:1
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	st 12	(	Channel I	_ow-Full RE		Aborte	d (111111111)	Count 100/100
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte	d (11111)	13:59:1
MultiView Ref Level 30 Att I Frequency S	0.00 dBm Offse 20 dB SWT	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		13:59:1
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		13:59:1
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		13:59:1
MultiView Ref Level 30 Att I Frequency S	0.00 dBm Offse 20 dB SWT	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		13:59:1
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm	0.00 dBm Offse 20 dB SWT	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		13:59:1
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		13:59:1
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	0.00 dBm Offse 20 dB SWT	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		13:59:1
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm	0.00 dBm Offse 20 dB SWT	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		13:59:1
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm- 10 dBm- -10 dBm-	0.00 dBm Offse 20 dB SWT Sweep	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		13:59:1
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		13:59:1
MultiView Ref Level 30 Att Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	.00 dB ● RBW 1	Channel I	LOW-FUIL RE		Aborte		13:59:1
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm- 10 dBm- -10 dBm-	0.00 dBm Offse 20 dB SWT Sweep	st 12	.00 dB ● RBW 1	Channel I	_ow-Full RE		Aborte		13:59:1
MultiView           Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	.00 dB ● RBW 1	Channel I	LOW-FUIL RE		Aborte		13:59:1
MultiView Ref Level 30 Att Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	.00 dB ● RBW 1	Channel I	LOW-FUIL RE		Aborte		13:59:1
MultiView           Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	.00 dB ● RBW 1	Channel I	LOW-FUIL RE		Aborte		13:59:1
MultiView           Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	.00 dB ● RBW 1	Channel I	LOW-FUIL RE		Aborte		13:59:1
MultiView           Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	.00 dB ● RBW 1	Channel I	LOW-FUIL RE		Aborte		13:59:1
MultiView           Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	.00 dB ● RBW 1	Channel I	LOW-FUIL RE		Aborte		13:59:1
MultiView           Ref Level 30           Att           1 Frequency 9           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	Coo dB • RBW 1 .1 ms) • VBW 3	Channel I	Auto FFT	3# 	Aborte		I3:59:1         ▼         Count 100/100         ●1SE Avg         -33.69 dB         1.91000000 GF
MultiView           Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	.00 dB ● RBW 1	Channel I	Auto FFT		Aborte	M1[1]	Count 100/100 • 153 Avg -33.69 dB 1.91000000 GF

MultiView	🖽 Spectrum	n							$\nabla$
	0.00 dBm Offse	et 12.	00 dB • RBW 1						
Att 1 Frequency \$		42.04 µs (~9.	1 ms) 🖷 VBW 3	00 kHz Mode	Auto FFT				Count 100/100 • 1Sa Avg
								M1[1]	-43.29 dBn 1.85000000 GH
20 dBm									1.05000000 011
								L	
10 dBm									_
0 dBm							/	$\left  \right\rangle$	
								\	
-10 dBm	H1 -13.000 dBm-								
	112 101000 0011					/			
-20 dBm									$\overline{\mathbf{X}}$
20 d0m									
-30 dBm									
-40 dBm						/			
-50 dBm									
-60 dBm									
CF 1.85 GHz			1001 pt	's	2	00.0 kHz/			Span 2.0 MHz
					Low-1RB	‡	Aborted		14.00.31
MultiView	0.00 dBm Offse	et 12.	00 dB ● RBW 1		Low-1RB#	<i>‡</i>	Aborted		14:00:51
MultiView Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.			Low-1RB#	ŧ	Aborted		14:00:51
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#	<i>‡</i>	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att I Frequency S	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#	<i>‡</i>	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#	<i>‡</i>	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att I Frequency S	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#	¢	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#	#	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#	# 	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att 1 Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#	#	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att 1 Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#	<i>‡</i>	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#	#	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att 1 Frequency \$ 20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#	#	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att Frequency 5 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#	#	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#	#	Aborted	M1[1]	14:00:51
MultiView Ref Level 30 Att Frequency 5 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#	#	Aborted	M1[1]	14:00:51
MultiView           Ref Level 30           Att           1 Frequency 9           20 dBm           10 dBm           -10 dBm           -20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#	#	Aborted	M1[1]	14:00:51
MultiView           Ref Level 30           Att           1 Frequency 9           20 dBm           10 dBm           -10 dBm           -20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#	#	Aborted	M1[1]	14:00:51
MultiView           Ref Level 30           Att           1 Frequency 5           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted	M1[1]	14:00:51
MultiView           Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#	#	Aborted	M1[1]	14:00:51
MultiView           Ref Level 30           Att           1 Frequency 5           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 1 1 ms) • VBW 3	Channel	Low-1RB#		Aborted	M1[1]	14:00:51
MultiView           Ref Level 30           Att           1 Frequency 5           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1	Channel	Low-1RB#	¢	Aborted	M1[1]	14:00:51     ▼ Count 100/100     ● 15a Avg     -41.53 dBr     1.91000000 GH     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■     ■

MultiView									
Att	0.00 dBm Offse 20 dB SWT	et 12. 42.04 µs (∼9.	.00 dB • RBW 1 1 ms) • VBW 3	00 kHz :00 kHz <b>Mode</b> /	Auto FFT				Count 100/100
1 Frequency	Sweep							M1[1]	1Sa Avg -38.14 dBr
									1.85000000 GH
20 dBm									
10 dBm									
0 dBm									
o dom									
-10 dBm									
	H1 -13.000 dBm								
-20 dBm									
-30 dBm									
10 10				N	1				
-40 dBm									
-50 dBm									
-60 dBm									
CF 1.85 GHz			1001 p	ts	20	0.0 kHz/			Span 2.0 MH:
	][						Aborted		17.06.2017 14:01:13
	][						Aborted		14:01:13
	][		(	Channel Lo	ow-Full RB	\$#	Aborted		14:01:13
MultiView					w-Full RB	3#	Aborted		14:01:13
MultiView Ref Level 3 Att	0.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 1			3#	Aborted		<pre>14:01:13 Count 100/100</pre>
MultiView Ref Level 3	0.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 1	00 kHz		#	Aborted	M1[1]	■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 1	00 kHz		#	Aborted		Count 100/100 • 1Sa Avg
MultiView Ref Level 3 Att	0.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 1	00 kHz		\$#	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 1	00 kHz		\$#	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 1	00 kHz		\$#	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 1	00 kHz		3# 	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm	Sweep	et 12.	00 dB • RBW 1	00 kHz		\$# 	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm- 10 dBm- 0 dBm- -10 dBm-	0.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 1	00 kHz		\$#	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView Ref Level 3: Att 1 Frequency 20 dBm	Sweep	et 12.	00 dB • RBW 1	00 kHz		\$# 	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView Ref Level 3: Att 1 Frequency 20 dBm- 10 dBm- -10 dBm- -20 dBm-	Sweep	et 12.	00 dB • RBW 1	00 kHz		\$# 	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm- 10 dBm- 0 dBm- -10 dBm-	Sweep	et 12.	00 dB • RBW 1	00 kHz 00 kHz Mode /		3# 	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView Ref Level 3: Att 1 Frequency 20 dBm- 10 dBm- -10 dBm- -20 dBm-	Sweep	et 12.	00 dB • RBW 1	00 kHz 00 kHz Mode /	Auto FFT	\$# 	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	Sweep	et 12.	00 dB • RBW 1	00 kHz 00 kHz Mode /	Auto FFT	\$#	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	Sweep	et 12.	00 dB • RBW 1	00 kHz 00 kHz Mode /	Auto FFT	\$# 	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView           Ref Level 3'           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm	Sweep	et 12.	00 dB • RBW 1	00 kHz 00 kHz Mode /	Auto FFT	\$# 	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView           Ref Level 3'           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm	Sweep	et 12.	00 dB • RBW 1	00 kHz 00 kHz Mode /	Auto FFT	\$# 	Aborted		■ 14:01:1:       ▼     Count 100/100       ● 1S3 Avg       -37.16 dBr
MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	Sweep	et 12.	00 dB • RBW 1	00 kHz 00 kHz Mode /	Auto FFT	3# 	Aborted		■ 14:01:1:           ▼           Count 100/100           ● 1S3 Avg           -37.16 dBr
MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	Sweep	et 12.	00 dB • RBW 1	00 kHz 00 kHz Mode /	Auto FFT	\$#	Aborted		

MultiView									▽
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12. 42.04 µs (~9.	.00 dB • RBW 1 .1 ms) • VBW 3	LOO kHz 300 kHz <b>Mod</b>	e Auto FFT				Count 100/100
1 Frequency	Sweep								●1Sa Avg
								M1[1]	-44.55 dBr 1.85000000 GH
20 dBm									
10 dBm								$\square$	
0 dBm									
								$  \rangle$	
-10 dBm							/	\	\
	H1 -13.000 dBm								Y
-20 dBm									
-30 dBm									
-40 dBm						1			,
					M1				
-50 dBm									
-60 dBm									
CF 1.85 GHz				ts	2	00.0 kHz/			Span 2.0 MHz
	Spectrum		1001 p		Low-1RB#		Aborted		
MultiView Ref Level 30	D.00 dBm Offse	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted		17.06.2017 14:00:27
MultiView Ref Level 30	D.00 dBm Offse 20 dB SWT	et 12.			Low-1RB#		Aborted		17.06.2017 14:00:27
MultiView Ref Level 30	D.00 dBm Offse 20 dB SWT	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att I Frequency	D.00 dBm Offse 20 dB SWT	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30	D.00 dBm Offse 20 dB SWT	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm—	D.00 dBm Offse 20 dB SWT	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att I Frequency	D.00 dBm Offse 20 dB SWT	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att 1 Frequency 1 20 dBm	D.00 dBm Offse 20 dB SWT	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm—	D.00 dBm Offse 20 dB SWT	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.201 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm	D.00 dBm Offse 20 dB SWT	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att 1 Frequency 1 20 dBm	D.00 dBm Offse 20 dB SWT	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm- -10 dBm-	20 dB Offse 20 dB SWT Sweep	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27
MultiView Ref Level 30 Att 1 Frequency 20 dBm	20 dB Offse 20 dB SWT Sweep	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att Frequency 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm	20 dB Offse 20 dB SWT Sweep	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm- -10 dBm-	20 dB Offse 20 dB SWT Sweep	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att I Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 d6m	20 dB Offse 20 dB SWT Sweep	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att Frequency 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm	20 dB Offse 20 dB SWT Sweep	et 12.	.00 dB • RBW 1		Low-1RB#		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView           Ref Level 30           Att           1 Frequency 4           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -40 dBm	20 dB Offse 20 dB SWT Sweep	et 12.	.00 dB • RBW 1		Auto FFT		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView Ref Level 30 Att I Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 d6m	20 dB Offse 20 dB SWT Sweep	et 12.	.00 dB • RBW 1		Auto FFT		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView           Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	20 dB Offse 20 dB SWT Sweep	et 12.	.00 dB • RBW 1		Auto FFT		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView           Ref Level 30           Att           1 Frequency 4           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -40 dBm	20 dB Offse 20 dB SWT Sweep	et 12.	.00 dB • RBW 1		Auto FFT		Aborted	M1[1]	17.06.2017 14:00:27 ▼ Count 100/100 ● 1Sa Avg -44.59 dBr
MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm	20 dB Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 1 1 ms) • VBW 3	Channe	Auto FFT		Aborted	M1[1]	17.06.2017 14:00:27 Count 100/100 ● 1Sa Avg -44.59 dBr -44.59 dBr 1.91000000 GH
MultiView           Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	20 dB Offse 20 dB SWT Sweep	et 12.	.00 dB • RBW 1	Channe	Auto FFT		Aborted	M1[1]	17.06.2017 14:00:27 14:00:27 Count 100/100 • 153 AVg -44.59 dBr -44.59 dBr -45.59 dBr -55.59 dBr -5

MultiView									
Att	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 us (~9.1	0 dB = RBW 1 ms) = VBW 3	00 kHz 00 kHz <b>Mode</b> A	uto FFT				Count 100/100
1 Frequency	Sweep								●1Sa Avg
								M1[1]	-38.80 dB 1.85000000 GH
20 dBm									
20 0011									
10 dBm									
0 dBm									
-10 dBm	H1 -13.000 dBm								
	H1 -13,000 dBm								
-20 dBm							/		
							X		
-30 dBm						/			
				M	1				
-40 dBm					ř	<b></b>			
-50 dBm									
-60 dBm									
-00 ubiii									
CF 1.85 GHz			1001 pt	S	20	0.0 kHz/			Span 2.0 MH
							Aborted		17.06.201 14:01:3
MultiView				Channel Lo	w-Full RB	#			~
Ref Level 30 Att	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 µs (~9.1	0 dB • RBW 1			#			Count 100/100
Ref Level 30	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz		#		MIEII	Count 100/100
Ref Level 30 Att	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 μs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100
Ref Level 30 Att	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30 Att 1 Frequency	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 μs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30 Att 1 Frequency 20 dBm-	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 μs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30 Att 1 Frequency	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 μs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30 Att I Frequency 20 dBm	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 μs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30 Att 1 Frequency 20 dBm-	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           0 dBm	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30 Att I Frequency 20 dBm	D.00 dBm Offset 20 dB SWT	t 12.0 42.04 μs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           0 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12.0 42.04 μs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           0 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12,0 42.04 μs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12,0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           0 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 3i           Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz 00 kHz Mode A		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30           Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz 00 kHz Mode A		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 3i           Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz 00 kHz Mode A		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30           Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz 00 kHz Mode A		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30           Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz 00 kHz Mode A		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz 00 kHz Mode A		#		M1[1]	Count 100/100 ● 1Sa Avg -39,55 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12.0 42.04 µs (~9.1	00 dB • RBW 11 ms) • VBW 3	00 kHz 00 kHz Mode 4	1			M1[1]	Count 100/100         • 15a Avg         -39.55 dB         1.91000000 GH
Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	D.00 dBm Offset 20 dB SWT Sweep	t 12.0 42.04 µs (~9.1	0 dB • RBW 1	00 kHz 00 kHz Mode 4	1	;#	Aborted		Count 100/100 • 15a Avg 

			LT						
MultiView	😁 Spectrum								
Ref Level 3 Att	0.00 dBm Offse	t 12.0	00 dB • RBW 3	300 kHz 1 MHz Mode /	Auto FET				Count 100/100
1 Frequency		10:00 00( 23		11112 1100001					●1Sa Avg
								M1[1]	-42.01 dBr 1.85000000 GH
20 dBm									
10 dBm									
0 dBm									
-10 dBm	H1 -13.000 dBm						4		
	MI -13.000 0Bm								
-20 dBm									
-30 dBm									
40 - 10					M1 -	$\downarrow$			
-40 dBm									
-50 dBm									
-60 dBm									
CF 1.85 GHz			1001 p		2	00.0 kHz/			Span 2.0 MH
			1001 p.	713	Ζ.	00.0 KHZ/		00000000	17.06.201
	J			Channel	Low-1RB#	ŧ	Aborted		14:19:55
MultiView					Low-1RB#	ŧ	Aborted		14:19:5:
MultiView Ref Level 3 Att	0.00 dBm Offse 20 dB SWT	t 12.0	00 dB ● RBW 3 L ms) ● VBW			ŧ	Aborted		← 14:19:5: Count 100/100
MultiView Ref Level 3⊨	0.00 dBm Offse 20 dB SWT	t 12.0	00 dB ● RBW 3 L ms) ● VBW	300 kHz		ŧ	Aborted	M1[1]	■ 14:19:5:           ▼           Count 100/100           ● 1Sa Avg           -43.85 dBr
MultiView Ref Level 3 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	t 12.0	00 dB ● RBW 3 1 ms) ● VBW	300 kHz		<i>ŧ</i>	Aborted		14:19:5:
MultiView Ref Level 3 Att	0.00 dBm Offse 20 dB SWT	t 12.0	00 dB ● RBW 3 . ms) ● VBW	300 kHz		<i>t</i>	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.0	00 dB ● RBW 3 [ ms) ● VBW	300 kHz		<i>t</i>	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView Ref Level 3 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	t 12.0	00 dB ● RBW 3 L ms) ● VBW	300 kHz		<i>t</i>	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.0	00 dB ● RBW 3 t ms) ● VBW	300 kHz		¢	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView Ref Level 3 Att 1 Frequency 20 dBm- 10 dBm-	0.00 dBm Offse 20 dB SWT	t 12.0	00 dB ● RBW 3 t ms) ● VBW	300 kHz		¢	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView Ref Level 3 Att 1 Frequency 20 dBm- 10 dBm-	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	00 dB ● RBW 3 ms) ● VBW	300 kHz		¢	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView Ref Level 3: Att I Frequency 20 dBm 10 dBm 0 dBm	0.00 dBm Offse 20 dB SWT	t 12.0	00 dB • RBW 3	300 kHz		<i>t</i>	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView Ref Level 3: Att I Frequency 20 dBm 10 dBm 0 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	00 dB ● RBW 3 L ms) ● VBW	300 kHz			Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView Ref Level 3: Att I Frequency 20 dBm 10 dBm -10 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	00 dB • RBW 3	300 kHz		¢	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView Ref Level 3: Att I Frequency 20 dBm 10 dBm -10 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	00 dB • RBW 3	300 kHz		¢	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView Ref Level 3: Att Frequency 20 dBm 0 dBm -10 dBm -20 dBm -20 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	00 dB • RBW 3	300 kHz		#	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView Ref Level 3: Att Frequency 20 dBm 0 dBm -10 dBm -20 dBm -20 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	00 dB • RBW 3	300 kHz 1 MHz Mode /		#	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView           Ref Level 3t           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	00 dB • RBW 3	300 kHz 1 MHz Mode /	Auto FFT	#	Aborted		■ 14:19:5:          ▼         Count 100/100         ● 1Sa Avg         -43.85 dB
MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	D0 dB • RBW 3	300 kHz 1 MHz Mode /	Auto FFT		Aborted		Count 100/100 ● 1Sa Avg -43.85 dB
MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	DO dB • RBW 3	300 kHz 1 MHz Mode /	Auto FFT		Aborted		Count 100/100 ● 1Sa Avg -43.85 dB
MultiView           Ref Level 3t           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	00 dB • RBW 3	300 kHz 1 MHz Mode /	Auto FFT		Aborted		Count 100/100 ● 1Sa Avg -43.85 dB
MultiView           Ref Level 3:           Att           I Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	<pre>k ms) • VBW</pre>	300 kHz 1 MHz Mode /	Auto FFT		Aborted		
MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.0	00 dB • RBW 3	300 kHz 1 MHz Mode /	Auto FFT	¢	Aborted		Count 100/100         • 15a Arg         -43.85 dBr         -43.8

