

SAR TEST REPORT

Applicant Hytera Communications Corporation Limited

FCC ID YAMPNC380S

Product PoC Radio

Brand Hytera

Model PNC380S

Report No. R2004A0208-S1

Issue Date July 1, 2020

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **IEEE 1528-2013**, **ANSI C95.1**: **1992**,**IEEE C95.1**: **1991**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

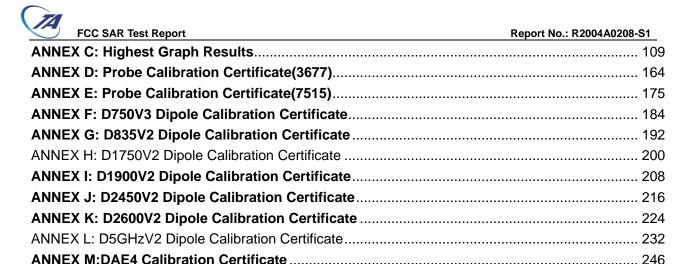
Performed by: Yu Wang

Approved by: Guangchang Fan

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3


FAX: +86-021-50791141/2/3-8000

Report No.: R2004A0208-S1

Table of Contents

1 Te	est Laboratory	4
1.1	Notes of the Test Report	4
1.2.	Test facility	4
1.3	Testing Location	4
1.4	Laboratory Environment	5
2 St	tatement of Compliance	6
3 D	escription of Equipment under Test	8
4 Te	est Specification, Methods and Procedures	10
5 O	perational Conditions during Test	11
5.1	Test Positions	11
	5.1.1 Against Phantom Head	11
	5.1.2 Body-worn Configuration	11
5.2	Measurement Variability	12
5.3	Test Configuration	13
	5.3.1 GSM Test Configuration	13
	5.3.2 UMTS Test Configuration	13
	5.3.3 LTE Test Configuration	17
	5.3.4 Wi-Fi Test Configuration	19
6 S	AR Measurements System Configuration	20
6.1	SAR Measurement Set-up	20
6.2	DASY5 E-field Probe System	21
6.3	SAR Measurement Procedure	22
7 M	ain Test Equipment	24
8 Ti	issue Dielectric Parameter Measurements & System Verification	26
8.1	Tissue Verification	26
8.2	System Performance Check	28
8.3	SAR System Validation	31
9 No	ormal and Maximum Output Power	33
9.1	GSM Mode	33
9.2	WCDMA Mode	34
9.3	LTE Mode	35
9.4	WLAN Mode	50
9.5	Bluetooth Mode	53
10 M	leasured and Reported (Scaled) SAR Results	54
10.1	EUT Antenna Locations	54
10.2	2 Standalone SAR test exclusion considerations	56
10.3	B Measured SAR Results	57
10.4	Simultaneous Transmission Analysis	82
11 M	easurement Uncertainty	86
ANNE	X A: Test Layout	87
ANNE	X B: System Check Results	89

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

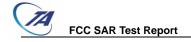
City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Fan Guangchang

Telephone: +86-021-50791141/2/3


Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: fanguangchang@ta-shanghai.com

Temperature	Min. = 18°C, Max. = 25 °C				
Relative humidity	Min. = 30%, Max. = 70%				
Ground system resistance	< 0.5 Ω				
Ambient noise is checked and found very low and in compliance with requirement of standards.					
Reflection of surrounding objects is minimized and in compliance with requirement of standards.					

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: Table 1: Highest Reported SAR

	Highest Reported SAR (W/kg)						
Mode	1g SAR Head (Separation 10mm)	1g SAR Body-worn (Separation 0mm)	10g SAR Extremities (Separation 0mm)				
GSM 850	1.278	1.278	1.500				
GSM 1900	0.582	0.458	0.952				
WCDMA Band II	1.105	0.915	1.969				
WCDMA Band IV	1.176	1.078	1.232				
WCDMA Band V	1.125	0.885	1.113				
LTE FDD 2	0.997	0.867	1.856				
LTE FDD 4	0.949	0.937	1.129				
LTE FDD 5	0.841	0.672	1.092				
LTE FDD 7	1.076	0.912	1.813				
LTE FDD 12	0.708	0.683	0.884				
LTE FDD 13	0.852	0.904	1.118				
LTE FDD 25	0.877	0.825	1.608				
LTE FDD 26	0.744	0.483	1.080				
Wi-Fi (2.4G)	0.128	0.199	0.412				
Wi-Fi (5G)	0.112	0.180	0.256				
ВТ	NA	0.044	NA				
Date of Testing:	May 19, 2020~ May 27, 2020 and June 28, 2020 ~ June 29, 2020						

Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Table 2: Highest Simultaneous Transmission SAR

Exposure Configuration	1g SAR Head (Separation 10mm)	1g SAR Body-worn (Separation 0mm)	10g SAR Extremities (Separation 0mm)
Highest Simultaneous Transmission SAR (W/kg)	1.573	1.521	2.237

Note: 1. The detail for simultaneous transmission consideration is described in chapter 10.4.

3 Description of Equipment under Test

Client Information

Applicant	Hytera Communications Corporation Limited		
Applicant address	Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road,		
Applicant address	Nanshan District, Shenzhen, People's Republic of China		
Manufacturer	Hytera Communications Corporation Limited		
Manufacturer address	Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road,		
Manufacturer address	Nanshan District, Shenzhen, People's Republic of China		

General Technologies

Serierai recimologies	
Application Purpose:	Original Grant
EUT Stage:	Identical Prototype
Model:	PNC380S
IMEI:	860046040051346
Hardware Version:	5001010053083
Software Version:	V1.0.02.000.01
Antenna Type:	Internal Antenna
Device Class:	В
Power Class:	GSM 850:4 GSM 1900:1 UMTS Band II/IV/V:3 LTE FDD 2/4/5/7/12/13/25/26:3
Power Level:	GSM 850:level 5 GSM 1900:level 0 UMTS Band II/IV/V:all up bits LTE FDD 2/4/5/7/12/13/25/26:max power
	EUT Accessory
Battery	Manufacturer: FPR Connectivity Technology Inc. Model: BP4006 Power Rating: DC 3.85V, 4000mAh
Adapter	Manufacturer: HUIZHOU GOLDEN LAKE INDUSTRIAL CO., LTD. Model: S010WU0500200
USB Cable	10cm Cable, Shielded
Note: The EUT is sent from applicant.	om the applicant to TA and the information of the EUT is declared by the

