No. I19Z60700-SEM01 Page 184 of 202 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 2.04 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.9 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.03 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.8 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.0 Ω + 5.0 Ω | - 100 | |--------------------------------------|-----------------|-------| | Return Loss | - 25.6 dB | | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.6 Ω + 6.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.0 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.161 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | November 10, 2009 | | ### **DASY5 Validation Report for Head TSL** Date: 20.07.2017 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.7 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.26 W/kg Maximum value of SAR (measured) = 21.5 W/kg 0 dB = 21.5 W/kg = 13.32 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 21.07.2017 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 25.5 W/kgSAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.03 W/kg Maximum value of SAR (measured) = 20.0 W/kg 0 dB = 20.0 W/kg = 13.01 dBW/kg ## Impedance Measurement Plot for Body TSL #### 2600 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland - Schweizerischer Kalibrierdienst Service suisse d'étalonnage - C Service suisse d'étalonnage Servizio svizzero di taratura - Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL-BJ (Auden) Certificate No: D2600V2-1012 Jul17 | | en) | Certificate No | o: D2600V2-1012_Jul17 | |---|---|--|---| | CALIBRATION (| CERTIFICATI | | | | Object | D2600V2 - SN:1 | 012 | | | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | edure for dipole validation kits abo | ove 700 MHz | | Calibration date: | July 21, 2017 | | | | The measurements and the unce | ertainties with confidence p | tional standards, which realize the physical unprobability are given on the following pages are by facility: environment temperature (22 \pm 3)% | nd are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | Type-N mismatch combination | SN: 7349 | 31-May-17 (No. EX3-7349_May17) | Mov 10 | | Reference Probe EX3DV4 | OI4. 7043 | , | May-18 | | Reference Probe EX3DV4 | SN: 601 | 28-Mar-17 (No. DAE4-601_Mar17) | Mar-18 | | Reference Probe EX3DV4
DAE4 | 3403-02-11 | | and a second | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | SN: 601 | 28-Mar-17 (No. DAE4-601_Mar17) | Mar-18 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | SN: 601 | 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) | Mar-18
Scheduled Check | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) | Mar-18 Scheduled Check In house check: Oct-18 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972 | 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) | Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972 | 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) | Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US37390585 | 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16) | Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US37390585
Name | 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16) Function | Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17 | Certificate No: D2600V2-1012_Jul17 Page 1 of 8 ### No. I19Z60700-SEM01 Page 192 of 202 #### Calibration Laboratory of Schmid & Partner Engineering AG Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1012_Jul17 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.2 ± 6 % | 2.04 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 57.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.8 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.6 ± 6 % | 2.22 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | incan | #### SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 55.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.25 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.8 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1012_Jul17 ## Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 46.8 Ω - 5.0 jΩ | | | |--------------------------------------|-----------------|-------|--| | Return Loss | - 24.2 dB | 2 (1) | | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 43.5 Ω - 5.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.0 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.151 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | October 30, 2007 | Certificate No: D2600V2-1012_Jul17 ### **DASY5 Validation Report for Head TSL** Date: 20.07.2017 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1012 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 37.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan $(7x7x7)/Cube\ 0$: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 113.6 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.57 W/kg Maximum value of SAR (measured) = 25.0 W/kg 0 dB = 25.0 W/kg = 13.98 dBW/kg Certificate No: D2600V2-1012_Jul17 Page 5 of 8 #### Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Date: 21.07.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1012 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.25 W/kg Maximum value of SAR (measured) = 23.4 W/kg 0 dB = 23.4 W/kg = 13.69 dBW/kg ### Impedance Measurement Plot for Body TSL ## **ANNEX I** Extended Calibration SAR Dipole Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### Justification of Extended Calibration SAR Dipole D750V3- serial no.1017 | Head | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------| | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | 2017-7-19 | -27.5 | | 54.4 | | 0.5 | | | 2018-7-17 | -26.0 | 5.5 | 55.1 | 0.7 | -1.0 | -1.5 | | Body | | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--| | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | | 2017-7-19 | -29.1 | | 49.3 | | -3.4 | | | | 2018-7-17 | -29.3 | -0.69 | 51.5 | 2.2 | -3.1 | 0.3 | | #### Justification of Extended Calibration SAR Dipole D835V2- serial no.4d069 | Head | | | | | | | | |------------------------|---------------------|--------------|----------------------------|-------------|----------------------------------|-----------------|--| | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta (ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | | 2017-7-19 | -32.4 | | 52.1 | | -1.2 | | | | 2018-7-17 | -30.3 | 6.5 | 53.0 | 1.1 | -1.0 | 0.2 | | | Body | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------| | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | 2017-7-19 | -26.9 | | 47.9 | | -3.9 | | | 2018-7-17 | -25.5 | 5.2 | 48.5 | 0.6 | -5.0 | -1.1 | ### Justification of Extended Calibration SAR Dipole D1750V2- serial no.1003 | Head | | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--| | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | | 2017-7-21 | -37.1 | | 50.9 | | 1.1 | | | | 2018-7-19 | -35.6 | 4.0 | 49.5 | -1.4 | -1.6 | -2.7 | | | Body | | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--| | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | | 2017-7-21 | -30.2 | | 47.0 | | 0.1 | | | | 2018-7-19 | -27.6 | 8.6 | 46.0 | -1.0 | -0.3 | -0.4 | | ### Justification of Extended Calibration SAR Dipole D1900V2- serial no.5d101 | Head | | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--| | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | | 2017-7-26 | -24.5 | | 51.7 | | 5.8 | | | | 2018-7-24 | -22.9 | 6.5 | 50.6 | -1.1 | 7.2 | 1.4 | | | Body | | | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|--| | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | | | 2017-7-26 | -22.0 | | 46.2 | | 6.6 | | | | | 2018-7-24 | -21.4 | 2.7 | 46.4 | 0.2 | 7.4 | 0.8 | | | ### Justification of Extended Calibration SAR Dipole D2450V2– serial no.853 | Head | | | | | | | | | |------------------------|---------------------|--------------|----------------------------|----------------|----------------------------------|-----------------|--|--| | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | | | 2017-7-21 | -25.6 | | 52.0 | | 5.0 | | | | | 2018-7-19 | -23.1 | 9.8 | 53.6 | 1.6 | 6.3 | 1.3 | | | | Body | | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--| | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | | 2017-7-21 | -24.0 | | 49.6 | | 6.3 | | | | 2018-7-19 | -22.0 | 8.3 | 50.4 | 0.8 | 8.0 | 1.7 | | ### Justification of Extended Calibration SAR Dipole D2600V2– serial no.1012 | Head | | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--| | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | | 2017-7-21 | -24.2 | | 46.8 | | -5.0 | | | | 2018-7-19 | -23.7 | 2.1 | 47.7 | 0.9 | -5.9 | -0.9 | | | Body | | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--| | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(johm) | Delta
(johm) | | | 2017-7-21 | -21.0 | | 43.5 | | -5.3 | | | | 2018-7-19 | -22.4 | -6.7 | 44.4 | 0.9 | -4.5 | 0.8 | | ### **ANNEX J** Accreditation Certificate United States Department of Commerce National Institute of Standards and Technology # Certificate of Accreditation to ISO/IEC 17025:2005 **NVLAP LAB CODE: 600118-0** #### **Telecommunication Technology Labs, CAICT** Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: #### **Electromagnetic Compatibility & Telecommunications** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2018-09-28 through 2019-09-30 Effective Dates For the National Voluntary Laboratory Accreditation Program