		1							
MultiView									
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT		.00 dB <b>= RBW</b> 3 21 ms) <b>= VBW</b>	00 kHz 1 MHz <b>Mode</b> A	uto FFT				Count 100/100
1 Frequency								141513	●1Sa Avg
								M1[1]	-34.15 dBr 1.85000000 GH
20 dBm									
10 dBm			_						
0 dBm									
-10 dBm									
	H1 -13.000 dBm							1	
-20 dBm									
-30 dBm									
-50 0511			_	1	11 •				
-40 dBm									
-50 dBm									
-30 ubm									
-60 dBm									
-60 aBm									
CF 1.85 GHz			1001 p	ots	2	00.0 kHz/			Span 2.0 MH2 17.06.2017
			(	Channel Lo	ow-Full RE	3#	Aborted		14:21:11
MultiView					ow-Full RE	3#	ADUREU		▼ 14:21:11
Ref Level 30	0.00 dBm Offse	et 12	.00 dB • RBW 3	:00 kHz		3#	ADUREU		
	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3			3#	Aburteu		Count 100/100 • 1\$a Avg
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	:00 kHz		3#	Aburteu	M1[1]	Count 100/100
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	:00 kHz		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	:00 kHz		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	:00 kHz		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 30 Att 1 Frequency 2 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	:00 kHz		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 30 Att 1 Frequency 2 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	:00 kHz		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	:00 kHz		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	:00 kHz		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	:00 kHz		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	:00 kHz		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	:00 kHz		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	00 kHz 1 MHz Mode 4		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3( Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	:00 kHz		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3( Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	00 kHz 1 MHz Mode 4		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	00 kHz 1 MHz Mode 4		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	00 kHz 1 MHz Mode 4		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	00 kHz 1 MHz Mode 4		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	00 kHz 1 MHz Mode 4		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	00 kHz 1 MHz Mode 4		3#			Count 100/100 • 15a Avg -34.85 dBr
Ref Level 3( Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	00 dB • RBW 3 11 ms) • VBW	00 kHz 1 MHz Mode 4					Count 100/100 © 153 Arg -34.85 dBr 1.90999809 GH
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	00 kHz 1 MHz Mode 4		3#	Aborted		Count 100/100 Count

MultiView	🗄 Spectrum		LTI						
	0.00 dBm Offset	L L	00 dB 🖷 RBW 3	300 kHz					Ľ
Att	20 dB SWT	13.93 µs (~2:	1 ms)   VBW	1 MHz Mo	de Auto FFT				Count 100/100
1 Frequency	Sweep							M1[1]	1Sa Avg -45.06 dBr
									1.85000000 GH
20 dBm									
10 dBm									
0 dBm									
-10 dBm	H1 -13.000 dBm								
	H1 -13.000 0Bm								
-20 dBm									
-30 dBm									
-40 dBm					M1	$\leftarrow$		+	
-50 dBm									
-60 dBm			+						
CF 1.85 GHz			1001 p	ots	21	00.0 kHz/			Span 2.0 MH
				Chann	el Low-1RB#	Ŀ	Aborted		17.06.201 14:20:2
MultiView			00 dB <b>= PBW</b> 3		el Low-1RB#	<u>!</u>			14:20:2
Ref Level 3 Att	0.00 dBm Offset 20 dB SWT	t 12.0	00 dB ● RBW 3 1 ms) ● VBW	300 kHz		2			[14.20.2] ▼ Count 100/100
Ref Level 3	0.00 dBm Offset 20 dB SWT	t 12.0	00 dB ● RBW 3 1 ms) ● VBW	300 kHz		•		M1[1]	Count 100/100 ● 1Sa Avg -42.33 dB
Ref Level 3 Att	0.00 dBm Offset 20 dB SWT	t 12.0	00 dB ● RBW 3 1 ms) ● VBW	300 kHz		: 			Count 100/100
Ref Level 3 Att	0.00 dBm Offset 20 dB SWT	t 12.0	00 dB ● RBW 3 1 ms) ● VBW	300 kHz		E			Count 100/100 ● 1Sa Avg -42.33 dB
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offset 20 dB SWT	t 12.0	00 dB ● RBW 3 1 ms) ● VBW	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dB
Ref Level 3 Att 1 Frequency	0.00 dBm Offset 20 dB SWT	t 12.0	00 dB ● RBW 3 1 ms) ● VBW	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dB
Ref Level 3 Att I Frequency 20 dBm 10 dBm	0.00 dBm Offset 20 dB SWT	t 12.0	00 dB ● RBW 3 1 ms) ● VBW	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dB
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offset 20 dB SWT	t 12.0	00 dB ● RBW 3 1 ms) ● VBW	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dB
Ref Level 3 Att 1 Frequency 20 dBm	0.00 dBm Offset 20 dB SWT	t 12.0	00 dB ● RBW 3 1 ms) ● VBW	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dB
Ref Level 3 Att I Frequency 20 dBm 10 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0	D0 dB • RBW 3 1 ms) • VBW	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dB
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm	0.00 dBm Offset 20 dB SWT	t 12.0	D0 dB • RBW 3 1 ms) • VBW	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dB
Ref Level 3 Att 1 Frequency 20 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0	D0 dB • RBW 3	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dB
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0	D0 dB • RBW 3	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0	20 dB • RBW 3	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0	D0 dB • RBW 3	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0	D0 dB • RBW 3	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0	D0 dB • RBW 3	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0	D0 dB • RBW 3	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0	D0 dB • RBW 3	300 kHz					Count 100/100 ● 1Sa Avg -42.33 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0		300 kHz					Count 100/100 ● 1Sa Avg -42.33 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0		300 kHz					Count 100/100 ● 1Sa Avg -42.33 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0	D0 dB • RBW 3 1 ms) • VBW	300 kHz 1 MHz Mo	de Auto FFT	E			Count 100/100         • 153 Avg         -42.33 dBr         1.90999809 GF         -         -         -
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	O.00 dBm Offset 20 dB SWT Sweep	t 12.0	1 ms) • VBW	300 kHz 1 MHz Mo	de Auto FFT		Aborted		Count 100/100 13a Avg -42.33 dB 1.90999809 GH

MultiView	🗄 Spectrum			Band 2-1					
	0.00 dBm Offse	t 12.0	0 dB • RBW 3	00 kHz 1 MHz <b>Mode</b> A	uto FET				Count 100/100
1 Frequency S		10100 00( 23						M1[1]	●1Sa Avg -35.72 dBn
								MILI	1.85000000 GH
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
10 000	H1 -13.000 dBm-							1	
-20 dBm									
-30 dBm									
				N	1				
-40 dBm									
-50 dBm									
-60 dBm									
-ou ubiii									
CF 1.85 GHz			1001 p	ts	2(	00.0 kHz/	Aborted	00000000	Span 2.0 MHz 17.06.2017
			(	Channel Lo	w-Full RE	3#	Aborteu		14.20.30
	0.00 dBm Offse	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#	Aborteu		▼
	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3			3#	ADUREU		Count 100/100 ISa Avg
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#		M1[1]	Count 100/100
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#			Count 100/100
Ref Level 30 ■ Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#			Count 100/100
Ref Level 30 ■ Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#			Count 100/100
Ref Level 3C Att I Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#			Count 100/100
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#			Count 100/100
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#			Count 100/100
Ref Level 3C Att I Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#			Count 100/100 ● 15a Avg -37.22 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		B#			Count 100/100 ● 15a Avg -37.22 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#			Count 100/100 ● 15a Avg -37.22 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#			Count 100/100 ● 15a Avg -37.22 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz		3#			Count 100/100 ● 15a Avg -37.22 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz 1 MHz Mode A		3#			Count 100/100 ● 15a Avg -37.22 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz 1 MHz Mode A		3#			Count 100/100 ● 15a Avg -37.22 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz 1 MHz Mode A		3#			Count 100/100 ● 15a Avg -37.22 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz 1 MHz Mode A		3#			Count 100/100 ● 15a Avg -37.22 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz 1 MHz Mode A		3#			Count 100/100 ● 15a Avg -37.22 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT	et 12.0		D0 kHz 1 MHz Mode A					Count 100/100 (153 Avg -37.22 dBn 1.9099809 GH
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	00 dB 🖷 RBW 3	D0 kHz 1 MHz Mode A		3#	Aborted		Count 100/100 © 153 Avg -37.22 dBn 1.9099809 GH

MultiView	B Spectrum								$\bigtriangledown$
				200 1-11-					Ľ
Att	.00 dBm Offse 20 dB SWT	13.93 µs (~	2.00 dB ● <b>RBW</b> 3 21 ms) ● <b>VBW</b>	1 MHz Mode	e Auto FFT				Count 100/100
1 Frequency S	weep							M1[1]	1Sa Avg -43.42 dBr
								MILI	1.85000000 GH
20 dBm									
10 dBm									
10 0.011									
0 dBm									
-10 dBm	H1 -13.000 dBm-								
	112 10:000 00:00							1	
-20 dBm							+ /		
-30 dBm							+ /		
-40 dBm					M1				
-50 dBm									
co. do									
-60 dBm									
CF 1.85 GHz			1001	pts		200.0 kHz/		1	Span 2.0 MH
	1						Aborted	00000000000	17.06.2017
							Aborted		14:09:57
MultiView	Spectrum	· ]		Channe	I Low-1RE	3#	Aborted		14:09:57
Ref Level 30	.00 dBm Offse	et 11	2.00 dB • RBW :	300 kHz		3#	Abortea		▼
RefLevel 30 Att	.00 dBm Offse 20 dB SWT	et 11	2.00 dB ● RBW 3 21 ms) ● VBW	300 kHz		3#	Aborted		Count 100/100
Ref Level 30	.00 dBm Offse 20 dB SWT	et 11	2.00 dB ● RBW 3 21 ms) ● VBW	300 kHz		3#		M1[1]	Count 100/100 • 15a Avg -43.94 dts
Ref Level 30 Att I Frequency S	.00 dBm Offse 20 dB SWT	et 11	2.00 dB ● RBW 3 21 ms) ● VBW	300 kHz		3#			Count 100/100
RefLevel 30 Att	.00 dBm Offse 20 dB SWT	et 11	2.00 dB • RBW 3 21 ms) • VBW	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30 Att I Frequency S	.00 dBm Offse 20 dB SWT	et 11	2.00 dB • RBW 3 21 ms) • VBW	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30 Att I Frequency S	.00 dBm Offse 20 dB SWT	et 11	2.00 dB • RBW 3 21 ms) • VBW	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30 Att 1 Frequency S 20 dBm	.00 dBm Offse 20 dB SWT	et 11	2.00 dB • RBW 3 21 ms) • VBW	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30 Att 1 Frequency S 20 dBm	.00 dBm Offse 20 dB SWT	et 11	2.00 dB • RBW 3 21 ms) • VBW	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30 Att I Frequency S 20 dBm 10 dBm	.00 dBm Offse 20 dB SWT	et 11	2.00 dB • RBW 21 ms) • VBW	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30 Att I Frequency S 20 dBm 10 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW 3 21 ms) • VBW	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm	.00 dBm Offse 20 dB SWT	et 11	2.00 dB • RBW 3 21 ms) • VBW	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW 3 21 ms) • VBW	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW 3	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW 3 21 ms) • VBW	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW 3	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW 3	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW 3	300 kHz		3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW 3	300 kHz	Auto FFT	3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW 3	300 kHz	Auto FFT	3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW 3	300 kHz	Auto FFT	3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW : 21 ms) • VBW	300 kHz	Auto FFT	3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW : 21 ms) • VBW	300 kHz	Auto FFT	3#			Count 100/100 • 15a Avg -43.94 dts
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm	.00 dBm Offse 20 dB SWT weep	et 11	221 ms) • VBW	300 kHz 1 MHz Mode	Auto FFT				Count 100/100 • 15a Avg -43.94 dBr 1.90999809 GH
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	.00 dBm Offse 20 dB SWT weep	et 11	2.00 dB • RBW 3	300 kHz 1 MHz Mode	Auto FFT	3#		M1[1]	Count 100/100 • 153 Avg -43.94 dB 1.90999809 GH
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm	.00 dBm Offse 20 dB SWT weep	et 11	221 ms) • VBW	300 kHz 1 MHz Mode	Auto FFT		Aborted		Count 100/100 • 15a Avg -43.94 dBr 1.90999809 GH

Mar. 140 C	C nc -t	1							
MultiView									
Att	0.00 dBm Offse 20 dB SWT		2.00 dB <b>= RBW</b> 3 21 ms) <b>= VBW</b>		Auto FFT				Count 100/100
1 Frequency S	Sweep							141511	●1Sa Avg
								M1[1]	-36.58 dB 1.85000000 GF
20 dBm									
10 dBm									
0 dBm									
-10 dBm								_	
	H1 -13.000 dBm-								
-20 dBm									
20 dbm									
-30 dBm	1						-	1	
					M1	+	+		
-40 dBm	T				-	+			
-50 dBm									
-60 dBm									
-bo abiii									
CF 1.85 GHz			1001 p	ots	2	00.0 kHz/			Span 2.0 MH
			(	Channel L	ow-Full RI	8#	Aborted		
	0.00 dBm Offse	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		14:09:3
RefLevel 30 Att	0.00 dBm Offse 20 dB SWT	t 12		:00 kHz		3#	Aborted		14:09:3
Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted	M1[1]	Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		14:09:3
RefLevel 30 Att	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30 Att 1 Frequency \$ 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30 Att 1 Frequency \$ 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30 Att I Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           1 Frequency \$           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30 Att I Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           1 Frequency \$           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz		3# 	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           1 Frequency \$           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           I Frequency \$           20 dBm           0 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           1 Frequency \$           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           I Frequency \$           20 dBm           0 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           I Frequency \$           20 dBm           0 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz	Auto FFT	3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           I Frequency \$           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz	Auto FFT	3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           1 Frequency \$           20 dBm           10 dBm           -10 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz	Auto FFT	3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           I Frequency \$           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz	Auto FFT	3# 	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           I Frequency 5           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz	Auto FFT	3# 	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           1 Frequency \$           20 dBm           10 dBm           -10 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz	Auto FFT	3# 3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           I Frequency 5           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	:00 kHz	Auto FFT	3# 3#	Aborted		Count 100/100 • 153 Avg • 38.08 dB
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3 21 ms) • VBW	00 kHz 1 MHz Mode			Aborted		
Ref Level 30           Att           I Frequency 5           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	00 kHz 1 MHz Mode		3#	Aborted		

				Band 2-2					
MultiView	B Spectrum								
Ref Level 3 Att	0.00 dBm Offse 20 dB SWT	t 12.0 13.93 us (~2)	00 dB <b>= RBW</b> 30 1 ms) <b>= VBW</b>		ito FFT				Count 100/100
1 Frequency								M1[1]	●1Sa Avg -45.64 dBr
								MILI	1.85000000 GH
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
10 00.00	H1 -13.000 dBm								
-20 dBm							/	[	
-30 dBm									
-40 dBm				M	1	-			
					·				
-50 dBm									
-60 dBm									
CF 1.85 GHz			1001 pt	· · · · · · · · · · · · · · · · · · ·	2(	00.0 kHz/			Span 2.0 MHz
	T .		1001 00			551614127	Aborted	00000000	
MultiView	B Spectrum			Channel L	.ow-1RB#	E			▽
Ref Level 3 Att	30.00 dBm Offse 20 dB SWT	t 12.0	00 dB ● RBW 30 1 ms) ● VBW	10 kHz		<u>-</u>			▼ Count 100/100
Ref Level 3	30.00 dBm Offse 20 dB SWT	t 12.0	00 dB 🖷 RBW 30	10 kHz		<u>.</u>		M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3 Att 1 Frequency	30.00 dBm Offse 20 dB SWT	t 12.0	00 dB 🖷 RBW 30	10 kHz		5		M1[1]	▼ Count 100/100
Ref Level 3 Att	30.00 dBm Offse 20 dB SWT	t 12.0	00 dB 🖷 RBW 30	10 kHz		5		M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3 Att 1 Frequency 20 dBm-	30.00 dBm Offse 20 dB SWT	t 12.0	00 dB 🖷 RBW 30	10 kHz		<u> </u>		M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3 Att 1 Frequency	30.00 dBm Offse 20 dB SWT	t 12.0	00 dB 🖷 RBW 30	10 kHz				M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3 Att 1 Frequency 20 dBm-	30.00 dBm Offse 20 dB SWT	t 12.0	00 dB 🖷 RBW 30	10 kHz				M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm	30.00 dBm Offse 20 dB SWT	t 12.0	00 dB 🖷 RBW 30	10 kHz				M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB 🖷 RBW 30	10 kHz				M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm	30.00 dBm Offse 20 dB SWT	t 12.0	00 dB 🖷 RBW 30	10 kHz				M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB 🖷 RBW 30	10 kHz				M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB 🖷 RBW 30	10 kHz				M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB 🖷 RBW 30	10 kHz				M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB 🖷 RBW 30	10 kHz				M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB 🖷 RBW 30	10 kHz	ito FFT			M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB 🖷 RBW 30	0 kHz 1 MHz Mode A	ito FFT			M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB 🖷 RBW 30	0 kHz 1 MHz Mode A	ito FFT			M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB 🖷 RBW 30	0 kHz 1 MHz Mode A	ito FFT			M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB 🖷 RBW 30	0 kHz 1 MHz Mode A	ito FFT			M1[1]	Count 100/100 ● 1Sa Avg -45.51 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB 🖷 RBW 30	IO kHz 1 MHz Mode Au	ito FFT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			✓     Count 100/100     ● 153 Avg     -45.51 dBr 1.90999809 GH
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	00.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB • RBW 30 1 ms) • VBW	IO kHz 1 MHz Mode Au	ito FFT		Aborted	M1[1]	✓     Count 100/100     ● 153 Avg     -45.51 dBr 1.90999809 GH