FCC SAR Test Report No.: R2004A0208-S1

Wireless Technology and Frequency Range

	ireless hnology	Modulation	Operating mode	Tx (MHz)					
	850	Voice(GMSK) GPRS(GMSK)	☐Multi-slot Class:8-1UP ☐Multi-slot Class:10-2UP	824 ~ 849					
GSM	1900	EGPRS(GMSK/8PSK)	□Multi-slot Class:12-4UP ☑Multi-slot Class:33-4UP	1850 ~ 1910					
	Does this dev								
	Band II		HSDPA UE Category:24	1850 ~ 1910					
UMTS	Band IV	QPSK, 16QAM	HSUPA UE Category:6 DC-HSDPA UE Category:24	1710 ~ 1755					
	Band V		HSPA+ Category:6	824 ~ 849					
	FDD 2			1850 ~ 1910					
	FDD 4			1710 ~ 1755					
	FDD 5		Rel.10 /Category 4	824 ~ 849					
	FDD 7	ODCK 4COAM		2500 ~ 2570					
LTE	FDD 12	QPSK, 16QAM		699 ~ 716					
LIE	FDD 13			777 ~ 787					
	FDD 25			1850 ~ 1915					
	FDD 26			814 ~ 849					
	Does this device support Carrier Aggregation (CA) □Yes ⊠No								
	Does this dev	vice support SV-LTE (1xR	ce support SV-LTE (1xRTT-LTE)? □Yes ⊠No						
ВТ	2.4G	Ver	sion 4.2 LE	2402 ~2480					
	2.4G	DSSS,OFDM	802.11b/g/n HT20	2412 ~ 2462					
	2.46	OFDM	802.11n HT40	2422 ~ 2452					
Wi-Fi	5G	OFDM	802.11a/n HT20/ HT40	5150 ~ 5350 5470 ~ 5600 5650 ~ 5850					
	Does this dev	vice support Down Link M	IMO ⊠Yes □No						

4 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528- 2013, ANSI C95.1: 1992,IEEE C95.1: 1991, the following FCC Published RF exposure KDB procedures:

IEC 62209-1

Reference Standards

KDB 248227 D01 802.11Wi-Fi SAR v02r02

KDB 447498 D01 General RF Exposure Guidance v06

KDB 648474 D04 Handset SAR v01r03

KDB 690783 D01 SAR Listings on Grants v01r03

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04

KDB 865664 D02 RF Exposure Reporting v01r02

KDB 941225 D01 3G SAR Procedures v03r01

KDB 941225 D05 SAR for LTE Devices v02r05

KDB 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02

5 Operational Conditions during Test

5.1 Test Positions

5.1.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2013 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.1.2 Body-worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.2 Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

5.3 Test Configuration

5.3.1 GSM Test Configuration

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following: Output power of reductions:

Table 3: The allowed power reduction in the multi-slot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

5.3.2 UMTS Test Configuration

5.3.2.1 3G SAR Test Reduction Procedure

The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations modes according to output power, exposure conditions and device operating capabilities. Maximum output power is verified by applying the applicable versions of 3GPP TS 34.121.

5.3.2.2 Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest SAR configuration in 12.2 kbps RMC for head exposure.

5.3.2.3 Body-worn accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the EUT with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the EUT, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC

Report No.: R2004A0208-S1

5.3.2.4 Release 5 HSDPA Test Configuration

The 3G SAR test reduction procedure is applied to HSDPA Body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA Body-worn procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest SAR Body-worn accessory exposure configuration in 12.2 kbps RMC. EUT with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 4: Subtests for UMTS Release 5 HSDPA

Sub-set	$eta_{ m c}$	β_{d}	β _d (SF)	β_{c}/β_{d}	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
2	(note 4)	(note 4)	04	(note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

5.3.2.5 Release 6 HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) Body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for TA Technology (Shanghai) Co., Ltd.

TA-MB-05-003S

Page 14 of 250

FCC SAR Test Report Report Report No.: R2004A0208-S1

HSPA using the HSPA Body-worn procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest Body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for Body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA EUT and 'Release 5 HSDPA Data Devices' sections of this document

Table 5: Sub-Test 5 Setup for Release 6 HSUPA

Sub- set	$eta_{ m c}$	β_{d}	β _d (SF)	β _o /β _d	$\beta_{hs}^{(1)}$	eta_{ec}	$eta_{ ext{ed}}$	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β_{ed1} 47/15 β_{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_{c}$.
- Note 2: CM = 1 for $\beta c/\beta d$ =12/15, $\underline{\beta}_{hs}/\underline{\beta}_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β c/ β d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β c = 10/15 and β d = 15/15.
- Note 4: For subtest 5 the β c/ β d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β c = 14/15 and β d = 15/15.
- Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.
- Note 6: Bed can not be set directly; it is set by Absolute Grant Value.

Table 6: HSUPA UE category

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
	2	8	2	4	2798	4 4500
2	2	4	10	4	14484	1.4592
3	2	4	10	4	14484	1.4592
	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00

FCC SAF	R Test Report		Report No.: R20	04A0208-S1		
5	2	4	10	2	20000	2.00
6 (No DPDCH)	4	8	2		11484	5.76
	4	4	10	2 SF2 & 2 SF4	20000	2.00
7	4	8	2	2 SF2 & 2 SF4	22996	?
(No DPDCH)	4	4	10		20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.

UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

5.3.2.6 HSPA, HSPA+ and DC-HSDPA Test Configuration

SAR test exclusion may apply to 3GPP Rel. 6 HSPA and Rel. 8 DC-HSDPA. When SAR measurement is required for HSPA or DC-HSDPA, a KDB inquiry is required to confirm that the wireless mode configurations in the test setup have remained stable throughout the SAR measurements. Without prior KDB confirmation to determine the SAR results are acceptable, a PAG is required for equipment approval.

SAR test exclusion for HSPA, HSPA+ and DC-HSDPA is determined according to the following:

- 1) The HSPA procedures are applied to configure 3GPP Rel. 6 HSPA devices in the required sub-test mode(s) to determine SAR test exclusion.
- 2) SAR is required for Rel. 7 HSPA+ when SAR is required for Rel. 6 HSPA; otherwise, the 3G SAR test reduction procedure is applied to (uplink) HSPA+ with 12.2 kbps RMC as the primary mode.36 Power is measured for HSPA+ that supports uplink 16 QAM according to configurations in Table C.11.1.4 of 3GPP TS 34.121-1 to determine SAR test reduction.
- 3) SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.
- 4) Regardless of whether a PBA is required, the following information must be verified and included in the SAR report for devices supporting HSPA, HSPA+ or DC-HSDPA: a) The output power measurement results and applicable release version(s) of 3GPP TS 34.121.
- i) Power measurement difficulties due to test equipment setup or availability must be resolved between the grantee and its test lab.
- b) The power measurement results are in agreement with the individual device implementation and specifications. When Enhanced MPR (E-MPR) applies, the normal MPR targets may be modified according to the Cubic Metric (CM) measured by the device, which must be taken into consideration.
- c) The UE category, operating parameters, such as the β and Δ values used to configure the device for testing, power setback procedures described in 3GGPP TS 34.121 for the power measurements, and HSPA/HSPA+ channel conditions (active and stable) for the entire duration of the measurement according to the required E-TFCI and AG index values.
- 5) When SAR measurement is required, the test configurations, procedures and power measurement results must be clearly described to confirm that the required test parameters are used, including E-TFCI and AG index stability and output power conditions.

Table 7: HS-DSCH UE category

Table 5.1a: FDD HS-DSCH physical layer categories

HS-DSCH category	Maximum number of HS-DSCH codes received	Minimum inter-TTI interval	Maximum number of bits of an HS- DSCH transport block received within an HS-DSCH TTI NOTE 1	Total number of soft channel bits	Supported modulations without MIMO operation or dual cell operation	Supported modulatio ns with MIMO operation and without dual cell operation	Supported modulatio ns with dual cell operation
Category 1	5	3	7298	19200			
Category 2	5	3	7298	28800	1		
Category 3	5	2	7298	28800			
Category 4	5	2	7298	38400			
Category 5	5	1	7298	57600	0001/ 400		
Category 6	5	1	7298	67200	QPSK, 16QAM		
Category 7	10	1	14411	115200		Not	
Category 8	10	1	14411	134400		applicable	
Category 9	15	1	20251	172800	8	(MIMO not	
Category 10	15	1 27952 172800	8	supported)			
Category 11	5	2	3630	14400	CONTRACTOR		
Category 12	5	1	3630	28800	QPSK		
Category 13	15	1	35280	259200	QPSK.		Not applicable
Category 14	15	1	42192	259200	16QAM, 64QAM		(dual cell operation
Category 15	15	1	23370	345600	ODCK 4	20414	not
Category 16	15	1	27952	345600	QPSK, 16	QAIVI	supported)
Category 17 NOTE 2	15	1	35280	259200	QPSK, 16QAM, 64QAM	157	Supportos
NOIE2	20 S	18	23370	345600		QPSK, 16QAM	Ţ.
Category 18 NOTE 3	15	1	42192	259200	QPSK, 16QAM, 64QAM	85	
NOTES			27952	345600	134	QPSK, 16QAM	
Category 19	15	1	35280	518400	ODER 1004	M 6404M	
Category 20	15	1	42192	518400	QPSK, 16QAI	VI, 04QANI	
Category 21	15	1	23370	345600			QPSK,
Category 22	15	1	27952	345600	1		16QAM
Category 23	15	1	35280	518400	-		
Category 24	15	1	42192	518400	GE	84 8	16QAM, 64QAM

5.3.3 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer

FCC SAR Test Report No.: R2004A0208-S1

target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

C)A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

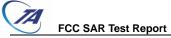
For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the *reported* SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

C SAR Test Report No.: R2004A0208-S1

5.3.4 Wi-Fi Test Configuration

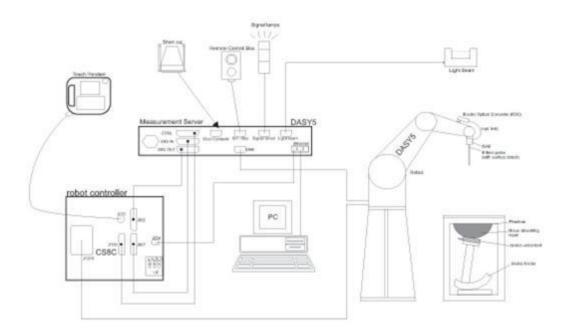

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that
 exposure configuration and wireless mode combination within the frequency band or
 aggregated band. DSSS and OFDM configurations are considered separately according to
 the required SAR procedures.
- 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - ♦ When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.



FCC SAR Test Report No.: R2004A0208-S1

6 SAR Measurements System Configuration

6.1 SAR Measurement Set-up

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- ➤ The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY software.
- > Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4(manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration

service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic 10 μ W/g to > 100 mW/g Linearity: Range \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip

diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure Scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to

6 GHz with precision of better 30%.

Report No.: R2004A0208-S1

E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAR=C\(\Delta\)T/\(\Delta\)t

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

SAR=IEI²σ/ρ

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.3 SAR Measurement Procedure

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz
Maximum distance from closest		
measurement point (geometric center of	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
probe sensors) to phantom surface		
Maximum probe angle from probe axis to		
phantom surface normal at the	30° ± 1°	20° ± 1°
measurement location		
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm
	2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm
	When the x or y dimens	sion of the test device, in
Maximum area scan spatial resolution:	the measurement plar	ne orientation, is smaller
ΔxArea, ΔyArea	than the above, the m	neasurement resolution
	must be ≤ the correspo	nding x or y dimension of
	the test device with at	least one measurement
	point on the	e test device.

Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3GHz	> 3 GHz
Maximum zoom	2000 000	tial recolution: A v	≤2GHz: ≤8mm	3 – 4GHz: ≤5mm*
Maximum 200m	i scan spa	tial resolution: $\triangle x_{zoom} \triangle y_{zoom}$	2 – 3GHz: ≤5mm*	4 – 6GHz: ≤4mm*
Massinasson				3 – 4GHz: ≤4mm
Maximum	Uı	niform grid: $\triangle z_{zoom}(n)$	≤5mm	4 – 5GHz: ≤3mm
zoom scan				5 – 6GHz: ≤2mm
spatial		$\triangle z_{zoom}(1)$: between 1 st two		3 – 4GHz: ≤3mm
resolution,	Cradad	points closest to phantom	≤4mm	4 – 5GHz: ≤2.5mm
normal to	Graded	surface		5 – 6GHz: ≤2mm
phantom surface	grid	△z _{zoom} (n>1): between	∠1 F. ∧ .	· (n 1)
Surface		subsequent points	≥1.5•△△	z _{zoom} (n-1)
Minimum				3 – 4GHz: ≥28mm
zoom scan		X, y, z	≥30mm	4 – 5GHz: ≥25mm
volume				5 – 6GHz: ≥22mm

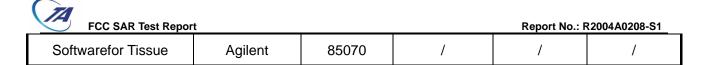
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

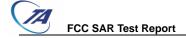
Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.


^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4W/kg, ≤8mm, ≤7mm and ≤5mm zoom scan resolution may be applied, respectively, for 2GHz to 3GHz, 3GHz to 4GHz and 4GHz to 6GHz.



Report No.: R2004A0208-S1

7 Main Test Equipment

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Cal.	Cal. Due Date
Network analyzer	Agilent	E5071B	MY42404014	2020-05-17	2021-05-16
Dielectric Probe Kit	HP	85070E	US44020115	2020-05-17	2021-05-16
Power meter	Agilent	E4417A	GB41291714	2020-05-17	2021-05-16
Power sensor	Agilent	N8481H	MY50350004	2020-05-17	2021-05-16
Power sensor	Agilent	E9327A	US40441622	2020-05-17	2021-05-16
Dual directional coupler	Agilent	778D-012	50519	/	/
Dual directional coupler	Agilent	777D	50146	/	/
Amplifier	INDEXSAR	IXA-020	0401	2020-05-17	2021-05-16
Wireless communication tester	Anritsu	MT8820C	6201342015	2020-05-17	2021-05-16
Wideband radio communication tester	R&S	CMW 500	113645	2020-05-17	2021-05-16
Base Station Simulator	R&S	CMW270	100673	2020-05-17	2021-05-16
E-field Probe	SPEAG	EX3DV4	3677	2019-06-19	2020-06-18
E-field Probe	SPEAG	EX3DV4	7515	2019-10-22	2020-10-21
DAE	SPEAG	DAE4	1317	2019-10-23	2020-10-22
Validation Kit 750MHz	SPEAG	D750V3	1045	2017-08-27	2020-08-26
Validation Kit 835MHz	SPEAG	D835V2	4d020	2017-08-28	2020-08-27
Validation Kit 1750MHz	SPEAG	D1750V2	1033	2020-02-25	2023-02-24
Validation Kit 1900MHz	SPEAG	D1900V2	5d060	2017-08-26	2020-08-25
Validation Kit 2450MHz	SPEAG	D2450V2	786	2017-08-29	2020-08-28
Validation Kit 2600MHz	SPEAG	D2600V2	1025	2018-05-02	2021-05-01
Validation Kit 5GHz	SPEAG	D5GHzV2	1151	2020-02-27	2023-02-26
Temperature Probe	Tianjin jinming	JM222	AA1009129	2020-05-17	2021-05-16
Hygrothermograph	Anymetr	NT-311	20150731	2020-05-17	2021-05-16
Twin SAM Phantom	Speag	SAM1	TP-1534	/	/
Software for Test	Speag	DASY52	/	/	/

8 Tissue Dielectric Parameter Measurements & System Verification

8.1 Tissue Verification

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm 2^{\circ}\text{C}$ of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 24 hours of use; or earlier if the dielectric parameters can become out of tolerance.