MultiView	🖽 Spectrum							$\bigtriangledown$
Ref Level 30	0.00 dBm Offse	t 12	2.00 dB • RBW 3	300 kHz				
Att 1 Frequency 3	20 dB SWT	13.93 µs (~	21 ms) 💿 VBW	1 MHz Mode A	uto FFT			Count 100/100 1Sa Avg
I Frequency a	sweep						M1[1]	-38.08 dBr
								1.85000000 GH
20 dBm								
10.10								
10 dBm								
0 dBm								
-10 dBm								
	H1 -13.000 dBm-							
-20 dBm								,
-30 dBm								
				N	1			
-40 dBm		<u> </u>			· · · · · · · · · · · · · · · · · · ·			
-50 dBm				-				
-60 dBm								
CF 1.85 GHz			1001 p	ots	200.0 kH	lz/		Span 2.0 MH
			(	Channel Lo	w-Full RB#	Abo	rted <b>(1997)</b>	17.06.201 14:09:10
MultiView		L L			w-Full RB#	Abo	rted	▼ 14:09:10 ▼
Ref Level 30	0.00 dBm Offse	t 12	2.00 dB • RBW 3	300 kHz		Abo	rted	▽
	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3			Abo		Count 100/100 • 15a Avg
RefLevel 30 Att	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	300 kHz		Abo	M1[1]	⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	300 kHz		Abo		⊂ Count 100/100 • 1Sa Avg -39,00 dBr
RefLevel 30 Att	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	300 kHz		Abo		⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	300 kHz		Abo		⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	300 kHz		Abo		⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	300 kHz		Abo		⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30 Att I Frequency 9 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	300 kHz		Abo		⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	300 kHz		Abo		⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency 9           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	300 kHz		Abo		⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30 Att I Frequency 9 20 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz		Abo		⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency 9           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB • RBW 3	300 kHz		Abo		⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency 9           20 dBm           10 dBm           0 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz				Count 100/100 • 15a Avg
Ref Level 30           Att           1 Frequency 9           20 dBm           10 dBm           0 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz				⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz				⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency 9           20 dBm           10 dBm           0 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz				⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz	uto FFT			⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz 1 MHz Mode A	uto FFT			⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz 1 MHz Mode A	uto FFT			⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz 1 MHz Mode A	uto FFT			⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz 1 MHz Mode A	uto FFT			⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz 1 MHz Mode A	uto FFT			⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz 1 MHz Mode A	uto FFT			⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz 1 MHz Mode A	uto FFT			⊂ Count 100/100 • 1Sa Avg -39,00 dBr
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz 1 MHz Mode A	Jto FFT			▼           Count 100/100           ● 153 Aug           -39.00 dBr           1.90999809 GF
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3	300 kHz 1 MHz Mode A	uto FFT			Count 100/100 • 153 A00 - 39.00 dBr 1.90999809 GH