Target values

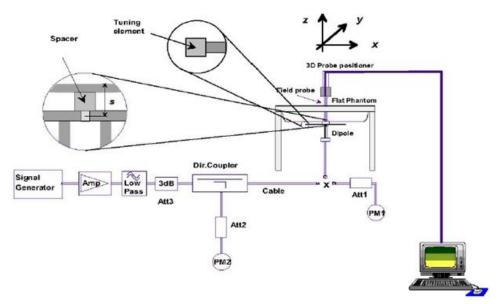
Frequency (MHz)	Water (%)	Salt (%)	Sugar (%)	Glycol (%)	Preventol (%)	Cellulose (%)	ε _r	σ(s/m)
750	41.448	1.452	56	0	0.1	1.0	41.9	0.89
835	41.45	1.45	56	0	0.1	1.0	41.5	0.90
1750	55.24	0.31	0	44.45	0	0	40.1	1.37
1900	55.242	0.306	0	44.452	0	0	40.0	1.40
2450	62.7	0.5	0	36.8	0	0	39.2	1.80
2600	55.242	0.306	0	44.452	0	0	39.0	1.96
Frequency (MHz)	Water (%)		thylengly nohexyle		Triton	X-100	ε _r	σ(s/m)
5250	65.53		17.24		17.23		35.9	4.71
5600	65.53	17.24			17.23		35.5	5.07
5750	65.53		17.24		17	.23	35.4	5.22

CC SAR Test Report No.: R2004A0208-S1

Measurements results

			Measured	Dielectric	Target D	ielectric	Lir	nit
Frequency	Test Date	Temp	Paran	neters	Paran	neters	(Within	n ±5%)
(MHz)	Test Date	℃	٤r	σ(s/m)	٤r	σ(s/m)	Dev ε _r (%)	Dev σ(%)
750	5/25/2020	21.5	42.3	0.88	41.9	0.89	0.95	-1.12
750	6/28/2020	21.5	42.0	0.87	41.9	0.89	0.24	-2.25
	5/20/2020	21.5	41.3	0.87	41.5	0.90	-0.48	-3.33
835	5/23/2020	21.5	41.4	0.92	41.5	0.90	-0.24	2.22
	6/28/2020	21.5	41.4	0.88	41.5	0.90	-0.24	-2.22
1750	5/21/2020	21.5	40.1	1.34	40.1	1.37	0.00	-2.19
1750	6/28/2020	21.5	40.2	1.36	40.1	1.37	0.25	-0.73
	5/19/2020	21.5	40.2	1.43	40.0	1.40	0.50	2.14
1900	5/22/2020	21.5	40.0	1.40	40.0	1.40	0.00	0.00
	6/28/2020	21.5	40.1	1.41	40.0	1.40	0.25	0.71
2450	5/24/2020	21.5	38.6	1.81	39.2	1.80	-1.53	0.56
2450	6/28/2020	21.5	38.7	1.88	39.2	1.80	-1.28	4.44
2600	5/24/2020	21.5	38.4	1.94	39.0	1.96	-1.54	-1.02
2600	6/28/2020	21.5	38.2	2.01	39.0	1.96	-2.05	2.55
F3F0	5/26/2020	21.5	35.5	4.80	35.9	4.71	-1.11	1.91
5250	6/29/2020	21.5	36.0	4.86	35.9	4.71	0.28	3.18
5600	5/27/2020	21.5	34.2	5.21	35.5	5.07	-3.66	2.76
5000	6/29/2020	21.5	34.8	5.19	35.5	5.07	-1.97	2.37
E7E0	5/27/2020	21.5	34.9	5.21	35.4	5.22	-1.41	-0.19
5750	6/29/2020	21.5	34.0	5.30	35.4	5.22	-3.95	1.53

Note: The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm for measurements > 3 GHz.



FCC SAR Test Report No.: R2004A0208-S1

8.2 System Performance Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured using the dielectric probe kit and the network analyzer. A system check measurement for every day was made following the determination of the dielectric parameters of the Tissue simulates, using the dipole validation kit. The dipole antenna was placed under the flat section of the twin SAM phantom.

System check is performed regularly on all frequency bands where tests are performed with the DASY system.

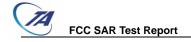
Picture 1System Performance Check setup

Picture 2 Setup Photo

FCC SAR Test Report No.: R2004A0208-S1

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:


Dipole		Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ
Dipole		8/27/2017	-28.5	/	52.5	/
D750V3	Head Liquid	8/26/2018	-27.6	3.3	53.2	-0.7
SN: 1045	Liquid	8/25/2019	-27.5	0.4	54.1	-0.9
Dipole		8/28/2017	-31.9	/	50.3	/
D835V2	Head Liquid	8/27/2018	-29.0	10.0	46.6	3.7
SN: 4d020	Liquid	8/26/2019	-29.4	-1.4	45.9	0.7
Dipole		8/26/2017	-23.4	/	52.0	/
D1900V2	Head Liquid	8/25/2018	-24.7	-5.3	54.4	-2.4
SN: 5d060	Liquid	8/24/2019	-24.9	-0.8	56.2	-1.8
Dipole		8/29/2017	-25.5	/	53.4	/
D2450V2	Head Liquid	8/28/2018	-23.0	10.9	57.2	-3.8
SN: 786	Liquid	8/27/2019	-22.2	3.6	56.4	8.0
Dipole	Head	5/2/2018	-22.0	/	48.1	/
D2600V2 SN: 1025	Liquid	5/1/2019	-22.5	-2.2	48.7	-0.6

System Check results

Frequency (MHz)	Test Date	Temp ℃	250mW /100mW Measured SAR _{1g} (W/kg)	1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)	Plot No.
750	5/25/2020	21.5	2.13	8.52	8.34	2.16	1
730	6/28/2020	21.5	2.10	8.40	8.34	0.72	2
	5/20/2020	21.5	2.46	9.84	9.45	4.13	3
835	5/23/2020	21.5	2.43	9.72	9.45	2.86	4
	6/28/2020	21.5	2.44	9.76	9.45	3.28	5
1750	5/21/2020	21.5	9.11	36.44	35.90	1.50	6
1750	6/28/2020	21.5	8.96	35.84	35.90	-0.17	7
	5/19/2020	21.5	9.85	39.40	40.10	-1.75	8
1900	5/22/2020	21.5	10.55	42.20	40.10	5.24	9
	6/28/2020	21.5	9.88	39.52	40.10	-1.45	10
0.450	5/24/2020	21.5	13.70	54.80	52.60	4.18	11
2450	6/28/2020	21.5	12.50	50.00	52.60	-4.94	12
3600	5/24/2020	21.5	13.88	55.52	54.10	2.62	13
2600	6/28/2020	21.5	13.90	55.60	54.10	2.77	14
5250	5/26/2020	21.5	7.87	78.7	78.00	0.90	15

- FCC SAR	rest Report				Report	NO.: KZUU4AU	1200-51			
	6/29/2020	21.5	7.46	74.6	78.00	-4.36	16			
5600	5/27/2020	21.5	7.67	76.7	80.50	-4.72	17			
5600	6/29/2020	21.5	8.10	81.0	80.50	0.62	18			
F750	5/27/2020	21.5	7.66	76.6	77.40	-1.03	19			
5750 6/29/2020 21.5 7.15 71.5 77.40 -7.62 20										
Note: Target	: Values used o	derive fro	m the calibration	n certificate Da	ita Storage and	l Evaluation	١.			