MultiView		L L									$\bigtriangledown$
RefLevel 30 Att	0.00 dBm Offs 20 dB SWT	et 1 140 µs (~	12.00 dB 🖷 RI 7.2 ms) 🖷 VI	BW 30 kHz BW 100 kHz	: Mode Au	ito FFT				Count 100/:	100
1 Frequency S	Sweep								M1[1]	●1Sa A -24.92	vg
										1.71000000	GHz
20 dBm											
10 dBm						[ [ [					
0 dBm											
-10 dBm							+				
	H1 -13.000 dBm-							$\langle$			
-20 dBm					ſ	1					
					6	1			$  \land  $		
-30 dBm		$\sim$									
-40 dBm	¥~	$\sim$	<u> </u>						$\downarrow \downarrow \downarrow$		
			$\mathbf{N}$						$  \sim  $		~
-50 dBm				~							
~~~											
-60 dBm											
CF 1.71 GHz			1	001 pts		20	00.0 kHz/			Span 2.0 M	AH ₂
MultiView	Spactrum			Cł	nannel I	Low-1RB#	<u>!</u>	Aborted		14:3	2017 7:09
MultiView Ref Level 30			.2.00 dB • RI			Low-1RB#	<u>-</u>	Aborted		14:3	2017
Ref Level 30	0.00 dBm Offs 20 dB SWI	et 1	.2.00 dB ● RI 7.2 ms) ● VI	BW 30 kHz	:		E	Aborted		14:3	2017 7:09 ▽
Ref Level 30	0.00 dBm Offs 20 dB SWI	et 1	.2.00 dB ● Ri 7.2 ms) ● Vi	BW 30 kHz	:		E	Aborted	M1[1]	Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30	0.00 dBm Offs 20 dB SWI	et 1	.2.00 dB ● R 7.2 ms) ● VI	BW 30 kHz	:		E	Aborted		14:3 Count 100/3	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency 9	0.00 dBm Offs 20 dB SWI	et 1	.2.00 dB ● R 7.2 ms) ● VI	BW 30 kHz	:			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency 9	0.00 dBm Offs 20 dB SWI	et 1	2.00 dB ● R 7.2 ms) ● VI	BW 30 kHz	:		E	Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att I Frequency 9 20 dBm	0.00 dBm Offs 20 dB SWI	et 1	12.00 dB • R 7.2 ms) • VI	BW 30 kHz	:			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency \$ 20 dBm-	0.00 dBm Offs 20 dB SWI	et 1	.2.00 dB ● R 7.2 ms) ● VI	BW 30 kHz	:			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWI	et 1	2.00 dB ● Ri 7.2 ms) ● Vi	BW 30 kHz	:			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att I Frequency 9 20 dBm	0.00 dBm Offs 20 dB SWI	et 1	2.00 dB • R 7.2 ms) • VI	BW 30 kHz	:			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 1	12.00 dB • R 7.2 ms) • VI	BW 30 kHz	Mode AL			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 1	.2.00 dB ● R 7.2 ms) ● VI	BW 30 kHz	Mode AL			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 1	.2.00 dB ● RI 7.2 ms) ● VI	BW 30 kHz	Mode AL			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ▽ ↓
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 1	2.00 dB • R 7.2 ms) • VI	BW 30 kHz	Mode AL			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 1	12.00 dB • R 7.2 ms) • VI	BW 30 kHz	Mode AL			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency 3 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm		et 1	12.00 dB • R 7.2 ms) • VI	BW 30 kHz	Mode AL			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency \$ 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm		et 1	.2.00 dB ● R 7.2 ms) ● VI	BW 30 kHz	Mode AL			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency 3 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm		et 1	22.00 dB • Ri 7.2 ms) • V	BW 30 kHz	Mode AL			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency 3 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm		et 1	12.00 dB • R 7.2 ms) • VI	BW 30 kHz	Mode AL			Aborted		Count 100/3 • 1\$3 4 -24,70	2017 7:09 ⊽ 1000
Ref Level 30 Att 1 Frequency 3 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm		et 1	7.2 ms) • VI	BW 30 kHz	Mode AL		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Aborted		Count 100/3 • 1\$3 4 -24,70	20177:09

					1.4MHz-QI				
MultiView	B Spectrum	ı)							
Ref Level 3 Att	0.00 dBm Offs 20 dB SWT	et 12.0	0 dB ● RBW 30 ms) ● VBW 100) kHz) kHz Mode Ai	uto FFT				Count 100/100
1 Frequency		110 00 ()12						M1[1]	 1Sa Avg -27.30 dBn
								MILI	1,71000000 GH
20 dBm									
10 dBm									
							$h \sim h$	\square	
0 dBm									
-10 dBm									
	-H1 -13.000 dBm-								
-20 dBm					├				
					M1				
-30 dBm			~						
-40 dBm		1						1	
-50 dBm									
-60 dBm									
CF 1.71 GHz			1001 pt	S	20	00.0 kHz/			Span 2.0 MHz
	Ĭ						Aborted	0000000000	17.06.2017 14:37:30
MultiView	😁 Spectrum	ו	C	Channel Lo	ow-Full RE	3#			
Ref Level 3 Att	0.00 dBm Offs 20 dB SWT	et 12.0	odB ⊜RBW 30) kHz		}#			⊽ Count 100/100
Ref Level 3	0.00 dBm Offs 20 dB SWT	et 12.0) kHz		3#			Count 100/100
Ref Level 3 Att	0.00 dBm Offs 20 dB SWT	et 12.0	odB ⊜RBW 30) kHz		3#		M1[1]	⊽ Count 100/100
Ref Level 3 Att	0.00 dBm Offs 20 dB SWT	et 12.0	odB ⊜RBW 30) kHz		\$#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offs 20 dB SWT	et 12.0	odB ⊜RBW 30) kHz		#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency	0.00 dBm Offs 20 dB SWT	et 12.0	odB ⊜RBW 30) kHz		#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att I Frequency 20 dBm- 10 dBm-	0.00 dBm Offs 20 dB SWT	et 12.0	odB ⊜RBW 30) kHz		\$# 		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offs 20 dB SWT	et 12.0	odB ⊜RBW 30) kHz		3#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att I Frequency 20 dBm- 10 dBm-	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	odB ⊜RBW 30) kHz		8#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT	et 12.0	odB ⊜RBW 30) kHz		3#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	odB ⊜RBW 30) kHz		#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	odB ⊜RBW 30) kHz		3# 		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	odB ⊜RBW 30) kHz		3# 		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	odB ⊜RBW 30) kHz		3#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	odB ⊜RBW 30) kHz		3#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	odB ⊜RBW 30) kHz		3#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	odB ⊜RBW 30) kHz		3#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	odB ⊜RBW 30) kHz		3#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	odB ⊜RBW 30) kHz		3#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0.00 dBm Offs- 20 dB SWT Sweep	et 12.0	odB ⊜RBW 30) kHz kHz Mode A		3#		M1[1]	⊂ Count 100/100 ● 1Sa Avg -29,04 dBn

MultiView	B Spectrum								
	30.00 dBm Offse		0 dB • RBW 3	0 1/11-					
Att	20 dB SWT	140 µs (~7.2	ms) • VBW 10	0 kHz Mode Au	uto FFT				Count 100/100
1 Frequency	/ Sweep							M1[1]	1Sa Avg -25.63 dBm
									1.71000000 GHz
20 dBm									
10 dBm									
					Γ Γ				
0 dBm									
o ubin									
-10 dBm	H1 -13.000 dBm-								
-20 dBm		-							
					X				
-30 dBm				F				+	
		+		/			\		
-40 dBm		+		<u>├</u>				++	
1								$ \vee $	· · · ·
-50 dBm		ļ`	\sim	1				<u>ا</u>	\sim
\sim									
-60 dBm									
CF 1.71 GHz	2		1001 p	ts	20	0.0 kHz/			Span 2.0 MHz 17.06.2017
				Channel	Low-1RB#				
MultiView	Spectrum	ī		Channel	Low-1RB#	<u>.</u>			▽
Ref Level	30.00 dBm Offse	et 12.0	0 dB • RBW 3	0 kHz					
	30.00 dBm Offse 20 dB SWT	et 12.0	0 dB ● RBW 3 ms) ● VBW 10			<u>.</u>			Count 100/100 ●1Sa Avg
Ref Level	30.00 dBm Offse 20 dB SWT	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency	30.00 dBm Offso 20 dB SWT	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz		•		M1[1]	Count 100/100 • 1Sa Avg
Ref Level	30.00 dBm Offso 20 dB SWT	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att Frequency 20 dBm-	30.00 dBm Offso 20 dB SWT	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency	30.00 dBm Offso 20 dB SWT	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att Frequency 20 dBm-	30.00 dBm Offso 20 dB SWT	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att Frequency 20 dBm-	30.00 dBm Offso 20 dB SWT	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency 20 dBm 10 dBm	30.00 dBm Offso 20 dB SWT	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency 20 dBm 10 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att I Frequency 20 dBm 10 dBm 0 dBm	30.00 dBm Offso 20 dB SWT	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att I Frequency 20 dBm 10 dBm 0 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att I Frequency 20 dBm 10 dBm 0 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz 0 kHz Mode A				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att I Frequency 20 dBm 10 dBm 0 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB • RBW 3 ms) • VBW 10	0 kHz 0 kHz Mode A				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB • RBW 3 ms) • VBW 10	0 kHz 0 kHz Mode A				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB • RBW 3 ms) • VBW 10	0 kHz 0 kHz Mode A				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB • RBW 3 ms) • VBW 10	0 kHz 0 kHz Mode A				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB • RBW 3 ms) • VBW 10	0 kHz 0 kHz Mode A				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB • RBW 3 ms) • VBW 10	0 kHz 0 kHz Mode A				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB • RBW 3 ms) • VBW 10	0 kHz 0 kHz Mode A				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB • RBW 3 ms) • VBW 10	0 kHz 0 kHz Mode A				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	30.00 dBm Offse 20 dB SWT / Sweep	et 12.0	0 dB • RBW 3 ms) • VBW 10	0 kHz 0 kHz Mode A				M1[1]	Count 100/100 1Sa Avg -26.98 dBm
Ref Level Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	30.00 dBm Offse 20 dB SWT Sweep H1 -13.000 dBm	et 12.0	ms) • VBW 10	0 kHz 0 kHz Mode Au				M1[1]	Count 100/100 • 15a Avg -26.98 dBm 1.75500000 GH2
Ref Level Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	30.00 dBm Offse 20 dB SWT Sweep H1 -13.000 dBm	et 12.0	0 dB ● RBW 3 ms) ● VBW 10	0 kHz 0 kHz Mode Au		D0.0 kHz/	Aborted	M1[1]	Count 100/100 • 15a Avg -26.98 dBm 1.75500000 GH2

MultiView									
Att	0.00 dBm Offse 20 dB SWT		0 dB = RBW 30 ms) = VBW 100	⊧kHz ⊧kHz Mode Au	ito FFT				Count 100/100
1 Frequency S	Sweep							146543	⊙1Sa Avg
								M1[1]	-29.23 dBi 1.71000000 G⊦
20 dBm									
Eo abiii									
10 dBm									
0 dBm								\longrightarrow	
-10 dBm					<u>├</u>				
	H1 -13.000 dBm								
-20 dBm									
				r	1				
-30 dBm				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
			$p \sim p$						
-40 dBm							1		_
-50 dBm	1								
-60 dBm									
CF 1.71 GHz	N		1001 pt	s	20	00.0 kHz/			Span 2.0 MH 17.06.201
			C	hannel Lo	ow-Full RB	3#	Aborted		14.37.5
MultiView					ow-Full RB	3#			14:37:5
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.0 140 µs (~7.2	0 dB ● RBW 30 ms) ● VBW 100	kHz		3#			14.37.5
Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#		M1[1]	[4.37.3 ▼ Count 100/100
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att I Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att I Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att I Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	0.00 dBm Offse 20 dB SWT	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		3#			Count 100/100 • 1% Avg -31.13 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	0.00 dBm Offse 20 dB SWT Sweep H1 -13.000 dBm	t 12.0 140 µs (~7.2	0 dB • RBW 30 ms) • VBW 100	kHz Mode Au					Count 100/100 1S3 Avg -31,13 dBi 1.75500000 GF
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0.00 dBm Offse 20 dB SWT Sweep H1 -13.000 dBm	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz Mode Au		3#		M1[1]	Count 100/100 153 Avg -31.13 dBi 1.75500000 GF
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	0.00 dBm Offse 20 dB SWT Sweep H1 -13.000 dBm	t 12.0 140 µs (~7.2	0 dB • RBW 30 ms) • VBW 100	kHz Mode Au			Aborted		Count 100/100 13a Avg -31.13 dBi 1.75500000 GH

Issued: 2017-07-04

Marcherter									
MultiView									
Att)dB = RBW 3 ms) = VBW 10	UKHZ OKHZ Mode Au	to FFT				Count 100/100
1 Frequency	Sweep							M1[1]	1Sa Avg -23.33 dBr
									1.71000000 GH
20 dBm									
10 dBm					-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
0 dBm									
-10 dBm	H1 -13.000 dBm								
	H1 -13,000 dbiii								
-20 dBm				N	1				
					ſ				
-30 dBm									
							\		
-40 dBm			1					\land	
								~~~	
-50 dBm		~~~~							
-60 dBm									
CF 1.71 GHz			1001 p	ts	20	0.0 kHz/		1	Span 2.0 MH
MultiView	Spectrum			Channel I	_ow-1RB#		Aborted		14:54:17
	0.00 dBm Offset	t 12.00	) dB ● RBW 3	0 kHz			Aborted		[4, ]4, ]7
	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2	)dB ● RBW 3 ms) ● VBW 10						14:54:17 ▼ Count 100/100 ● 1Sa Avg
Ref Level 30 Att	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2	0 dB ● RBW 3 ms) ● VBW 10	0 kHz			Aborea	M1[1]	■ 14:54:17 Count 100/100 ● 1Sa Avg -25.07 dBr
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2	0 dB ● RBW 3 ms) ● VBW 10	0 kHz			Aborcea	M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30 Att	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2	)dB ● RBW 3 ms) ● VBW 10	0 kHz			Aborea	M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2	) dB ● RBW 3 ms) ● VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30 Att I Frequency 9 20 dBm	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30 Att I Frequency 9 20 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30           Att           I Frequency 8           20 dBm           10 dBm           0 dBm	0.00 dBm Offset 20 dB SWT	t 12.00 140 μs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 1Sa Avg -25.07 dBr
Ref Level 30           Att           I Frequency 8           20 dBm           10 dBm           0 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level         30           Att         31           1 Frequency         32           20 dBm         33           10 dBm         33           -10 dBm         33	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 1Sa Avg -25.07 dBr
Ref Level         30           Att         31           1 Frequency         32           20 dBm         33           10 dBm         33           -10 dBm         33	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 1Sa Avg -25.07 dBr
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30           Att           1 Frequency 4           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30           Att           1 Frequency 4           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 1Sa Avg -25.07 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 15a Avg -25.07 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -40 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz				M1[1]	■ 14:54:17 Count 100/100 ● 1Sa Avg -25.07 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -40 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	0 dB • RBW 3 ms) • VBW 10	0 kHz 0 kHz Mode Au	to FFT	D0.0 kHz/		M1[1]	14:54:17
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2	ms) • VBW 10	0 kHz 0 kHz Mode Au	to FFT		Aborted	M1[1]	14:54:17

Issued: 2017-07-04

NA 160 C	C C D C								
MultiView				L11-					
🕨 Att		140 µs (~7.2 i	)dB <b>= RBW</b> 30 ms) <b>= VBW</b> 100	kHz <b>Mode</b> A∟	to FFT				Count 100/10
1 Frequency 8	Sweep							M1[1]	• 1Sa Avg
								M1[1]	-31.04 dB 1.71000000 G
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
	H1 -13.000 dBm								
-20 dBm									
-30 dBm				1	1				
					ſ –				
40.40	h		<u> </u>						
-40 dBm									
-50 dBm									
-60 dBm									
05 1 31 011						0.0 kHz/			Span 2.0 MH
CE L / LGHZ			1001 nts						
CF 1.71 GHz MultiView	B) Spectrum		1001 pts		ow-Full RB		Aborted		
MultiView Ref Level 30	0.00 dBm Offset	t 12.00	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		17.06.201 14:51:4
MultiView	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2 )	C	hannel Lo	ow-Full RB		Aborted		Count 100/10
MultiView Ref Level 30 Att	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2 I	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted	M1[1]	
MultiView Ref Level 30 Att I Frequency S	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2 l	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		Count 100/10
MultiView Ref Level 30 Att	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2 l	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att I Frequency S	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2 )	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	0.00 dBm Offset 20 dB SWT	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm -10 dBm -10 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm -10 dBm -10 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att I Frequency S 20 dBm 0 dBm -10 dBm -20 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView           Ref Level 3C           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView Ref Level 30 Att I Frequency S 20 dBm 0 dBm -10 dBm -20 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView           Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView           Ref Level 3C           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView           Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	.00 dBm Offsei 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo	ow-Full RB		Aborted		
MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	C	hannel Lo		#	Aborted		17.06.20 14:51:4      Count 100/10         • 153 Avg         -32.66 dB         1.75500000 Gi
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offset 20 dB SWT Sweep	t 12.00 140 µs (~7.2 1	С ) dв • RBW 30	hannel Lo			Aborted		Count 100/10 

MultiView		L L							
Att			0 dB ● RBW 30 ms) ● VBW 100	JKHZ JKHZ <b>Mode</b> Au	to FFT				Count 100/100
1 Frequency	Sweep							M1[1]	1Sa Avg -25.77 dBi
									1.71000000 GH
20 dBm									
10 dBm						h			
0 dBm									
-10 dBm									
	H1 -13.000 dBm-								
-20 dBm							$\overline{\mathbf{A}}$		
				N	11/				
-30 dBm									
				/					
-40 dBm				<u>├ / </u>			+	<u> </u>	
								man -	
-50 dBm									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	-								
-60 dBm									
CF 1.71 GHz			1001 p	l s	20	0.0 kHz/			Span 2.0 MH
MultiView	Spectrum			Channel I	_ow-1RB#	<u>-</u>	Aborted		14.34.4
	0.00 dBm Offse	et 12.0	D dB ● RBW 30	) kHz			Aborted		14:54:4
	0.00 dBm Offse 20 dB SWT	et 12.0	0 dB ● RBW 30 ms) ● VBW 100				Aborted		14:54:4 Count 100/100 • 1Sa Avg
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.0	0 dB ● RBW 30 ms) ● VBW 100	) kHz			Aborted	M1[1]	■ 14:54:4 [*] ▼       Count 100/100
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.0	0 dB ● RBW 30 ms) ● VBW 100	) kHz			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	et 12.0	0 dB ● RBW 30 ms) ● VBW 100	) kHz			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	et 12.0	D dB • RBW 30 ms) • VBW 100	) kHz			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12.0	D dB • RBW 30 ms) • VBW 100	) kHz			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12.0	D dB ● RBW 30 ms) ● VBW 100	) kHz			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30 Att 1 Frequency 4 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	0 dB ● RBW 3( ms) ● VBW 100	) kHz			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30 Att 1 Frequency 4 20 dBm	J.OO dBm Offse 20 dB SWT Sweep	et 12.0	0 dB ● RBW 30 ms) ● VBW 100	) kHz			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30           Att           I Frequency 9           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	et 12.0	0 dB • RBW 30 ms) • VBW 100	) kHz			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30           Att           I Frequency 9           20 dBm           10 dBm           0 dBm	J.OO dBm Offse 20 dB SWT Sweep	et 12.0	D dB • RBW 30 ms) • VBW 100	) kHz			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level         30           Att         31           1 Frequency         32           20 dBm         36           10 dBm         36           -10 dBm         36	J.OO dBm Offse 20 dB SWT Sweep	et 12.0	D dB • RBW 30 ms) • VBW 100	D kHz D kHz Mode Au			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level         30           Att         31           1 Frequency         32           20 dBm         36           10 dBm         36           -10 dBm         36	J.OO dBm Offse 20 dB SWT Sweep	et 12.0	D dB • RBW 30 ms) • VBW 100	D kHz D kHz Mode Au			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm	J.OO dBm Offse 20 dB SWT Sweep	et 12.0	D dB • RBW 30 ms) • VBW 100	D kHz D kHz Mode Au			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm	J.OO dBm Offse 20 dB SWT Sweep	et 12.0	0 dB • RBW 30 ms) • VBW 100	D kHz D kHz Mode Au			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30           Att           1 Frequency 4           20 dBm           10 dBm           -10 dBm           -20 dBm           -20 dBm	J.OO dBm Offse 20 dB SWT Sweep	et 12.0	0 dB • RBW 30 ms) • VBW 100	D kHz D kHz Mode Au			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30           Att           1 Frequency 4           20 dBm           10 dBm           -10 dBm           -20 dBm           -20 dBm	J.OO dBm Offse 20 dB SWT Sweep	et 12.0	0 dB • RBW 30 ms) • VBW 100	D kHz D kHz Mode Au			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30           Att           1 Frequency 30           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	J.OO dBm Offse 20 dB SWT Sweep	et 12.0	D dB • RBW 3( ms) • VBW 10(	D kHz D kHz Mode Au			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30           Att           1 Frequency 30           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	J.OO dBm Offse 20 dB SWT Sweep	et 12.0	D dB • RBW 3( ms) • VBW 10(	D kHz D kHz Mode Au			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	J.OO dBm Offse 20 dB SWT Sweep	et 12.0	D dB • RBW 3( ms) • VBW 10(	D kHz D kHz Mode Au			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 3(           Att           1 Frequency 5           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm		et 12.0		D kHz D kHz Mode Au			Aborted		Count 100/100 ● 1Sa Avg -26,68 dB
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm		et 12.0	D dB • RBW 30 ms) • VBW 100	D kHz D kHz Mode Au		D0.0 kHz/	Aborted		

MultiView	🗄 Spectrum	)							
	0.00 dBm Offse	t 12.0	0 dB = RBW 30	kHz					
Att 1 Frequency 3	20 dB SWT Sweep	140 µs (~7.2	ms) <b>- VBW</b> 100	kHz <b>Mode</b> Au	ito FFT				Count 100/100 • 1Sa Avg
								M1[1]	-32.35 dB
									1.71000000 GH
20 dBm									
10.10									
10 dBm									
0 dBm									
o ubili									
-10 dBm									
	H1 -13.000 dBm								
-20 dBm									
-30 dBm					1				
					<u>۲</u>				
-40 dBm		L		~~/					
~									
-50 dBm									
-60 dBm			+						
CF 1.71 GHz			1001 pts		20	0.0 kHz/			Span 2.0 MH
MultiView	) B) Spectrum		C	hannel Lo	ow-Full RB	3#	Aborted		17.06.201 14:52:2
	0.00 dBm Offse	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	3#	Aborted		14:52:2
	0.00 dBm Offse 20 dB SWT	t 12.0		kHz	ow-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg
Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	3#	Aborted	M1[1]	14:52:2           ∑         Count 100/100
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30 Att 1 Frequency 4 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	\$# 	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30 Att 1 Frequency 4 20 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30           Att           1 Frequency 9           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30           Att           I Frequency 8           20 dBm           10 dBm           0 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	3#     	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30           Att           1 Frequency 5           20 dBm           10 dBm           -10 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz	ow-Full RB	3#       	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30           Att           1 Frequency 5           20 dBm           10 dBm           -10 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz KHz Mode AL	ow-Full RB	3# 	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz KHz Mode AL	DW-Full RB	3# 	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz KHz Mode AL	DW-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30           Att           1 Frequency 4           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz KHz Mode AL	DW-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30           Att           1 Frequency 4           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz KHz Mode AL	DW-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz KHz Mode AL	DW-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz KHz Mode AL	DW-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz KHz Mode AL	DW-Full RB	3#	Aborted		Count 100/100 • 1Sa Avg -33.85 dB
Ref Level 3(           Att           1 Frequency 5           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB <b>= RBW</b> 30	kHz KHz Mode Au	bw-Full RB	3#	Aborted		Count 100/100 • 15a Arg 
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 30 ms) • VBW 100	kHz KHz Mode Au	bw-Full RB		Aborted		Count 100/100 • 153 Avg • -33.85 dB 1.75500000 GF

MultiView	B Spectrum		00 dB 🖷 RBW 1	00 kHz					▽
<ul> <li>Att</li> <li>1 Frequency :</li> </ul>	20 dB SWT	42.04 µs (~9.	1 ms) • VBW 3	00 kHz Mode	Auto FFT				Count 100/100 ISa Avg
Tricquency	энсер							M1[1]	-28.43 dBr 1.71000000 GH
20 dBm									1.71000000 GH
20 abm									
10 dBm									
0 dBm					/		$ \rightarrow $		
-10 dBm					<u> </u>		+		
	H1 -13.000 dBm								
-20 dBm									
				1	1				
-30 dBm				1	1				
-40 dBm			_						1
-50 dBm	$\downarrow$	<u> </u>							
-60 dBm									
			1001 pt	te te	20	0.0 kHz/			Span 2.0 MH:
CE 1.71 GHz									
CF 1.71 GHz MultiView	B Spectrum				Low-1RB#		Aborted		17.06.201 14:56:30
MultiView Ref Level 30	0.00 dBm Offse	et 12.	00 dB ● RBW 1		Low-1RB#	<u>.</u>	Aborted		14:56:3
MultiView	0.00 dBm Offse 20 dB SWT		00 dB ● RBW 1		Low-1RB#	:	Aborted		14:56:34
MultiView Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted	M1[1]	14:56:34
MultiView Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		■ 14:56:34           ▼           Count 100/1000           ● 15a Avg           −28.29 dBr
MultiView Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		■ 14:56:34           ▼           Count 100/1000           ● 15a Avg           −28.29 dBr
MultiView Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		■ 14:56:34           ▼           Count 100/1000           ● 15a Avg           −28.29 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm-	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		■ 14:56:34           ▼           Count 100/1000           ● 15a Avg           −28.29 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm—	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		Count 100/100 ● 153 Avg -28.29 dB
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		■ 14:56:34           ▼           Count 100/1000           ● 15a Avg           −28.29 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		■ 14:56:34           ▼           Count 100/1000           ● 15a Avg           −28.29 dBr
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		■ 14:56:34           ▼           Count 100/1000           ● 15a Avg           −28.29 dB
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		■ 14:56:34           ▼           Count 100/1000           ● 15a Avg           −28.29 dB
MultiView Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		■ 14:56:34           ▼           Count 100/1000           ● 15a Avg           −28.29 dB
MultiView           Ref Level 30           Att           1 Frequency           20 dBm-           10 dBm-           0 dBm-           -10 dBm-           -20 dBm-	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		■ 14:56:34           ▼           Count 100/1000           ● 15a Avg           −28.29 dB
MultiView           Ref Level 30           Att           1 Frequency           20 dBm-           10 dBm-           0 dBm-           -10 dBm-           -20 dBm-	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		■ 14:56:34           ▼           Count 100/1000           ● 15a Avg           −28.29 dB
MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		Count 100/100 ● 153 Avg -28.29 dB
MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		Count 100/100 ● 153 Avg -28.29 dB
MultiView           Ref Level 3i           Att           1 Frequency:           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		Count 100/100 ● 153 Avg -28.29 dB
MultiView           Ref Level 3( Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1		Low-1RB#		Aborted		Count 100/100 ● 153 Avg -28.29 dB
MultiView           Ref Level 31           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	D0 dB • RBW 1 1 ms) • VBW 3	Channel	Low-1RB#		Aborted		
MultiView           Ref Level 3i           Att           1 Frequency:           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 1	Channel	Auto FFT	20.0 kHz/	Aborted		

MultiView	🗄 Spectrum								
	30.00 dBm Offse		.00 dB • RBW 1	00 kHz					
Att	20 dB SWT	42.04 µs (~9	.1 ms) • VBW 3	00 kHz Mod	e Auto FFT				Count 100/100
1 Frequency	Sweep							M1[1]	●1Sa Avg -30.80 dBr
									1.71000000 GH
20 dBm									
10 dBm									
0 dBm						-			
-10 dBm	H1 -13.000 dBm-								
-20 dBm									
-30 dBm									
			+						
-40 dBm									
-50 dBm									
-60 dBm									
CF 1.71 GHz			1001 p	ts	2	00.0 kHz/			Span 2.0 MH:
·									
MultiView	B Spectrum		(	Channel	Low-Full RE	3#	Aborted		14:57:5
	30.00 dBm Offse	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		▼ 14:57:5:
Ref Level 3 Att	30.00 dBm Offse 20 dB SWT	t 12		00 kHz		3#	Aborted		← 14:57:5: Count 100/100
Ref Level 3	30.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted	M1[1]	■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3 Att 1 Frequency	30.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3 Att	30.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3 Att 1 Frequency 20 dBm	30.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3 Att 1 Frequency	30.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3 Att 1 Frequency 20 dBm	30.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3 Att 1 Frequency 20 dBm	30.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm	30.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 1	00 kHz		8#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3 Att 1 Frequency 20 dBm	30.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 1	00 kHz		8#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz		8#	Aborted		Count 100/100 • 1\$a Avg
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -0 dBm           -20 dBm           -30 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -0 dBm           -20 dBm           -30 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -0 dBm           -20 dBm           -30 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5          ▼         Count 100/100         ● 1Sa Avg         -32.59 dB
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -0.dBm           -20 dBm           -30 dBm           -40 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5          ▼         Count 100/100         ● 1Sa Avg         -32.59 dB
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -0.dBm           -20 dBm           -30 dBm           -40 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5:           ▼           Count 100/100           ● 1Sa Avg           -32.59 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -0 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz		3#	Aborted		■ 14:57:5          ▼         Count 100/100         ● 1Sa Avg         -32.59 dB
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB = RBW 1 .1 ms) = VBW 3	00 kHz 00 kHz Mod	e Auto FFT		Aborted		
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -0 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	30.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 1	00 kHz 00 kHz Mod	e Auto FFT	3#	Aborted	M1[1]	

MultiView	😁 Spectrum								
Ref Level 30 Att	0.00 dBm Offse	et 12	.00 dB • RBW 10 .1 ms) • VBW 30	00 kHz 00 kHz Modo	Nuto EET				Count 100/100
1 Frequency \$		- +2.0+ μ3 (+ ).	1 may • • • • • • • •					M41[4]	●1Sa Avg
								M1[1]	-31.36 dBr 1.71000000 GH
20 dBm									
10 dBm							$\uparrow$		
						/			
0 dBm									
-10 dBm									
	H1 -13.000 dBm								
-20 dBm							+		
								$\mathbf{k}$	
-30 dBm					1				
10 40				/					
-40 dBm									
-50.dBm									
-60 dBm									
CF 1.71 GHz			1001 pt	s	20	0.0 kHz/			Span 2.0 MH:
	Spectrum			Channel I	_ow-1RB#		Aborted		17.06.201 14:57:02
MultiView Ref Level 30	0.00 dBm Offse	et 12	.00 dB • RBW 10	00 kHz			Aborted		14:57:02
MultiView	0.00 dBm Offse 20 dB SWT	et 12		00 kHz			Aborted		14:57:02 Count 100/100 1Sa Avg
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted	M1[1]	14:57:02 Count 100/100
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		<ul> <li>▼ 14:57:02</li> <li>▼</li> <li>Count 100/100</li> <li>● 153 Avg</li> <li>-29.21 dBr</li> </ul>
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		<ul> <li>▼ 14:57:02</li> <li>▼</li> <li>Count 100/100</li> <li>● 153 Avg</li> <li>-29.21 dBr</li> </ul>
MultiView Ref Level 30 Att I Frequency S	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		<ul> <li>▼ 14:57:02</li> <li>▼</li> <li>Count 100/100</li> <li>● 153 Avg</li> <li>-29.21 dBr</li> </ul>
MultiView Ref Level 30 Att 1 Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		<ul> <li>▼ 14:57:02</li> <li>▼</li> <li>Count 100/100</li> <li>● 153 Avg</li> <li>-29.21 dBr</li> </ul>
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		<ul> <li>▼ 14:57:02</li> <li>▼</li> <li>Count 100/100</li> <li>● 153 Avg</li> <li>-29.21 dBr</li> </ul>
MultiView Ref Level 30 Att 1 Frequency \$ 20 dBm	Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 153 Avg -29.21 dBr
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 153 Avg -29.21 dBr
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 153 Avg -29.21 dBr
MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm	Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 153 Avg -29.21 dBr
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 153 Avg -29.21 dBr
MultiView           Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm	Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 153 Avg -29.21 dBr
MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm	Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 153 Avg -29.21 dBr
MultiView           Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm	Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 153 Avg -29.21 dBr
MultiView           Ref Level 30           Att           1 Frequency 5           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 153 Avg -29.21 dBr
MultiView           Ref Level 30           Att           1 Frequency 5           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 153 Avg -29.21 dBr
MultiView           Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	Sweep	et 12	.00 dB • RBW 10	00 kHz			Aborted		Count 100/100 ● 153 Avg -29.21 dBr
MultiView           Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm		et 12	.00 dB • RBW 10	00 kHz 00 kHz Mode	Auto FFT	0.0 kHz/	Aborted		14:57:02

MultiView									
Att		t 12 42.04 µs (~9	.00 dB • RBW 10 .1 ms) • VBW 30	00 kHz 00 kHz <b>Mode</b>	Auto FFT				Count 100/100
1 Frequency S	Sweep							M1[1]	1Sa Avg -33.76 dBr
								mili	1,71000000 GF
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
10 00.00	H1 -13.000 dBm-				/	1			
00.40-									
-20 dBm									
-30 dBm				I	1				
-40 dBm			-					1	
-50 dBm									
-60 dBm									
			1001 pts		20	) 0.0 kHz/			Span 2.0 MH
					ow-Full RB		Aborted		14:57:2
	0.00 dBm Offse	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		▼ 14:57:23
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12	C	hannel Lo	ow-Full RB		Aborted		Tu:57:23 ▼ Count 100/100
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted	M1[1]	■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		14:57:2:
MultiView Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 30 Att Frequency \$ 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 30 Att Frequency \$ 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 3C Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm- 10 dBm- -10 dBm-	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm- 10 dBm- -10 dBm-	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	Auto FFT		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	ow-Full RB		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm- 10 dBm- -10 dBm- -20 dBm-	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	Auto FFT		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	Auto FFT		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	Auto FFT		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	Auto FFT		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	Auto FFT		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW 10	hannel Lo	Auto FFT		Aborted		■ 14:57:2:           ▼           Count 100/100           ● 1Sa Avg           -35,43 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	C	hannel Lo	Auto FFT	#	Aborted		
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW 10	hannel Lo	Auto FFT		Aborted		

MultiView	B Spectrum								
	0.00 dBm Offse		2.00 dB • RBW 1	00 kHz					
Att 1 Frequency	20 dB SWT	42.04 µs (~9	9.1 ms) 🖷 VBW 3	00 kHz Mod	e Auto FFT				Count 100/100 1Sa Avg
Thequency								M1[1]	-45.86 dBr
									1.71000000 GH
20 dBm									
								$\frown$	
10 dBm									
0 dBm							1/		
							¥		$\lambda$
-10 dBm	H1 -13.000 dBm-						/		
-20 dBm									
-30 dBm									
40 dam						1			
-40 dBm					MI				
-50.d8m					-				
-50.0800-									
-60 dBm									
50 abm									
CF 1.71 GHz			1001 pt	ts	20	00.0 kHz/			Span 2.0 MH
MultiView	Spectrum			Channe	Low-1RB#	<u>!</u>	Aborted		13.00.14
MultiView Ref Level 3	0.00 dBm Offse	st 12	2.00 dB <b>● RBW</b> 1	00 kHz		<u>!</u>	Aborted		
Ref Level 3	0.00 dBm Offse 20 dB SWT	st 12	2.00 dB ● RBW 1 9.1 ms) ● VBW 3	00 kHz		<u>-</u>	Aborted		▼ Count 100/100
Ref Level 3	0.00 dBm Offse 20 dB SWT	st 12	2.00 dB ● RBW 1 9.1 ms) ● VBW 3	00 kHz		E	Aborted	M1[1]	Count 100/100 • 15a Avg -43.20 dBr
Ref Level 3 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	st 12	2.00 dB ● RBW 1 .1 ms) ● VBW 3	00 kHz		E	Aborted		Count 100/100
Ref Level 3	0.00 dBm Offse 20 dB SWT	st 12	2.00 dB ● RBW 1 9.1 ms) ● VBW 3	00 kHz		<u>-</u>	Aborted		Count 100/100 • 15a Avg -43.20 dBr
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offse 20 dB SWT	st 12	2.00 dB ● RBW 1 9.1 ms) ● VBW 3	00 kHz		3	Aborted		Count 100/100 • 1Sa Avg -43.20 dBr
Ref Level 3 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	st 12	2.00 dB ● RBW 1 9.1 ms) ● VBW 3	00 kHz		<u>-</u>	Aborted		Count 100/100 • 1Sa Avg -43.20 dBr
Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	st 12	2.00 dB ● RBW 1 .1 ms) ● VBW 3	00 kHz			Aborted		Count 100/100 • 1Sa Avg -43.20 dBr
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offse 20 dB SWT	st 12	2.00 dB • RBW 1 .1 ms) • VBW 3	00 kHz			Aborted		Count 100/100 • 1Sa Avg -43.20 dBr
Ref Level 30 Att 1 Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	st 12	2.00 dB ● RBW 1 .1 ms) ● VBW 3	00 kHz			Aborted		Count 100/100 • 15a Avg -43.20 dBr
Ref Level 31           Att           1 Frequency           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	st 12	2.00 dB ● RBW 1 .1 ms) ● VBW 3	00 kHz			Aborted		Count 100/100 • 15a Avg -43.20 dBr
Ref Level 31           Att           1 Frequency           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	2.00 dB = RBW 1 .1 ms) = VBW 3	00 kHz					Count 100/100 • 15a Avg -43.20 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	2.00 dB • RBW 1 .1 ms) • VBW 3	00 kHz					Count 100/100 • 15a Avg -43.20 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	2.00 dB • RBW 1 9.1 ms) • VBW 3	00 kHz					Count 100/100 • 15a Avg -43.20 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	2.00 dB • RBW 1 9.1 ms) • VBW 3	00 kHz					Count 100/100 • 15a Avg -43.20 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	2.00 dB • RBW 1 .1 ms) • VBW 3	00 kHz					Count 100/100 • 1Sa Avg -43.20 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	2.00 dB • RBW 1 .1 ms) • VBW 3	00 kHz					Count 100/100 • 1Sa Avg -43.20 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	2.00 dB • RBW 1 .1 ms) • VBW 3	00 kHz					Count 100/100 • 15a Avg -43.20 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	2.00 dB • RBW 1 .1 ms) • VBW 3	00 kHz					Count 100/100 • 1Sa Avg -43.20 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	2.00 dB • RBW 1 .1 ms) • VBW 3	00 kHz					Count 100/100 • 1Sa Avg -43.20 dBr
Ref Level 3'           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	2.00 dB • RBW 1 .1 ms) • VBW 3	00 kHz					Count 100/100 • 1Sa Avg -43.20 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	9.1 ms) • VBW 3	00 kHz 00 kHz Mod	e Auto FFT				
Ref Level 3'           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	st 12	2.00 dB = RBW 1 1 ms) = VBW 3	00 kHz 00 kHz Mod	e Auto FFT	5 	Aborted		Count 100/100 • 13a Avg -43.20 dBr 1.75500000 GH

						PSK			
MultiView	😁 Spectrum								
Ref Level 3 Att	0.00 dBm Offse	t 12. 42.04 us (~9.	00 dB <b>= RBW</b> 1 1 ms) <b>= VBW</b> 3	LOO kHz 300 kHz Mod	e Auto FET				Count 100/100
1 Frequency		12:01 00 01	1 (11) <b>- 10</b> (10)					111513	●1Sa Avg
								M1[1]	-36.46 dBr 1.71000000 GH