8.3 SAR System Validation

Per FCC KDB 865664 D02v01, SAR system verification is required to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles are used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point must be validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

a tabulated summary of the system validation status, measurement frequencies, SAR probes, calibrated signal type(s) and tissue dielectric parameters has been included.

Frequency		Probe	Probe				COND	CW	Validatio	1	Mod	I. Validat	ion
[MHz]	Date	SN	Туре	Probe C	al Point	PERM (Er)	COND (Σ)	Sensitivity	Probe	Probe	Mod.	Duty	PAR
[WITZ]		SIN	туре			(=1)	(2)	Sensitivity	Linearity	Isotropy	Туре	Factor	PAR
750	5/25/2020	3677	EX3DV4	750	Head	42.81	0.85	PASS	PASS	PASS	FDD	PASS	N/A
835	5/20/2020	3677	EX3DV4	835	Head	42.22	0.90	PASS	PASS	PASS	GMSK	PASS	N/A
1750	5/21/2020	3677	EX3DV4	1750	Head	39.91	1.32	PASS	PASS	PASS	NA	N/A	N/A
1900	5/19/2020	3677	EX3DV4	1900	Head	39.43	1.42	PASS	PASS	PASS	GMSK	PASS	N/A
2450	5/24/2020	3677	EX3DV4	2450	Head	38.19	1.83	PASS	PASS	PASS	OFDM	PASS	PASS
2600	5/24/2020	3677	EX3DV4	2600	Head	37.60	1.99	PASS	PASS	PASS	TDD	PASS	N/A
5250	5/26/2020	3677	EX3DV4	5250	Head	35.36	4.83	PASS	PASS	PASS	OFDM	N/A	PASS
5600	5/27/2020	3677	EX3DV4	5600	Head	34.43	5.29	PASS	PASS	PASS	OFDM	N/A	PASS
5750	5/27/2020	3677	EX3DV4	5750	Head	34.07	5.47	PASS	PASS	PASS	OFDM	N/A	PASS
750	5/25/2020	3677	EX3DV4	750	Body	55.35	0.99	PASS	PASS	PASS	FDD	PASS	N/A
835	5/23/2020	3677	EX3DV4	835	Body	54.88	0.98	PASS	PASS	PASS	GMSK	PASS	N/A
1750	5/21/2020	3677	EX3DV4	1750	Body	51.24	1.44	PASS	PASS	PASS	NA	N/A	N/A
1900	5/22/2020	3677	EX3DV4	1900	Body	50.98	1.56	PASS	PASS	PASS	GMSK	PASS	N/A
2450	5/24/2020	3677	EX3DV4	2450	Body	50.59	1.95	PASS	PASS	PASS	OFDM	PASS	PASS
2600	5/24/2020	3677	EX3DV4	2600	Body	50.14	2.13	PASS	PASS	PASS	TDD	PASS	N/A
5250	5/26/2020	3677	EX3DV4	5250	Body	47.37	5.44	PASS	PASS	PASS	OFDM	N/A	PASS
5600	5/27/2020	3677	EX3DV4	5600	Body	46.42	5.99	PASS	PASS	PASS	OFDM	N/A	PASS
5750	5/27/2020	3677	EX3DV4	5750	Body	46.02	6.23	PASS	PASS	PASS	OFDM	N/A	PASS
750	6/28/2020	7515	EX3DV4	750	Head	42.81	0.85	PASS	PASS	PASS	FDD	PASS	N/A
835	6/28/2020	7515	EX3DV4	835	Head	42.22	0.90	PASS	PASS	PASS	GMSK	PASS	N/A
1750	6/28/2020	7515	EX3DV4	1750	Head	39.91	1.32	PASS	PASS	PASS	NA	N/A	N/A
1900	6/28/2020	7515	EX3DV4	1900	Head	39.43	1.42	PASS	PASS	PASS	GMSK	PASS	N/A
2450	6/28/2020	7515	EX3DV4	2450	Head	38.19	1.83	PASS	PASS	PASS	OFDM	PASS	PASS
2600	6/28/2020	7515	EX3DV4	2600	Head	37.60	1.99	PASS	PASS	PASS	TDD	PASS	N/A
5250	6/29/2020	7515	EX3DV4	5250	Head	35.36	4.83	PASS	PASS	PASS	OFDM	N/A	PASS
5600	6/29/2020	7515	EX3DV4	5600	Head	34.43	5.29	PASS	PASS	PASS	OFDM	N/A	PASS
5750	6/29/2020	7515	EX3DV4	5750	Head	34.07	5.47	PASS	PASS	PASS	OFDM	N/A	PASS

Report No.: R2004A0208-S1 6/28/2020 7515 EX3DV4 55.35 **PASS** N/A 750 750 Body 0.99 **PASS PASS FDD PASS** N/A 6/28/2020 7515 EX3DV4 54.88 0.98 **PASS** 835 835 Body **PASS PASS PASS GMSK** EX3DV4 1750 6/28/2020 7515 1750 Body 51.24 1.44 **PASS PASS PASS** NA N/A N/A 1900 6/28/2020 7515 EX3DV4 1900 Body 50.98 1.56 **PASS PASS PASS GMSK PASS** N/A 2450 6/28/2020 7515 EX3DV4 2450 50.59 1.95 **PASS PASS PASS** OFDM **PASS** PASS Body 6/28/2020 7515 **PASS** PASS TDD **PASS** 2600 EX3DV4 2600 Body 50.14 2.13 **PASS** N/A N/A 5250 6/29/2020 7515 EX3DV4 5250 Body 47.37 5.44 **PASS PASS PASS** OFDM PASS 5600 6/29/2020 7515 EX3DV4 5600 Body 46.42 5.99 PASS PASS **PASS OFDM** N/A **PASS** PASS 5750 6/29/2020 7515 EX3DV4 5750 Body 46.02 6.23 **PASS PASS PASS** OFDM N/A

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664D01v01 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5dB), such as OFDM according to KDB 865664.