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
	H1 -13.000 dBm								
-20 dBm							/		
						1			
-30 dBm									
					M1				
-40 dBm									
-50 dBm									
-60 dBm									
CF 1.71 GHz			1001 p	ts		200.0 kHz/			Span 2.0 MH: 17.06.2017
			(	Channel I	_ow-Full R	B#	Aborted		15:05:54
MultiView					_ow-Full R	B#			▼ 15:05:54
Ref Level 3	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 1 1 ms) • VBW 3	100 kHz		B#			Count 100/100
Ref Level 3	0.00 dBm Offse 20 dB SWT	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 • 1Sa Avg
Ref Level 3	0.00 dBm Offse 20 dB SWT	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 30 Att I Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 30 Att I Frequency 20 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 31           Att           1 Frequency           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 31           Att           1 Frequency           20 dBm           10 dBm           0 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           0 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           0 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.	00 dB 🖷 RBW 1	100 kHz		B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.	00 dB 🖷 RBW 1	100 kHz	e Auto FFT	B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.	00 dB 🖷 RBW 1	100 kHz	e Auto FFT	B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.	00 dB 🖷 RBW 1	100 kHz	e Auto FFT	B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.	00 dB 🖷 RBW 1	100 kHz	e Auto FFT	B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3/           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.	00 dB 🖷 RBW 1	100 kHz	e Auto FFT	B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	O.OO dBm Offse 20 dB SWT Sweep	t 12.	00 dB 🖷 RBW 1	100 kHz	e Auto FFT	B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr
Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep H1 -13.000 dBm	t 12.	00 dB 🖷 RBW 1	IOO kHz 300 kHz Mod	e Auto FFT	B#		M1[1]	Count 100/100 ● 1Sa Avg -38,06 dBr

MultiView									
Ref Level 30 Att	.00 dBm Offset 20 dB SWT	t 12.0 42.04 us (~9.	00 dB 🖷 RBW 1 1 ms) 🖷 VBW 3	.00 kHz 300 kHz Mode	Auto FFT			(	Count 100/100
1 Frequency S								M1[1]	<ul> <li>1Sa Avg</li> <li>-44.97 dBm</li> </ul>
								1	71000000 GHz
20 dBm									
10 dBm									
0 dBm							1		
-10 dBm									
10 0011	H1 -13.000 dBm								
-20 dBm						/			A
-30 dBm									
-40 dBm				1	11				
-50 dBm									
-60 dBm									
CF 1.71 GHz			1001 p	to		0.0 kHz/			Span 2.0 MHz
			1001 p	13	20	00.0 KHZ7			
MultiView	Spectrum	)		Channel	Low-1RB#		Aborted		17.06.2017 15:06:45
Ref Level 30	.00 dBm Offset	t 12.	00 dB ● RBW 1 1 ms) ● VBW 3	.00 kHz			Aborted		15:06:45
	.00 dBm Offset 20 dB SWT	t 12.	00 dB ● RB₩ 1 1 ms) ● VB₩ 3				Aborted		15:06:45 ▼ <u>Count 100/100</u> ●1Sa Avg
Ref Level 30 Att	.00 dBm Offset 20 dB SWT	t 12.	00 dB ● RBW 1 1 ms) ● VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30 Att	.00 dBm Offset 20 dB SWT	t 12.	00 dB ● RBW 1 1 ms) ● VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30 Att 1 Frequency S 20 dBm-	.00 dBm Offset 20 dB SWT	t 12.	00 dB ● RBW 1 1 ms) ● VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30 Att 1 Frequency S	.00 dBm Offset 20 dB SWT	t 12.	00 dB ● RBW 1 1 ms) ● VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30 Att I Frequency S 20 dBm	.00 dBm Offset 20 dB SWT	t 12.	00 dB ● RBW 1 1 ms) ● VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30 Att 1 Frequency S 20 dBm-	.00 dBm Offset 20 dB SWT	t 12.	00 dB ● RBW 1 1 ms) ● VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30 Att I Frequency S 20 dBm	.00 dBm Offset 20 dB SWT weep	t 12.	00 dB ● RBW 1 1 ms) ● VBW 3	.00 kHz			Aborted	M1[1]	15:06:45 ▼ Count 100/100
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	.00 dBm Offset 20 dB SWT	t 12.	00 dB ● RBW 1 1 ms) ● VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	.00 dBm Offset 20 dB SWT weep	t 12.	00 dB ● RBW 1 1 ms) ● VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	.00 dBm Offset 20 dB SWT weep	t 12.	00 dB • RBW 1 1 ms) • VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	.00 dBm Offset 20 dB SWT weep	t 12.		.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	.00 dBm Offset 20 dB SWT weep	t 12.		.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	.00 dBm Offset 20 dB SWT weep	t 12.	D0 dB • RBW 1 1 ms) • VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	.00 dBm Offset 20 dB SWT weep	t 12.	00 dB • RBW 1 1 ms) • VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	.00 dBm Offset 20 dB SWT weep	t 12.	D0 dB • RBW 1 1 ms) • VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	.00 dBm Offset 20 dB SWT weep	t 12.	00 dB • RBW 1 1 ms) • VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	.00 dBm Offset 20 dB SWT weep	t 12.	00 dB • RBW 1 1 ms) • VBW 3	.00 kHz			Aborted	M1[1]	15:06:45
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm	.00 dBm Offset 20 dB SWT weep	t 12.		00 kHz 00 kHz Mode	Auto FFT		Aborted	M1[1]	15:06:45     ▼ Count 100/100     ● 15a Avg     -43.28 dBn .75500000 GH:
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	.00 dBm Offset 20 dB SWT weep	t 12.	D0 dB • RBW 1 1 ms) • VBW 3	00 kHz 00 kHz Mode	Auto FFT	0.0 kHz/	Aborted	M1[1]	15:06:45

									(
MultiView									▽
Att	0.00 dBm Offse 20 dB SWT	t 12.0 42.04 µs (~9.1	0 dB <b>= RBW</b> 1 . ms) <b>= VBW</b> 3	00 kHz 00 kHz <b>Mode</b> A	Auto FFT				Count 100/100
1 Frequency	Sweep							M1[1]	1Sa Avg -40,44 dBr
									1.71000000 GH
20 dBm									
10 dBm									
0 dBm									
-10 dBm	H1 -13.000 dBm								
-20 dBm									
-30 dBm									
-40 dBm				N	1				
	$\vdash$		<u> </u>						
-50 dBm									
-60 dBm									
CF 1.71 GHz			1001 pt		20	0.0 kHz/			Span 2.0 MHz
			1001 pt	.3	20	5010 KH27	Aborted		
MultiView	B Spectrum	]	C	Channel Lo	w-Full RB	3#			□
	0.00 dBm Offse	t 12.0	0 dB • RBW 1	00 kHz		\$#			
	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB • RBW 1			3#			Count 100/100
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB • RBW 1	00 kHz		8#		M1[1]	▼ Count 100/100
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB • RBW 1	00 kHz		3#		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB • RBW 1	00 kHz		3#		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 30 Att 1 Frequency	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB • RBW 1	00 kHz		\$#		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 30 Att 1 Frequency 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB • RBW 1	00 kHz		\$#		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 30 Att 1 Frequency 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB • RBW 1	00 kHz		\$#		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 30 Att I Frequency 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB • RBW 1	00 kHz		\$# 		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 30 Att I Frequency 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 1	00 kHz		\$# 		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	t 12.0	0 dB • RBW 1	00 kHz		3#		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 1	00 kHz		\$# 		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 1	00 kHz		\$#		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 1	00 kHz		\$# 		MI[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 1	00 kHz		\$# 		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 1	00 kHz		\$# 		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 3/           Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 1	00 kHz		\$# 		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 1	00 kHz		\$# 		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 1	00 kHz		\$# 		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 30           Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 1	00 kHz		\$# 		M1[1]	Count 100/100 ● 1Sa Avg -41.34 dBr
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm	20.00 dBm Offse 20 dB SWT Sweep	t 12.0	00 dB • RBW 11 ms) • VBW 3	00 kHz 00 kHz Mode 4	Auto FFT			M1[1]	
Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	20.00 dBm Offse 20 dB SWT Sweep	t 12.0	0 dB • RBW 1	00 kHz 00 kHz Mode 4	Auto FFT	\$#	Aborted		Count 100/100

		$\overline{}$							
MultiView									
RefLevel 30 ■ Att	0.00 dBm Offse 20 dB SWT		00 dB = RBW 3 1 ms) = VBW	1 MHz Mode A	uto FFT				Count 100/100
1 Frequency									●1Sa Avg
								M1[1]	-43.61 dBr 1.71000000 GH
20 dBm									
20 0811									
10 dBm								1	
0 dBm									
-10 dBm							1		
	H1 -13.000 dBm								
-20 dBm									
20 0011									
-30 dBm									
-40 dBm	1		1	1	1	ł –		1	
		L	+	+					
-50 dBm	+		+						
-60 dBm	+								
CF 1.71 GHz	1		1001 p	ots	20	0.0 kHz/			Span 2.0 MH: 17.06.2013
							Aborted		15:09:52
MultiView	B Spectrum			Channel	_ow-1RB#	<u>.</u>			
MultiView Ref Level 30			00 dB ● <b>RBW</b> 3		_ow-1RB#				
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW			<u>-</u>			▼ Count 100/100
Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz		:		M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 30 Att 1 Frequency :	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 30 Att 1 Frequency :	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz				M1[1]	⊂ Count 100/100 ● 1\$a Avg -40.35 dBt
Ref Level 30 Att 1 Frequency 20	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz				M1[1]	⊂ Count 100/100 ● 1\$a Avg -40.35 dBt
Ref Level 30 Att 1 Frequency 20	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 30 Att I Frequency 20 dBm 10 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 30 Att I Frequency 20 dBm 10 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           0 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz				M1[1]	
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A				M1[1]	Count 100/100 • 1Sa Avg -40.35 dbr
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A				M1[1]	Count 100/100 ● 1Sa Avg -40.35 dB
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A		0.0 kHz/		M1[1]	Count 100/100 • 13a Avg -40.35 dBr 1.75500000 GH
Ref Level 3(           Att           1 Frequency 3(           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm	D.00 dBm Offse 20 dB SWT Sweep	t 12.	1 ms) • VBW	00 kHz 1 MHz Mode A			Aborted	M1[1]	Count 100/100

MultiView	🗄 Spectrum	)							
	0.00 dBm Offse		.00 dB = RBW :	300 kHz					
Att	20 dB SWT		21 ms) 💿 VBW		e Auto FFT				Count 100/100
1 Frequency S	weep							M1[1]	1Sa Avg -33.79 dBr
									1.71000000 GH
20 dBm								_	
10 dBm									
10 0011									
0 dBm									
-10 dBm	H1 -13.000 dBm-								
	111 -13,000 000								
-20 dBm									
-30 dBm					N#1				
						+			
-40 dBm									
50. da									
-50 dBm									
-60 dBm			-						
CF 1.71 GHz			1001	nte		200.0 kHz/			Span 2.0 MH
	Y		1001				Aborted	00000000	17.06.201
MultiView	B Spectrum			Channel I	₋ow-Full R	B#			15:08:44
Ref Level 30	0.00 dBm Offse	t 12	.00 dB • RBW :	300 kHz		B#			
	0.00 dBm Offse 20 dB SWT	t 12		300 kHz		B#			Count 100/100
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C Att 1 Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0-dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0-dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -0 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C           Att           1 Frequency S           20 dBm           0 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz	Auto FFT	B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -0 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz		B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz	Auto FFT	B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C           Att           1 Frequency S           20 dBm           0 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz	Auto FFT	B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz	Auto FFT	B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz	Auto FFT	B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz	Auto FFT	B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz	Auto FFT	B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT	t 12	.00 dB • RBW :	300 kHz	Auto FFT	B#		M1[1]	Count 100/100 ●1Sa Avg -34,92 dB
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW : 21 ms) • VBW	300 kHz 1 MHz Mode	Auto FFT			M1[1]	
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	.00 dB • RBW :	300 kHz 1 MHz Mode	Auto FFT	B#	Aborted		Count 100/100 • 13a Arg -34.92 dBr 1.75500000 GF 

MultiView	🗄 Spectrum	]							$\nabla$
	0.00 dBm Offse	L L	00 dB 🖷 RBW 3	i00 kHz					
Att 1 Frequency \$	20 dB SWT	13.93 µs (~2	1 ms) 🗢 VBW	1 MHz Mode A	uto FFT				Count 100/100 1Sa Avg
1 Hequency (	Sweep							M1[1]	-44.70 dBi
									1.71000000 GH
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
	H1 -13.000 dBm					/			
-20 dBm									
-20 0011									
-30 dBm									
-30 aBm									
-40 dBm				N	1				
-50 dBm									
-60 dBm									
CF 1.71 GHz			1001 p	to	20	0.0 kHz/			Span 2.0 MH
6 17 1 6 12	) (		1001 p		20	010 KH27	Aborted		
MultiView	B Spectrum			Channel L	.ow-1RB#		Aboreu		15:09:3
Ref Level 30	0.00 dBm Offse	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Abureu		▽
	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW				Aburteu		Count 100/100 • 1Sa Avg
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Abbreu	M1[1]	Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Abbreu		Count 100/100 • 1Sa Avg
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30 Att 1 Frequency 3	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           I Frequency 9           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           I Frequency 9           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           I Frequency 9           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           1 Frequency 5           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           1 Frequency 5           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           1 Frequency 4           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           1 Frequency 4           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           1 Frequency 30           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           1 Frequency 30           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz					Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           1 Frequency 5           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.		00 kHz 1 MHz Mode A	uto FFT				Count 100/100 ● 1Sa Avg -42,22 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A	uto FFT	0.0 kHz/		M1[1]	Count 100/100 • 153 Avg -42.22 dB 1.75500000 GH
Ref Level 30           Att           1 Frequency 5           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.		00 kHz 1 MHz Mode A	uto FFT		Aborted		Count 100/100 • 153 Avg -42.22 dB 1.75500000 GH

MultiView	8 Spectrum								
	D.00 dBm Offse		00 dB • RBW 3	:00 kHz					Ľ
<ul> <li>Att</li> <li>1 Frequency 1</li> </ul>	20 dB SWT	13.93 µs (~2	1 ms) • VBW	1 MHz Mode A	uto FFT				Count 100/100 • 1Sa Avg
I Frequency	sweep							M1[1]	-37.34 dBr
									1.71000000 GH
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
	-H1 -13.000 dBm-								
-20 dBm									
-30 dBm									
				N	1				
-40 d8m			+	+					
-50 dBm									
-60 dBm									
CF 1.71 GHz			1001 p	ots	2	200.0 kHz/	<u> </u>		Span 2.0 MH
			(	Channel Lo	w-Full RI	3#	Aborted		- 13:09:11
MultiView					w-Full RI	8#	Aborted		↓ 17.06.2017 15:09:11
Ref Level 30 Att	D.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 3			3#	Aborted		← → → 15:09:11
Ref Level 30	D.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 3	:00 kHz		3#	Aborted	M1[1]	Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30 Att 1 Frequency 9	D.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100
Ref Level 30 Att	D.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30 Att 1 Frequency 9	D.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30 Att 1 Frequency 9	D.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm	D.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30 Att 1 Frequency 9 20 dBm	D.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30 Att I Frequency 20 dBm	D.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 3	:00 kHz		B#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30 Att I Frequency 20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	:00 kHz		B#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm	D.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 3	:00 kHz		B#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	:00 kHz		3# 	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	:00 kHz		3# 	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	:00 kHz		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	00 kHz 1 MHz Mode A		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	00 kHz 1 MHz Mode A		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	00 kHz 1 MHz Mode A		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	00 kHz 1 MHz Mode A		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	00 kHz 1 MHz Mode A		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	DOO dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	00 kHz 1 MHz Mode A		3#	Aborted		Count 100/100 ● 15a Avg -37.15 dBr
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm	D.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	OO KHZ 1 MHz Mode A			Aborted		
Ref Level 30           Att           1 Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm	D.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3	OO KHZ 1 MHz Mode A		3#	Aborted		Count 100/100 ● 153 Avg -37.15 dBr 1.75500000 GH

Marchine			LT						
MultiView				00.111					Ľ
Att	0.00 dBm Offse 20 dB SWT		00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A	uto FFT				Count 100/100
1 Frequency	Sweep							M1[1]	1Sa Avg -44.29 dBr
								MILI	1.71000000 GH
20 dBm									
10 dBm									
TO UBIN									
0 dBm									
-10 dBm	H1 -13.000 dBm-								
	H1 -13,000 UBIN							1	
-20 dBm							/-		
-30 dBm									
-40 dBm									
				M	1		T		
E0 d8m	<u> </u>	<u>+</u>	+						
-50 dBm									
-60 dBm									
CF 1.71 GHz			1001 p	ts	20	 00.0 kHz/			Span 2.0 MHz
	T						Aborted		
									10.10.20
MultiView	🖽 Spectrum	·		Channel L	.ow-1RB#	Ŀ			
Ref Level 30	D.00 dBm Offse	et 12.	00 dB ● RBW 3 1 ms) ● VBW	00 kHz		<u>-</u>			
	D.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW			<u>-</u>			Count 100/100 1Sa Avg
Ref Level 30 Att	D.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 30 Att 1 Frequency :	D.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg
Ref Level 30 Att	D.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 30 Att 1 Frequency 3 20 dBm	D.00 dBm Offse 20 dB SWT	st 12.	00 dB ● RBW 3 1 ms) ● VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 30 Att 1 Frequency :	D.00 dBm Offse 20 dB SWT	st 12.	00 dB ● RBW 3 1 ms) ● VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 30 Att 1 Frequency 20 dBm 10 dBm	D.00 dBm Offse 20 dB SWT	st 12.	00 dB ● RBW 3 1 ms) ● VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 30 Att 1 Frequency 3 20 dBm	D.00 dBm Offse 20 dB SWT	st 12.	00 dB ● RBW 3 1 ms) ● VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 30 Att 1 Frequency 20 dBm 10 dBm 0 dBm	D.00 dBm Offse 20 dB SWT	st 12.	00 dB ● RBW 3 1 ms) ● VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 30 Att 1 Frequency 20 dBm 10 dBm	Sweep	st 12.	00 dB ● RBW 3 1 ms) ● VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 30 Att 1 Frequency 20 dBm 10 dBm 0 dBm	D.00 dBm Offse 20 dB SWT	st 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 30 Att 1 Frequency 20 dBm 10 dBm 0 dBm	Sweep	st 12.	00 dB ● RBW 3 1 ms) ● VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm	Sweep	st 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm	Sweep	st 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	Sweep	st 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz				M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	Sweep	st 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A	uto FFT			M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz	uto FFT			M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A	uto FFT			M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm	Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A	uto FFT			M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm	Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A	uto FFT			M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A	uto FFT			M1[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm	Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A	uto FFT			MI[1]	Count 100/100 1Sa Avg -43.54 dBr
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm		et 12.	1 ms) • VBW	OO KHZ 1 MHZ Mode A	uto FFT			M1[1]	Count 100/100 • 15a Avg -43.54 dBr 1.75500000 GH
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm		et 12.	00 dB • RBW 3 1 ms) • VBW	OO KHZ 1 MHZ Mode A	uto FFT	E	Aborted	M1[1]	Count 100/100
Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm		et 12.	1 ms) • VBW	OO KHZ 1 MHZ Mode A	uto FFT		Aborted		Count 100/100

MultiView	🖽 Spectrum								
	0.00 dBm Offse		2.00 dB = RBW 3	300 kHz					Ľ
🕨 Att	20 dB SWT			1 MHz Mode A	uto FFT				Count 100/10
1 Frequency S	Sweep							M1[1]	●1Sa Avg -37.44 dB
								, milit	1.71000000 G
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
	H1 -13.000 dBm								
-20 dBm									
-30 dBm								1	
				Ν	1	<u> </u>	+		
-40 dBm	+		+						
-50 dBm									
-60 dBm									
CF 1.71 GHz		1	1001 p	ots	20	0.0 kHz/			Span 2.0 MH
	][			Channel Lo	w-Full RB	\$#	Aborted		
	0.00 dBm Offse	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		15:16:5
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3			#	Aborted		15:16:5
Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted	M1[1]	Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30 Att I Frequency 3	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		15:16:5 Count 100/100 15a Avg
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30 Att I Frequency 3	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30 Att I Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30 Att I Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30 Att I Frequency 9 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30 Att I Frequency 9 20 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           1 Frequency 9           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           1 Frequency 9           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           0 dBm           -10 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           0 dBm           -10 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           0 dBm           -10 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           I Frequency :           20 dBm           0 dBm           -10 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz 1 MHz Mode A		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           I Frequency :           20 dBm           0 dBm           -10 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30 Att I Frequency 3	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz 1 MHz Mode A		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           I Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz 1 MHz Mode A		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           I Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz 1 MHz Mode A		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           I Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz 1 MHz Mode A		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           I Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz 1 MHz Mode A		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           I Frequency 1           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz 1 MHz Mode A		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           I Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT	t 12	2.00 dB ● RBW 3	300 kHz 1 MHz Mode A		#	Aborted		Count 100/100 • 15a Avg • 36.34 dB
Ref Level 30           Att           I Frequency 1           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB • RBW 3 21 ms) • VBW	300 kHz 1 MHz Mode A	1		Aborted		15:16:5 Count 100/100 ● 1Sa Avg -36.34 dB 1.75500000 Gł 
Ref Level 30           Att           I Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12	2.00 dB ● RBW 3	300 kHz 1 MHz Mode A	1	#	Aborted		Count 100/100 • 1Sa Avg • 36.34 dB 1.75500000 Gł

MultiView									
Att		et 12. 13.93 µs (~2	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz <b>Mode</b> A	uto FFT				Count 100/100
1 Frequency S	sweep							M1[1]	●1Sa Avg -46.24 dBn 1.71000000 GH
20 dBm									1.71000000 GH
20 0011									
10 dBm									
0 dBm									
-10 dBm	H1 -13.000 dBm-								
-20 dBm								1	
-30 dBm									
-40 dBm				M	1				
50 40			+		i				
-50 dBm									
-60 dBm									
CF 1.71 GHz				ots	20	0.0 kHz/			Span 2.0 MHz
	1								
MultiView				Channel L	.ow-1RB#		Aborted		15:16:02
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW				Aborted		15:16:02
Ref Level 30	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Aborted	M1[1]	15:16:02
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Aborted		15:16:02
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Aborted		15:16:02
Ref Level 30 Att T Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Aborted		15:16:02
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Aborted		15:16:02
Ref Level 30 Att T Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Aborted		15:16:02
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Aborted		15:16:02
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm	0.00 dBm Offse 20 dB SWT	et 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz			Aborted		15:16:02
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Aborted		15:16:02
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Aborted		15:16:02
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB ● RBW 3 1 ms) ● VBW	:00 kHz			Aborted		15:16:02     ▼     Count 100/100     ●1Sa Avg
Ref Level 30           Att           1 Frequency S           20 dBm           0 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz			Aborted		15:16:02
Ref Level 30           Att           1 Frequency S           20 dBm           0 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A			Aborted		15:16:02
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	:00 kHz			Aborted		15:16:02
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A			Aborted		15:16:02
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A			Aborted		15:16:02
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	00 kHz 1 MHz Mode A			Aborted		15:16:02
Ref Level 30           Att           1 Frequency S           20 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	1 ms) • VBW	ioo kHz 1 MHz Mode A	Jto FFT	0.0 kHz /	Aborted		15:16:02
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12.	00 dB • RBW 3 1 ms) • VBW	ioo kHz 1 MHz Mode A	Jto FFT	0.0 kHz/	Aborted		15:16:02

	- i								
	B Spectrum								
Ref Level 30 Att	0.00 dBm Offse		.00 dB • RBW 3	300 kHz 1 MHz <b>Mode</b> A	Ito FET				Count 100/100
1 Frequency S		10.00 ps (**2	.1 ms) • • • • •	INNE MOREA					• 1Sa Avg
								M1[1]	-39.89 dBr 1.71000000 GH
									1.71000000 GH
20 dBm									
10 dBm				_					
0 dBm									
o dom									
-10 dBm	H1 -13.000 dBm-								
	111 101000 00111								
-20 dBm									
-30 dBm									
								ľ	
40 d0-				M	1				
-40 dBm									
-50 dBm			1					1	
			1						
-60 dBm									
CF 1.71 GHz	X		1001 p	ots	20	0.0 kHz/			Span 2.0 MHz 17.06.2017
							Aborted		15:17:30
MultiView	B Spectrum		(	Channel Lo	w-Full RB	#			
Ref Level 30	0.00 dBm Offse	et 12	.00 dB • RBW 3	300 kHz		#	·		
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3			#			▼ Count 100/100
Ref Level 30	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1\$a Avg
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 3C Att I Frequency S 20 dBm	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 3C Att I Frequency S 20 dBm	.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz		#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm	0.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz 1 MHz Mode A	Jto FFT	#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz	Jto FFT	#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz 1 MHz Mode A	Jto FFT	#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz 1 MHz Mode A	Jto FFT	#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	0.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz 1 MHz Mode A	Jto FFT	#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz 1 MHz Mode A	Jto FFT	#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz 1 MHz Mode A	Jto FFT	#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz 1 MHz Mode A	Jto FFT	#		M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT weep	et 12	.00 dB • RBW 3	300 kHz 1 MHz Mode A	10 FFT			M1[1]	Count 100/100 • 1Sa Avg -38.30 dBr
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	300 kHz 1 MHz Mode A	10 FFT	#		M1[1]	Count 100/100
Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm	0.00 dBm Offse 20 dB SWT Sweep	et 12	.00 dB • RBW 3	300 kHz 1 MHz Mode A	10 FFT		Aborted	M1[1]	Count 100/100 9 153 Arg -39:30 dBr 1.75500000 GH

Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	et 12.00 140 us (~7.2	0 dB ● <b>RBW</b> 30 ms) ● <b>VBW</b> 100	kHz kHz <b>Mode</b> Au	ito FFT				Count 100/100
1 Frequency S					1			M1[1]	1Sa Avg -26.94 dBr
								wifil	824.00000 MH
20 dBm									
10 dBm					[				
0 dBm									
0 UBIII									
-10 dBm									
	H1 -13.000 dBm-								
-20 dBm						<u>`</u>			
				1	11				
-30 dBm								$\land$	
				/			Ì	$\searrow$	
-40 dBm				$\overline{}$				·	
-50 dBm				~					
		$\sim$	ť l						
-60 dBm									
CF 824.0 MHz			1001 pts	;	20	)0.0 kHz/			Span 2.0 MH
CF 824.0 MHz	][	·					Measuring	•	
MultiView Ref Level 30	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		
MultiView	Spectrum	et 12.00		Channel I	_ow-1RB#		Measuring		■ 19.06.201 10:08:1 ▼ Count 100/100 ● 1Sa Avg
MultiView Ref Level 30 • Att	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		0 19.06.201 10:08:1 ▼ Count 100/100
MultiView Ref Level 30 • Att	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		■ 19.06.201 10:08:1 ▼ © 15a Avg -27.38 dB
MultiView Ref Level 30 Att 1 Frequency 8	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		19.06.201 10:08:1 ▼ Count 100/100 • 15a Avg -27.38 dB
MultiView Ref Level 30 Att 1 Frequency 8	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring,		19.06.201 10:08:1 ▼ Count 100/100 • 15a Avg -27.38 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		19.06.201 10:08:1 ▼ Count 100/100 • 15a Avg -27.38 dB
MultiView Ref Level 30 Att I Frequency 9 20 dBm——	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		19.06.201 10:08:1 ▼ Count 100/100 • 15a Avg -27.38 dB
MultiView Ref Level 30 Att 1 Frequency \$ 20 dBm	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		19.06.201 10:08:1 ▼ Count 100/100 • 15a Avg -27.38 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring,		■ 19.06.201 10:08:1 ▼ © 15a Avg -27.38 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		■ 19.06.201 10:08:1 ▼ © 15a Avg -27.38 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm- 10 dBm- -10 dBm-	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		■ 19.06.201 10:08:1 ▼ © 15a Avg -27.38 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm- 10 dBm- -10 dBm-	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		■ 19.06.201 10:08:1 ▼ © 15a Avg -27.38 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm-           10 dBm-           0 dBm-           -10 dBm-           -20 dBm-	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		■ 19.06.201 10:08:1 ▼ © 15a Avg -27.38 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm-           10 dBm-           0 dBm-           -10 dBm-           -20 dBm-	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		■ 19.06.201 10:08:1 ▼ © 15a Avg -27.38 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -40 dBm	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		19.06.201 10:08:1 ▼ Count 100/100 • 1Sa Avg -27.38 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		19.06.201 10:08:1 ▼ Count 100/100 • 1Sa Avg -27.38 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -40 dBm	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		19.06.201 10:08:1 ▼ Count 100/100 • 1Sa Avg -27.38 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	Spectrum	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	_ow-1RB#		Measuring		19.06.201 10:08:1 ▼ Count 100/100 • 1Sa Avg -27.38 dB
MultiView           Ref Level 3C           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -40 dBm	H1 -13.000 dBm	et 12.00	0 dB ● <b>RBW</b> 30	Channel I	LOW-1RB#		Measuring		19.06.201 10:08:1 ▼ Count 100/100 • 1Sa Avg -27.38 dB

	<u> </u>	<u> </u>							
MultiView									
Att	0.00 dBm Offs 20 dB SWT		2.00 dB <b>= RBW</b> 7.2 ms) <b>= VBW</b> 1	30 kHz .00 kHz Mode 4	Auto FFT				Count 100/100
1 Frequency	Sweep								●1Sa Avg
								M1[1]	-31.67 dBr 824.00000 MH
20 dBm									
10 dBm									
0 dBm					-				
-10 dBm									
	H1 -13.000 dBm-								
-20 dBm									
20 0011									
-30 dBm					MI				
-30 0011					*				
-40 dBm			~~~~~						
-+0 ubiii	+								
-50 dBm									
-50 upm									
co do-									
-60 dBm									
CF 824.0 MHz	2		1001	pts	2	00.0 kHz/			Span 2.0 MHz
MultiView	Spectrun	ר ו ו		Channel L	ow-Full RE	3#	Measuring	•••••••••••	19.06.2017 10:11:25
	0.00 dBm Offs	et 12	2.00 dB ● RBW 7.2 mc) ● VBW 1	30 kHz		3#	Measuring		10:11:25
	0.00 dBm Offs 20 dB SWT	et 12	2.00 dB ● RBW 7.2 ms) ● VBW 1	30 kHz		3#	Measuring		Count 100/100 ●1Sa Avg
Ref Level 30 Att	0.00 dBm Offs 20 dB SWT	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		3#	Measuring	M1[1]	10:11:25
Ref Level 30 Att 1 Frequency	0.00 dBm Offs 20 dB SWT	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		3#	Measuring		<ul> <li>■ 10:11:23</li> <li>▼</li> <li>Count 100/100</li> <li>● 15a Avg</li> <li>-31.62 dBr</li> </ul>
Ref Level 30 Att	0.00 dBm Offs 20 dB SWT	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		8#	Measuring		<ul> <li>■ 10:11:23</li> <li>▼</li> <li>Count 100/100</li> <li>● 15a Avg</li> <li>-31.62 dBr</li> </ul>
Ref Level 30 Att 1 Frequency 20 dBm-	0.00 dBm Offs 20 dB SWT	et 12	2.00 dB • <b>RBW</b> 7.2 ms) • <b>VBW</b> 1	30 kHz		8#	Measuring		<ul> <li>■ 10:11:23</li> <li>▼</li> <li>Count 100/100</li> <li>● 15a Avg</li> <li>-31.62 dBr</li> </ul>
Ref Level 30 Att 1 Frequency	0.00 dBm Offs 20 dB SWT	et 12	2.00 dB • <b>RBW</b> 7.2 ms) • <b>VBW</b> 1	30 kHz		8#	Measuring		10:11:25
Ref Level 30 Att I Frequency 20 dBm- 10 dBm-	0.00 dBm Offs 20 dB SWT	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		8#	Measuring		<ul> <li>■ 10:11:23</li> <li>▼</li> <li>Count 100/100</li> <li>● 15a Avg</li> <li>-31.62 dBr</li> </ul>
Ref Level 30 Att 1 Frequency 20 dBm-	0.00 dBm Offs 20 dB SWT	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		3#	Measuring		<ul> <li>■ 10:11:23</li> <li>▼</li> <li>Count 100/100</li> <li>● 15a Avg</li> <li>-31.62 dBr</li> </ul>
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           0 dBm	0.00 dBm Offs 20 dB SWT	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		3#	Measuring		10:11:25
Ref Level 30 Att I Frequency 20 dBm- 10 dBm-	0.00 dBm Offs 20 dB SWT	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		3#	Measuring		10:11:25
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           0 dBm	D.OO dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		3#	Measuring		<ul> <li>■ 10:11:23</li> <li>▼</li> <li>Count 100/100</li> <li>● 15a Avg</li> <li>-31.62 dBr</li> </ul>
Ref Level 30           Att           1 Frequency :           20 dBm           10 dBm           0 dBm	D.OO dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		B#	Measuring		<ul> <li>■ 10:11:23</li> <li>▼</li> <li>Count 100/100</li> <li>● 15a Avg</li> <li>-31.62 dBr</li> </ul>
Ref Level 3(           Att           1 Frequency :           20 dBm           0 dBm           -10 dBm           -20 dBm	D.OO dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		8#	Measuring		10:11:25
Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           0 dBm	D.OO dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		8#	Measuring		10:11:25
Ref Level 3i           Att           1 Frequency :           20 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	D.OO dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz		3# 	Measuring		10:11:25
Ref Level 3(           Att           1 Frequency :           20 dBm           0 dBm           -10 dBm           -20 dBm	D.OO dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB • RBW .2 ms) • VBW 1	30 kHz		3#	Measuring		10:11:25
Ref Level 3/           Att           1 Frequency:           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	D.OO dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB = RBW .2 ms) • VBW 1	30 kHz		3#	Measuring		10:11:25
Ref Level 3i           Att           1 Frequency :           20 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	D.OO dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB = RBW .2 ms) • VBW 1	30 kHz		8#	Measuring		10:11:25
Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -40 dBm           -50 dBm	D.OO dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB = RBW 7.2 ms) • VBW 1	30 kHz		8#			10:11:25
Ref Level 3/           Att           1 Frequency:           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	D.OO dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB = RBW 7.2 ms) • VBW 1	30 kHz		8#	Measuring		10:11:25
Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -40 dBm           -50 dBm	D.OO dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB = RBW 7.2 ms) = VBW 1	30 kHz			Measuring		10:11:25
Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	D.00 dBm Offs- 20 dB SWT Sweep	et 12	2.00 dB • RBW 7.2 ms) • VBW 1	30 kHz 00 kHz Mode /		3#			10:11:25

M 1425 (*	C C n +								$\bigtriangledown$
MultiView				1.1.1					
Att		140 µs (~7.2	00 dB <b>= RBW</b> 30 :ms) <b>= VBW</b> 100		to FFT				Count 100/100
1 Frequency	Sweep							M1[1]	1Sa Avg -28.68 dBr
									824.00000 MH
20 dBm									
10 dBm					~	$ \longrightarrow $			
0 dBm									
-10 dBm									
	H1 -13.000 dBm-								
-20 dBm							$\mathbf{\lambda}$		
				N	1				
-30 dBm				/				$\vdash \land$	
								$\langle \rangle \rangle$	
-40 dBm								+	
									-
-50 dBm		<u> </u>							
~~~~	+~~~~	~							
-60 dBm									
CF 824.0 MH	z		1001 pt	s	20	0.0 kHz/			Span 2.0 MH:
MultiView	B Spectrum	I		Channel I			Measuring	••••••••••	
Ref Level 3	0.00 dBm Offs	et 12.0	0 dB = RBW 30	kHz	_ow-1RB#		Measuring	••••••••••	19.06.2017 10:09:32
	0.00 dBm Offs 20 dB SWT	et 12.0		kHz	_ow-1RB#		Measuring		19.06.2017 10:09:32 ▼ Count 100/100 ● 1Sa Avg
Ref Level 3 Att	0.00 dBm Offs 20 dB SWT	et 12.0	0 dB = RBW 30	kHz	_ow-1RB#		Measuring	M1[1]	19.06.201 10:09:32
Ref Level 3 Att	0.00 dBm Offs 20 dB SWT	et 12.0	0 dB = RBW 30	kHz	_ow-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency	0.00 dBm Offs 20 dB SWT	et 12.0	0 dB = RBW 30	kHz	_ow-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency	0.00 dBm Offs 20 dB SWT	et 12.0	0 dB = RBW 30	kHz	_ow-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offs 20 dB SWT	et 12.0	0 dB = RBW 30	kHz	_ow-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offs 20 dB SWT	et 12.0	0 dB = RBW 30	kHz	_ow-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm- 10 dBm-	0.00 dBm Offs 20 dB SWT	et 12.0	0 dB = RBW 30	kHz	_ow-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm- 10 dBm-	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz	_ow-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT	et 12.0	0 dB = RBW 30	kHz	_ow-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz	_ow-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz kHz Mode Au	_ow-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz kHz Mode Au	LOW-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz kHz Mode Au	LOW-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz kHz Mode Au	LOW-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz kHz Mode Au	LOW-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz kHz Mode Au	LOW-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz kHz Mode Au	LOW-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz kHz Mode Au	LOW-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz kHz Mode Au	LOW-1RB#		Measuring		19.06.2013 10:09:32 ▼ Count 100/100 ● 1Sā Avg -27.48 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offs- 20 dB SWT Sweep	et 12.0	00 dB • RBW 300 mms) • VBW 100	kHz kHz Mode Au	LOW-1RB#		Measuring		
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0.00 dBm Offs- 20 dB SWT Sweep	et 12.0	0 dB = RBW 30	kHz kHz Mode Au	LOW-1RB#				