9 Normal and Maximum Output Power

KDB 447498 D01 at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

9.1 GSM Mode

		Burst-Ave	eraged ou	itput pow	ver(dBm)		Frame-Averaged output power(dBm)			
GSN	Л 850	Tune-up	Channe	l/Frenqu	cy(MHz)	Division	Tune-up	Channe	l/Frenquo	y(MHz)
GSI	71 030	MAX	128	190	251	Factors	MAX	128	190	251
		IVIAA	/824.2	/836.6	/848.8		IVIAA	/824.2	/836.6	/848.8
ODDO/	1 Tx Slot	34.00	33.42	33.33	33.34	9.03	24.97	24.39	24.30	24.31
GPRS/ EGPRS	2 Tx Slots	34.00	33.26	33.18	33.24	6.02	27.98	27.24	27.16	27.22
(GMSK)	3 Tx Slots	32.00	31.48	31.57	31.52	4.26	27.74	27.22	27.31	27.26
(Olviolt)	4 Tx Slots	31.00	30.13	30.31	30.07	3.01	27.99	27.12	27.10	27.06
	1 Tx Slot	28.50	27.76	27.72	27.59	9.03	19.47	18.73	18.69	18.56
EGPRS	2 Tx Slots	28.00	27.04	27.12	27.17	6.02	21.98	21.02	21.10	21.15
(8PSK)	3 Tx Slots	28.00	26.96	27.02	26.95	4.26	23.74	22.70	22.76	22.69
	4 Tx Slots	27.50	26.47	26.72	26.87	3.01	24.49	23.46	23.71	23.86
		Burst-Ave	eraged ou	itput pow	ver(dBm)		Frame-A	veraged c	utput pov	ver(dBm)
GSM	I 1900	Tune-up	Channel/Frenqucy(MHz)			Division	Tune-up	Channe	l/Frenquo	y(MHz)
GOIV	1 1900	MAX	512	661	810	Factors		512	661	810
		IVIAA					N/I/V			
			/1850.2	/1880	/1909.8		MAX	/1850.2	/1880	/1909.8
0000/	1 Tx Slot	31.50	30.78	/1880 30.63	/1909.8 30.63	9.03	22.47	/1850.2 21.75	/1880 21.60	/1909.8 21.60
GPRS/	1 Tx Slot 2 Tx Slots	31.50 31.50				9.03 6.02				
EGPRS			30.78	30.63	30.63		22.47	21.75	21.60	21.60
	2 Tx Slots	31.50	30.78 30.69	30.63 30.48	30.63 30.51	6.02	22.47 25.48	21.75 24.67	21.60 24.46	21.60 24.49
EGPRS	2 Tx Slots 3 Tx Slots	31.50 31.00	30.78 30.69 30.41	30.63 30.48 30.27	30.63 30.51 30.34	6.02 4.26	22.47 25.48 26.74	21.75 24.67 26.15	21.60 24.46 26.01	21.60 24.49 26.08
EGPRS	2 Tx Slots 3 Tx Slots 4 Tx Slots	31.50 31.00 31.00	30.78 30.69 30.41 30.33	30.63 30.48 30.27 30.11	30.63 30.51 30.34 30.16	6.02 4.26 3.01	22.47 25.48 26.74 27.99	21.75 24.67 26.15 27.32	21.60 24.46 26.01 27.10	21.60 24.49 26.08 27.15
EGPRS (GMSK)	2 Tx Slots 3 Tx Slots 4 Tx Slots 1 Tx Slot	31.50 31.00 31.00 27.50	30.78 30.69 30.41 30.33 26.72	30.63 30.48 30.27 30.11 26.84	30.63 30.51 30.34 30.16 26.74	6.02 4.26 3.01 9.03	22.47 25.48 26.74 27.99 18.47	21.75 24.67 26.15 27.32 17.69	21.60 24.46 26.01 27.10 17.81	21.60 24.49 26.08 27.15 17.71

Notes:The worst-case configuration and mode for SAR testing is determined to be as follows:

^{1.} Standalone: GSM 850 GMSK (GPRS) mode with 4 time slots for Max power, GSM 1900 GMSK (GPRS) mode with 4 time slots for Max power, based on the output power measurements above.

C SAR Test Report No.: R2004A0208-S1

9.2 WCDMA Mode

The following tests were completed according to the test requirements outlined in the 3GPP TS34.121 specification.

WC	DMA	Band II(dBm)					Band I	V(dBm)		Band V(dBm)			
Tx C	hannel	9262	9400	9538	Tune-up	1312	1413	1513	Tune-up	4132	4183	4233	Tune-up
Frequer	ncy(MHz)	1852.4	1880	1907.6	Limit	1712.4	1732.6	1752.6	Limit	826.4	836.6	846.6	Limit
RMC	12.2kbps	22.98	22.96	22.79	24.00	23.01	23.01	23.03	24.00	23.19	23.28	23.21	24.00
AMR	12.2kbps	22.88	22.87	22.66	24.00	22.87	22.89	23.01	24.00	23.09	23.19	23.08	24.00
	Sub 1	22.34	22.28	22.10	23.00	22.27	22.43	22.47	23.00	22.65	22.70	22.65	23.00
HSDPA	Sub 2	22.33	22.30	22.07	23.00	22.26	22.45	22.44	23.00	22.64	22.72	22.62	23.00
ПЗДРА	Sub 3	21.80	21.80	21.59	22.50	21.73	21.95	21.96	22.50	22.11	22.22	22.14	22.50
	Sub 4	21.81	21.81	21.57	22.50	21.74	21.96	21.94	22.50	22.12	22.23	22.12	22.50
	Sub 1	22.30	22.27	22.05	23.00	22.23	22.42	22.42	23.00	22.61	22.69	22.60	23.00
	Sub 2	21.29	21.25	21.04	22.00	21.22	21.40	21.41	22.00	21.60	21.67	21.59	22.00
HSUPA	Sub 3	21.76	21.73	21.53	22.50	21.69	21.88	21.90	22.50	22.07	22.15	22.08	22.50
	Sub 4	21.22	21.22	21.01	22.00	21.15	21.37	21.38	22.00	21.53	21.64	21.56	22.00
	Sub 5	22.23	22.20	21.99	23.00	22.16	22.35	22.36	23.00	22.54	22.62	22.54	23.00
	Sub 1	22.22	22.22	22.00	23.00	22.15	22.37	22.37	23.00	22.53	22.64	22.55	23.00
DC-	Sub 2	22.21	22.21	21.99	23.00	22.14	22.36	22.36	23.00	22.52	22.63	22.54	23.00
HSDPA	Sub 3	21.79	21.70	21.50	22.50	21.72	21.85	21.87	22.50	22.10	22.12	22.05	22.50
	Sub 4	21.78	21.69	21.49	22.50	21.71	21.84	21.86	22.50	22.09	22.11	22.04	22.50
HSPA+	16QAM	21.77	21.77	21.56	23.00	21.70	21.92	21.93	23.00	22.08	22.19	22.11	23.00

Note: 1.Per KDB 941225 D01, SAR for each exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

C SAR Test Report No.: R2004A0208-S1

9.3 LTE Mode

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	-
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