MultiView	🗄 Spectrum	-						
	0.00 dBm Offs		00 dB • RBW 30					2
Att 1 Frequency		140 µs (~7.,	2 ms) - VBW 100	JKHZ MODEAU				ount 100/100 1Sa Avg
							M1[1]	-34.03 dBn 824.00000 MH
20 dBm								1
10 dBm								
0 dBm					~~~~		 	
-10 dBm								
	H1 -13.000 dBm-							
-20 dBm								
-30 dBm				N	1,			
			- ~					
-40 dBm		1	γ					
	\sim	Γ						
-50 dBm								
-60 dBm								
-55 dbm								
CF 824.0 MH:			1001 pt	ts	20	00.0 kHz/		Span 2.0 MHz 19.06.2017
			C	Channel Lo	w-Full RB	3#		10.10.3
MultiView Bef Level 3					w-Full RB	3#		₩ 10:10:55
Ref Level 3 Att	0.00 dBm Offs 20 dB SWT	et 12.	00 dB • RBW 30 2 ms) • VBW 100) kHz		3#	(Count 100/100
Ref Level 3	0.00 dBm Offs 20 dB SWT	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3 Att 1 Frequency	0.00 dBm Offs 20 dB SWT	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3 Att	0.00 dBm Offs 20 dB SWT	et 12.	00 dB • RBW 30) kHz		8#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offs 20 dB SWT	et 12.	00 dB • RBW 30) kHz		8#	M1[1]	Count 100/100 • 1Sa Avg -32,99 dBr
Ref Level 3 Att 1 Frequency	0.00 dBm Offs 20 dB SWT	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3 Att 1 Frequency 20 dBm-	0.00 dBm Offs 20 dB SWT	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm-	0.00 dBm Offs 20 dB SWT	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 30 Att 1 Frequency 20 dBm- 10 dBm-	0.00 dBm Offs 20 dB SWT Sweep	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 31 Att 1 Frequency 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT	et 12.	00 dB • RBW 30) kHz		8#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 31 Att 1 Frequency 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3/ Att 1 Frequency 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3/ Att 1 Frequency 20 dBm 10 dBm 0 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3/ Att 1 Frequency 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100
Ref Level 3/ Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3/ Att 1 Frequency 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3/ Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3/ Att 1 Frequency 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offs 20 dB SWT Sweep	et 12.	00 dB • RBW 30) kHz		3#	M1[1]	Count 100/100 • 15a Avg -32.99 dBr
Ref Level 3/ Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	0.00 dBm Offs 20 dB SWT Sweep H1 -13.000 dBm	et 12.	00 dB • RBW 30 2 ms) • VBW 100	D kHz D kHz Mode Au			M1[1]	Count 100/100 • 153 Avg - 32.99 dBr 849.00000 MH
Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0.00 dBm Offs 20 dB SWT Sweep H1 -13.000 dBm	et 12.	00 dB • RBW 30	D kHz D kHz Mode Au		3#	M1[1]	Count 100/100 153 Avg -32.99 dBr 449.00000 MH