	LTE FDD B	and 2		Conducted Power(dBm)			T
Danduidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up
Bandwidth				18607/1850.7	18900/1880	19193/1909.3	Limit
		1	0	22.41	22.62	22.38	23.50
		1	2	22.66	22.77	22.55	23.50
		1	5	22.53	22.67	22.41	23.50
	QPSK	3	0	22.63	22.51	22.46	23.50
		3	2	22.64	22.49	22.35	23.50
		3	3	22.64	22.48	22.25	23.50
1.4MHz		6	0	21.61	21.56	21.51	22.50
1. 4 ⅣΠΖ		1	0	21.93	21.78	21.50	22.50
		1	2	21.10	22.04	21.59	22.50
		1	5	20.96	21.86	21.49	22.50
	16QAM	3	0	21.13	21.88	21.38	22.50
		3	2	21.93	21.87	21.48	22.50
		3	3	21.55	21.89	21.36	22.50
		6	0	20.63	20.82	20.49	21.50
Dondwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up
Bandwidth				18615/1851.5	18900/1880	19185/1908.5	Limit
3MHz	QPSK	1	0	22.33	22.63	22.51	23.50
		1	7	22.30	22.44	22.40	23.50
		1	14	22.73	22.62	22.51	23.50
		8	0	21.64	21.67	21.48	22.50
		8	4	21.70	21.67	21.48	22.50
		8	7	21.66	21.64	21.53	22.50
		15	0	21.69	21.65	21.55	22.50
	16QAM	1	0	21.63	21.97	21.65	22.50
		1	7	21.42	21.66	21.45	22.50
		1	14	21.77	21.92	21.56	22.50
		8	0	20.45	20.61	20.76	21.50
TA Technology (Shanghai) Co. Ltd. TA-MR-05-003S Page 35 o					(050		

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-003S

Page 35 of 250

FCC SAR Test Report Report No.: R2004A0208-S1

Bandwidth Modulation RB size RB offset Channel/Frequency (MHz) Turing 1	O FCC	C SAR Test Repor					Report No.: R2004	10200-01
Bandwidth Modulation RB size RB offset Channel/Frequency (MHz) Turn 18625/1852.5 18900/1880 19175/1907.5 L			8		20.48	20.62	20.44	21.50
Bandwidth Modulation RB size RB offset Channel/Frequency (MHz) Turn 18625/1852.5 18900/1880 19175/1907.5 L			8	7	20.51	20.49	20.38	21.50
Bandwidth Modulation RB size RB offset			15	0	20.31	20.38	20.39	21.50
Table Tabl	Bandwidth	Modulation	RB size	RR offset	Channel/Frequency (MHz)			Tune-up
Modulation RB size RB offset RB offset QPSK 1		Woddiation		RB Ollset	18625/1852.5	18900/1880	19175/1907.5	Limit
Modulation RB size RB offset Application Applicatio			1	0	22.73	22.52	22.55	23.50
A PSK			1	13	22.49	22.48	22.38	23.50
Table Tabl			1	24	22.60	22.90	22.42	23.50
12		QPSK	12	0	21.65	21.67	21.59	22.50
The second color of the			12	6	21.64	21.66	21.59	22.50
Tomhz Tomh			12	13	21.68	21.69	21.50	22.50
1	5MHz		25	0	21.65	21.70	21.49	22.50
1	OWN 12		1	0	21.74	22.02	21.66	22.50
Tunder T			1	13	21.69	21.49	21.61	22.50
12 6 20.81 20.88 20.77 20.81 20.92 20.90 20.72 20.90 20.72 20.90 20.72 20.90 20.72 20.90 20.84 20.90 20.90 20.84 20.90 20.84 20.90 20.84 20.90 20.84 20.90 20.80 20.84 20.90 20.80 20.84 20.90 20.80 20.84 20.90 20.80 20.84 20.90 20.80 20.84 20.90 20.80 20.84 20.90 20.80 20.84 20.90 20.80 20.84 20.90 20.80 20.84 20.90 20.80 20.84 20.90 20.80 20.84 20.90 20.80 20.84 20.90 20.90 20.80 20.84 20.90 20.90 20.80 20.			1	24	21.44	21.78	21.64	22.50
12		16QAM	12	0	20.81	20.88	20.78	21.50
Bandwidth Modulation RB size RB offset RB offset Channel/Frequency (MHz) 1			12	6	20.81	20.88	20.77	21.50
Bandwidth Modulation RB size RB offset Channel/Frequency (MHz) Tur. 1 0 22.58 22.70 22.58 23.70 1 25 22.57 22.59 22.53 23.70 1 49 22.85 22.64 22.47 23.70 25 0 21.69 21.71 21.67 23.70 25 13 21.69 21.71 21.67 23.70 25 13 21.69 21.71 21.67 23.70 <td></td> <td></td> <td>12</td> <td>13</td> <td>20.92</td> <td>20.90</td> <td>20.72</td> <td>21.50</td>			12	13	20.92	20.90	20.72	21.50
Pandwidth Modulation RB size RB offset			25	0	20.92	20.80	20.84	21.50
1 0 22.58 22.70 22.58 23 1 25 22.57 22.59 22.53 23 1 49 22.85 22.64 22.47 23 25 0 21.69 21.71 21.67 23 25 13 21.69 21.70 21.67 23 25 25 21.76 21.67 21.57 23 50 0 21.67 21.74 21.58 23 1 0 21.68 21.81 21.17 23 1 25 21.59 21.81 21.51 23 1 49 21.95 21.85 21.28 23	Dandwidth	Modulation	RB size	DR offcot				Tune-up
1 25 22.57 22.59 22.53 23 23 1 49 22.85 22.64 22.47 23 25 25 21.69 21.71 21.67 22 25 25 25 21.76 21.67 21.57 23 25 25 21.67 21.67 21.57 22 25 25 21.67 21.67 21.58 22 21.67 21.68 21.81 21.17 22 21.59 21.81 21.51 22 21.59 21.81 21.51 22 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85 21.85 21.28 22 21.85	Dariuwiuiii	Woddiation		ND 011361	18650/1855	18900/1880	19150/1905	Limit
1 49 22.85 22.64 22.47 23 25 0 21.69 21.71 21.67 23 25 13 21.69 21.70 21.67 23 25 25 25 21.76 21.67 21.57 23 50 0 21.67 21.74 21.58 23 1 0 21.68 21.81 21.17 23 1 25 21.59 21.81 21.51 23 1 49 21.95 21.85 21.28 23			1	0	22.58	22.70	22.58	23.50
QPSK 25 0 21.69 21.71 21.67 22 25 13 21.69 21.70 21.67 22 25 25 21.76 21.67 21.57 22 50 0 21.67 21.74 21.58 22 1 0 21.68 21.81 21.17 22 1 25 21.59 21.81 21.51 22 1 49 21.95 21.85 21.28 22			1	25	22.57	22.59	22.53	23.50
10MHz 25 13 21.69 21.70 21.67 22 25 25 21.76 21.67 21.57 22 50 0 21.67 21.74 21.58 22 1 0 21.68 21.81 21.17 22 1 25 21.59 21.81 21.51 22 1 49 21.95 21.85 21.28 22			1	49	22.85	22.64	22.47	23.50
10MHz 25 25 21.76 21.67 21.57 22 25 21.76 21.67 21.57 22 25 21.67 21.74 21.58 22 21.68 21.81 21.17 22 21.59 21.81 21.51 22 21.59 21.85 21.28 22 21.59 21.		QPSK	25	0	21.69	21.71	21.67	22.50
10MHz 50 0 21.67 21.74 21.58 22 1 0 21.68 21.81 21.17 22 1 25 21.59 21.81 21.51 22 1 49 21.95 21.85 21.28 22			25	13	21.69	21.70	21.67	22.50
1 0 21.68 21.81 21.17 22 1 25 21.59 21.81 21.51 22 1 49 21.95 21.85 21.28 22	10MHz		25	25	21.76	21.67	21.57	22.50
1 0 21.68 21.81 21.17 22 1 25 21.59 21.81 21.51 22 1 49 21.95 21.85 21.28 22			50	0	21.67	21.74	21.58	22.50
1 49 21.95 21.85 21.28 22			1	0	21.68	21.81	21.17	22.50
			1	25	21.59	21.81	21.51	22.50
160AM 25 0 20.70 20.60 20.04 20			1	49	21.95	21.85	21.28	22.50
10QAW 25 0 20.70 20.69 20.61 2		16QAM	25	0	20.70	20.69	20.61	21.50
25 13 20.70 20.70 20.60 2°			25	13	20.70	20.70	20.60	21.50
25 25 20.69 20.63 20.47 2°			25	25	20.69	20.63	20.47	21.50
50 0 20.72 20.65 20.61 2 ²			50	0	20.72	20.65	20.61	21.50
Bandwidth Modulation RB size RB offset Channel/Frequency (MHz) Tur	Bandwidth	Modulation	RB size RB offse		Channel/Frequency (MHz)			Tune-up
18675/1857.5 18900/1880 19125/1902.5 L	Dariuwiulii	Modulation	ND SIZE	ND Ollset	18675/1857.5	18900/1880	19125/1902.5	Limit
1 0 22.87 22.72 22.81 23	15MHz		1	0	22.87	22.72	22.81	23.50
1 38 22.54 22.49 22.56 23			1	38	22.54	22.49	22.56	23.50
15MHz QPSK 1 74 22.77 22.70 22.78 23		UDGK	1	74	22.77	22.70	22.78	23.50
36 0 21.78 21.76 21.60 22		QI OIN	36	0	21.78	21.76	21.60	22.50
36 18 21.78 21.75 21.61 22			36	18	21.78	21.75	21.61	22.50
36 39 21.78 21.72 21.74 22			36	39	21.78	21.72	21.74	22.50