Issued: 2017-07-04

MultiView	🔠 Spectrum								
	0.00 dBm Offse		0 dB • RBW 30	1247					Ľ
 Att 1 Frequency 3 	20 dB SWT	140 µs (~7.2	ms) • VBW 100		to FFT				Count 100/100 1Sa Avg
1 Frequency a	sweep							M1[1]	-27.07 dBi
									824.00000 MH
20 dBm									
10 dBm						\sim			
10 000									
0 dBm									
-10 dBm						$\left \right $			
	H1 -13.000 dBm-								
-20 dBm							\land		
				N	1				
-30 dBm								L	
-40 dBm									
-40 UBII									
-50 dBm									
			\uparrow						
-60 dBm									
					20	0.0 kHz/			Span 2.0 MH
CF 824.0 MHz	2	1	1001 pt	S	20				
CF 824.0 MHz][1001 pt		_ow-1RB#		Measuring	4	
MultiView Ref Level 30	Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		9 19.06.201 10:21:0
MultiView	B Spectrum	t 12.0		Channel I	_ow-1RB#		Measuring		● 19.06.201 10:21:0 ▼ Count 100/100 ● 1Sa Avg
MultiView Ref Level 30	B Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		<pre>19.06.201 10:21:0 </pre>
MultiView Ref Level 30	B Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att I Frequency S	B Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att I Frequency S	B Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	B Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	B Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	B Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency \$ 20 dBm	B Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm	Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att I Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency 5 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency 5 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum	t 12.0	0 dB ● RBW 30	Channel I	_ow-1RB#		Measuring		a 19.06.201 10:21:0 ▼ Count 100/100 • 1Sa Avg -28.18 dB
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	B Spectrum 0.00 dBm Offse 20 dB SWT Sweep H1 -13.000 dBm	t 12.0	0 dB ● RBW 30	Channel I	LO FFT				19.06.201 10:21:0- 10:21:0-

MultiView									▽
Ref Level 30 Att	LOO dBm Offse	t 12.0	0 dB • RBW 30 ms) • VBW 100	kHz kHz Mode Au	to EET				Count 100/100
1 Frequency S		1+0 μ3 (**7.2	(ins) • • • • • • • • •	KHZ MOUC AU					●1Sa Avg
								M1[1]	-32.30 dBr 824.00000 MH
20 dBm									
10 dBm									
0 dBm					~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-10 dBm									
	H1 -13.000 dBm-								
00 -la									
-20 dBm									
-30 dBm				h					
				$\sim\sim$					
-40 dBm	<u> </u>	-	+						
-50 dBm									
-60 dBm									
-55 dbm									
CF 824.0 MHz			1001 pts		20	0.0 kHz/	1	1	Span 2.0 MH
MultiView][w-Full RB		Measuring	••••••	19.06.201 10:22:2
	Spectrum	et 12.0	C	hannel Lc	w-Full RB		Measuring		19.06.201 10:22:2:
	Spectrum	et 12.0	C	hannel Lc	w-Full RB		Measuring		19.06.201 10:22:2:
Ref Level 30 Att	Spectrum	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S	Spectrum	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att	Spectrum	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S	Spectrum	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S	Spectrum	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 Count 100/100 0 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm-	Spectrum	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 Count 100/100 0 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm-	Spectrum	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 Count 100/100 0 1Sa Avg -33.96 dB
Ref Level 3C Att I Frequency S 20 dBm	Spectrum	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 Count 100/100 0 1Sa Avg -33.96 dB
Ref Level 3C Att I Frequency S 20 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 Count 100/100 0 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	Spectrum	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C	hannel Lc	w-Full RB		Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C				Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C	hannel Lc			Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C				Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C				Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C				Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C				Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C				Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 3C Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C				Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 12.0	C				Measuring	M1[1]	19.06.201 10:22:2 ▼ Count 100/100 ● 1Sa Avg -33.96 dB
Ref Level 3C Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Spectrum .00 dBm Offse 20 dB SWT WCCP H1 -13.000 dBm-	et 12.0	C	hannel Lc	to FFT	#	Measuring	M1[1]	19.06.201 10:22:2
Ref Level 3C Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum .00 dBm Offse 20 dB SWT WCCP H1 -13.000 dBm-	et 12.0	C	hannel Lc	to FFT			M1[1]	19.06.201 10:22:2
Ref Level 3C Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Spectrum .00 dBm Offse 20 dB SWT WCCP H1 -13.000 dBm-	et 12.0	C	hannel Lc	to FFT	#		M1[1]	19.06.201 10:22:2

MultiView		(▽
Ref Level 3 Att	0.00 dBm Offse 20 dB SWT	et 12.00 140 µs (~7.2 r	dB = RBW 30 ns) = VBW 100	kHz kHz Mode Au	to FFT			(Count 100/100
1 Frequency	Sweep							M1[1]	1Sa Avg -27.64 dBn
								, milit	824.00000 MH
20 dBm									
10 dBm									
0 dBm									
-10 dBm	H1 -13.000 dBm-								
00 d0 m							5		
-20 dBm				N					
-30 dBm					·				
00 0011									
-40 dBm				~~~					
-50 dBm									
		f							
-60 dBm									
			1001		20	00.0 kHz/			Span 2.0 MHz
CF 824.0 MH:	Z		1001 pts	5	20				
CF 824.0 MH:][Channel L			Measuring	••••••	
MultiView Ref Level 3	Spectrum	et 12.00	dB ● RBW 30	Channel L	_ow-1RB#		Measuring		19.06.2017 10:21:30
MultiView	Spectrum 0.00 dBm Offs 20 dB SWT		dB ● RBW 30	Channel L	_ow-1RB#		Measuring		19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg
MultiView Ref Level 3 • Att	Spectrum 0.00 dBm Offs 20 dB SWT	et 12.00	dB ● RBW 30	Channel L	_ow-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBr
MultiView Ref Level 3 • Att	Spectrum 0.00 dBm Offs 20 dB SWT	et 12.00	dB ● RBW 30	Channel L	_ow-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBr
MultiView Ref Level 3 Att 1 Frequency	Spectrum 0.00 dBm Offs 20 dB SWT	et 12.00	dB ● RBW 30	Channel L	_ow-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBr
MultiView Ref Level 3 Att 1 Frequency	Spectrum 0.00 dBm Offs 20 dB SWT	et 12.00	dB ● RBW 30	Channel L	_ow-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBr
MultiView Ref Level 3 Att I Frequency 20 dBm-	Spectrum 0.00 dBm Offs 20 dB SWT	et 12.00	dB ● RBW 30	Channel L	_ow-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBr
MultiView Ref Level 3 Att I Frequency 20 dBm-	Spectrum 0.00 dBm Offs 20 dB SWT	et 12.00	dB ● RBW 30	Channel L	_ow-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm- 10 dBm-	Spectrum 0.00 dBm Offs 20 dB SWT	et 12.00	dB ● RBW 30	Channel L	_ow-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm- 10 dBm-	Spectrum 0.00 dBm Offs 20 dB SWT Sweep	et 12.00	dB ● RBW 30	Channel L	_ow-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm- 10 dBm- -10 dBm-	Spectrum 0.00 dBm Offs 20 dB SWT	et 12.00	dB ● RBW 30	Channel L	_ow-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm	Spectrum 0.00 dBm Offs 20 dB SWT Sweep	et 12.00	dB ● RBW 30	Channel L	_ow-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 0.00 dBm Offs 20 dB SWT Sweep	et 12.00	dB ● RBW 30	Channel L	LOW-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30
MultiView Ref Level 3 Att 1 Frequency 20 dBm- 10 dBm- -10 dBm-	Spectrum 0.00 dBm Offs 20 dB SWT Sweep	et 12.00	dB ● RBW 30	Channel L	LOW-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBn
MultiView Ref Level 3 Att 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum 0.00 dBm Offs 20 dB SWT Sweep	et 12.00	dB ● RBW 30	Channel L	LOW-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBn
MultiView Ref Level 3 Att 1 Frequency 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 0.00 dBm Offs 20 dB SWT Sweep	et 12.00	dB ● RBW 30	Channel L	LOW-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBn
MultiView Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm	Spectrum 0.00 dBm Offs 20 dB SWT Sweep	et 12.00	dB ● RBW 30	Channel L	LOW-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBn
MultiView Ref Level 3 Att 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum 0.00 dBm Offs 20 dB SWT Sweep	et 12.00	dB ● RBW 30	Channel L	LOW-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBn
MultiView Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -50 dBm	Spectrum 0.00 dBm Offs 20 dB SWT Sweep	et 12.00	dB ● RBW 30	Channel L	LOW-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBn
MultiView Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm	Spectrum 0.00 dBm Offs 20 dB SWT Sweep	et 12.00	dB ● RBW 30	Channel L	LOW-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 ▼ Count 100/100 ● 1Sa Avg -28.71 dBr
MultiView Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	B Spectrum 0.00 dBm Offse 20 dB SWT Sweep H1 -13.000 dBm-	et 12.00	dB • RBW 30 ns) • VBW 100	Channel L kHz kHz Mode Au	LOW-1RB#		Measuring	(M1[1]	19.06.2017 10:21:30 Count 100/100 ● 153 Avg -28.71 dBr 849.00000 MH
MultiView Ref Level 3 Att 1 Frequency 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -50 dBm	B Spectrum 0.00 dBm Offse 20 dB SWT Sweep H1 -13.000 dBm-	et 12.00	dB ● RBW 30	Channel L kHz kHz Mode Au	LOW-1RB#			(M1[1]	19.06.2017 10:21:30

	- ·	1							
MultiView									
Ref Level 30 Att	0.00 dBm Offse 20 dB SWT	t 12.0 140 us (~7.2	0 dB = RBW 30 ms) = VBW 100	⊧kHz ⊧kHz Mode A	uto FFT				Count 100/100
1 Frequency S	Sweep		,						●1Sa Avg
								M1[1]	-34.50 dBr 824.00000 MH
20 dBm									
10 dBm									
TO UBIN									
0 dBm					~				
-10 dBm	H1 -13.000 dBm-								
	111 -13,000 4611								
-20 dBm					+				
-30 dBm									
-40 dBm				~~~/					
\sim	$ \longrightarrow $		- T						
-50 dBm									
-60 dBm									
-60 dBm									
CF 824.0 MHz			1001 pt	S	20	0.0 kHz/			Span 2.0 MH
MultiView	Spectrum		C	hannel L	ow-Full RB	#	Measuring		19.06.2017 10:22:03
	0.00 dBm Offse	t12.00	0 dB ● RBW 30	kHz		#	Measuring		10:22:0
Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12.0 140 µs (~7.2		kHz		#	Measuring		10:22:05
Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12.00 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:05
Ref Level 30	0.00 dBm Offse 20 dB SWT	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S	0.00 dBm Offse 20 dB SWT	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm-	0.00 dBm Offse 20 dB SWT	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency \$ 20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	0.00 dBm Offse 20 dB SWT	t 12.01 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.01 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm -10 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.01 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.01 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm 0 dBm -10 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.01 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.01 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.0 140 μs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.01 140 μs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0.00 dBm Offse 20 dB SWT Sweep	t 12.01 140 µs (~7.2	0 dB ● RBW 30	kHz		#	Measuring		10:22:0:
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm	0.00 dBm Offse 20 dB SWT SWCEP	t 12.01 140 µs (~7.2	0 dB • RBW 30 ms) • VBW 100	kHz kHz Mode A			Measuring		10:22:0: ▼ Count 100/100 ● 15a Avg -35.55 dBt 849.00000 MH
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	0.00 dBm Offse 20 dB SWT SWCEP	t 12.0 140 µs (~7.2	0 dB ● RBW 30	kHz kHz Mode A		#		M1[1]	10:22:0: Count 100/100 ● 15a Avg -35,55 dBr 849.00000 MH
Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm	0.00 dBm Offse 20 dB SWT SWCEP	t 12.0 140 µs (~7.2	0 dB • RBW 30 ms) • VBW 100	kHz kHz Mode A			Measuring	M1[1]	10:22:0: Count 100/100 ● 1Sa Avg -35.55 dBr 849.00000 MH

		1							
MultiView			00 lb - 8844 4	00111					
Att		et 12. 42.04 µs (~9.	.00 dB = RBW 1 .1 ms) = VBW 3	00 kHz :00 kHz Mode /	Auto FFT				Count 100/100
1 Frequency S	Sweep							M1[1]	1Sa Avg -31.84 dBr
									824.00000 MH
20 dBm									
10 dBm						/			
						1			
0 dBm									
-10 dBm	H1 -13.000 dBm-								
00 -ID									
-20 dBm									
-30 dBm				N	1				
-30 0611				1	Y				
-40 dBm									
-50 dBm	<u> </u>	<u> </u>							
-60 dBm									
CF 824.0 MHz	-		1001 pt)0.0 kHz/			Span 2.0 MHz
				C3					
][Channel I	_ow-1RB#		Measuring	•••••••	
MultiView	Spectrum				_ow-1RB#		Measuring	•••••	19.06.2017 10:26:54
MultiView Ref Level 30 Att	Spectrum	et 12.	.00 dB ● RBW 1 1 ms) ● VBW 3	00 kHz			Measuring		10:26:54
MultiView Ref Level 30	Spectrum	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att I Frequency S	Spectrum	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		10:26:54 ▼ Count 100/100 ● 1Sa Avg
MultiView Ref Level 30 Att	Spectrum	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	Spectrum	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att I Frequency S	Spectrum	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	Spectrum	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	Spectrum	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	Spectrum	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	Spectrum	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	Spectrum 20 dBm Offse 20 dB SWT Sweep	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	Spectrum 20 dBm Offse 20 dB SWT Sweep	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att I Frequency S 20 dBm	Spectrum 20 dBm Offse 20 dB SWT Sweep	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att 1 Frequency S 20 dBm	Spectrum 20 dBm Offse 20 dB SWT Sweep	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 3C Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 20 dBm Offse 20 dB SWT Sweep	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att I Frequency S 20 dBm	Spectrum 20 dBm Offse 20 dB SWT Sweep	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 3C Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 20 dBm Offse 20 dB SWT Sweep	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum 20 dBm Offse 20 dB SWT Sweep	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum 20 dBm Offse 20 dB SWT Sweep	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum 20 dBm Offse 20 dB SWT Sweep	et 12.	.00 dB ● RBW 1	00 kHz			Measuring		■ 10:26:54
MultiView Ref Level 3C Att 1 Frequency S 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -40 dBm -50 dBm	H1 -13.000 dBm	et 12.	00 dB • RBW 1 1 ms) • VBW 3	00 kHz 00 kHz Mode /	Auto FFT		Measuring		10:26:54
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	H1 -13.000 dBm	et 12.	.00 dB ● RBW 1	00 kHz 00 kHz Mode /	Auto FFT	0.0 kHz/			10:26:54

MultiView	🖽 Spectrum	1 I							∇
	0.00 dBm Offse		.2.00 dB • RBW 1	100 kHz					Ľ
🕨 Att	20 dB SWT	42.04 µs (^	9.1 ms) • VBW 3	300 kHz Mod	e Auto FFT				Count 100/100
1 Frequency S	Sweep							M1[1]	1Sa Avg -33.53 dBr
									824.00000 MH
20 dBm									
10 dBm									
0 dBm									
-10 dBm						X			
10 000	H1 -13.000 dBm-				/				
-20 dBm									
-30 dBm					M1				
			+		7				
-40 dBm					-	1			
-50 dBm									
-60 dBm									
						00.0 kHz/			Span 2.0 MH
	,								3pan 2.0 Min
CF 824.0 MHz][1001 p		_ow-Full RE		Measuring	4	
MultiView Ref Level 30	B Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring	•••••••••	19.06.2017 10:28:50
MultiView	Spectrum	et 🗌	(_ow-Full RE		Measuring		19.06.2017 10:28:5(▼ Count 100/100
MultiView Ref Level 30 Att	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring	M1[1]	20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency S	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		19.06.2017 10:28:5(▼ Count 100/100
MultiView Ref Level 30 Att	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att 1 Frequency 8	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency S	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att 1 Frequency \$ 20 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att 1 Frequency 8	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency 3 20 dBm 10 dBm 0 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att 1 Frequency \$ 20 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency 9 20 dBm 10 dBm -10 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency 3 20 dBm 10 dBm 0 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency 5 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency 9 20 dBm 10 dBm -10 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		LOW-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency 5 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		_ow-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency 5 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		LOW-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency 6 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		LOW-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency 6 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		LOW-Full RE		Measuring		20 19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		LOW-Full RE		Measuring		19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		LOW-Full RE		Measuring		19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att 1 Frequency 5 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum	et 🗌	(2.00 dB ● RB₩ 1		LOW-Full RE		Measuring		19.06.201 10:28:50 ▼ Count 100/100 ● 1Sa Avg -35.51 dBr
MultiView Ref Level 30 Att I Frequency 3 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	B Spectrum .00 dBm Offse 20 dB SWT Sweep H1 -13.000 dBm-	et 🗌	(2.00 dB • RBW 1 9.1 ms) • VBW 3	Channel I	LOW-Full RE	3#	Measuring		x 19.06.201 10:28:50 Count 100/100 ● 15@ Ayg -35.51 dBr 8-9,00000 MH
MultiView Ref Level 30 Att 1 Frequency 5 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	B Spectrum .00 dBm Offse 20 dB SWT Sweep H1 -13.000 dBm-	et 🗌	(2.00 dB ● RB₩ 1	Channel I	LOW-Full RE				19.06.201 10:28:50 10:28:50

MultiView	🗄 Spectrum								
	0.00 dBm Offse		.00 dB • RBW 1	00 kHz					
Att	20 dB SWT	42.04 µs (~9.	.1 ms) • VBW 3	00 kHz Mode	Auto FFT				Count 100/100
1 Frequency 3	sweep							M1[1]	1Sa Avg -31,46 dBn
									824.00000 MH
20 dBm									
							\wedge		
10 dBm									
						1			
0 dBm									
-10 dBm									
10 0000	H1 -13.000 dBm-								
-20 dBm									
-30 dBm					M1				
				/	1				
-40 dBm									+
-50 dBm									
-60 dBm									
CF 824.0 MHz			1001 pt	ts	20) 0.0 kHz/			Span 2.0 MHz
][Channel	Low-1RB#		Measuring	•••••	
MultiView	Spectrum				Low-1RB#	<u>-</u>	Measuring	••••••	
MultiView Ref Level 30	Spectrum	et 12		00 kHz			Measuring		10:27:40
MultiView Ref Level 30	Spectrum	et 12	.00 dB ● RBW 1	00 kHz		: :	Measuring		10:27:40
MultiView Ref Level 30 Att I Frequency S	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att I Frequency S	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 9 20 dBm-	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 5 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 5 20 dBm	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 6 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 5 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 6 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency S 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum	et 12	.00 dB ● RBW 1	00 kHz			Measuring		10:27:40
MultiView Ref Level 30 Att 1 Frequency 5 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	H1 -13.000 dBm	et 12	00 dB • RBW 1 1 ms) • VBW 3	00 kHz 00 kHz Mode			Measuring		10:27:40 ▼ Count 100/100 ● 153 Avg -32,48 dBn 849.00000 MH ■
MultiView Ref Level 30 Att 1 Frequency 3 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	H1 -13.000 dBm	et 12	.00 dB ● RBW 1	00 kHz 00 kHz Mode		20.0 kHz/	Measuring	M1[1]	10:27:40