FCC	SAR Test Repor	t				Report No.: R2004	A0208-S1
		75	0	21.69	21.73	21.71	22.50
		1	0	21.71	22.45	21.63	22.50
		1	38	21.47	21.82	21.20	22.50
		1	74	21.72	22.46	21.92	22.50
	16QAM	36	0	20.76	20.71	20.55	21.50
		36	18	20.76	20.72	20.55	21.50
		36	39	20.76	20.78	20.66	21.50
		75	0	20.77	20.79	20.66	21.50
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up
Dariuwiulii	iviodulation	KD SIZE	KD Ollset	18700/1860	18900/1880	19100/1900	Limit
		1	0	22.70	22.99	22.69	23.50
		1	50	22.70	22.91	22.68	23.50
		1	99	22.68	22.97	22.73	23.50
	QPSK	50	0	21.72	21.78	21.65	22.50
		50	25	21.77	21.78	21.64	22.50
		50	50	21.72	21.70	21.74	22.50
20MHz		100	0	21.69	21.75	21.64	22.50
ZUIVINZ		1	0	22.01	22.02	21.50	22.50
	16QAM	1	50	21.96	21.76	21.18	22.50
		1	99	21.92	21.56	21.38	22.50
		50	0	20.78	20.71	20.53	21.50
		50	25	20.79	20.71	20.54	21.50
		50	50	20.80	20.64	20.61	21.50
		100	0	20.76	20.73	20.59	21.50

	LTE FDD B	and 4		Con	Tune-up		
Bandwidth	Modulation	RB size	RB offset	Chan	Channel/Frequency (MHz)		
Dandwidth Woddiation	ND SIZE	KD 011961	19957/1710.7	20175/1732.5	20393/1754.3	Limit	
		1	0	22.89	22.72	22.65	23.50
		1	2	23.07	22.84	22.78	23.50
		1	5	22.87	22.70	22.60	23.50
	QPSK	3	0	22.81	22.81	22.55	23.50
1.4MHz 16QA		3	2	22.81	22.82	22.55	23.50
		3	3	22.75	22.70	22.54	23.50
		6	0	21.82	21.84	21.72	22.50
		1	0	22.08	21.88	21.64	22.50
		1	2	22.27	21.84	21.65	22.50
	16QAM	1	5	22.09	21.75	21.54	22.50
		3	0	22.01	21.96	21.59	22.50
		3	2	22.00	22.05	21.47	22.50
		3	3	21.72	22.02	21.57	22.50
		6	0	20.86	20.84	20.81	21.50

	C SAR Test Repo	ort				0208-S1	
Bandwidth	Modulation	RB size	RB offset		nel/Frequency (MHz)	Tune-up
Danawidin	Modulation	110 3120	ND Olloct	19965/1711.5	20175/1732.5	20385/1753.5	Limit
		1	0	22.71	22.82	22.55	23.50
		1	7	22.61	22.66	22.54	23.50
		1	14	22.66	22.68	22.72	23.50
	QPSK	8	0	21.88	21.83	21.70	22.50
3MHz		8	4	21.89	21.83	21.70	22.50
		8	7	21.76	21.74	21.77	22.50
		15	0	21.84	21.81	21.70	22.50
SIVII 12		1	0	21.71	22.37	21.48	22.50
		1	7	21.68	21.97	21.44	22.50
		1	14	21.99	22.26	21.65	22.50
	16QAM	8	0	20.68	20.87	20.55	21.50
		8	4	20.69	20.86	20.55	21.50
		8	7	20.67	20.69	20.75	21.50
		15	0	20.63	20.63	20.59	21.50
Donduvidth	Madulation	DD size	DD offeet	Char	nel/Frequency (MHz)	Tune-up
Bandwidth	Modulation	RB size	RB offset	19975/1712.5	20175/1732.5	20375/1752.5	Limit
		1	0	22.70	22.63	22.53	23.50
		1	13	22.65	22.50	22.41	23.50
		1	24	22.92	22.91	22.82	23.50
	QPSK	12	0	21.87	21.94	21.64	22.50
		12	6	21.87	21.94	21.64	22.50
		12	13	21.78	21.70	21.71	22.50
		25	0	21.88	21.77	21.64	22.50
5MHz		1	0	21.50	21.82	21.33	22.50
		1	13	21.24	21.42	21.38	22.50
		1	24	21.19	21.35	21.44	22.50
	16QAM	12	0	20.71	20.49	20.54	21.50
		12	6	20.89	20.58	20.68	21.50
		12	13	20.83	20.49	20.79	21.50
		25	0	20.90	20.50	20.73	21.50
D. 1.1111	Madalaca	DD :	DD . (())	Char	Channel/Frequency (MHz)		
Bandwidth	Modulation	RB size	RB offset	20000/1715	20175/1732.5	20350/1750	Limit
		1	0	22.75	22.86	22.59	23.50
	QPSK	1	25	22.52	22.90	22.37	23.50
		1	49	22.63	22.82	22.66	23.50
		25	0	21.85	21.72	21.56	22.50
10MHz		25	13	21.86	21.80	21.67	22.50
		25	25	21.77	21.76	21.77	22.50
		50	0	21.83	21.88	21.76	22.50
	4604::	1	0	21.98	22.11	21.51	22.50
	16QAM	1	25	21.83	21.92	21.46	22.50
	16QAM	1	25	21.83	21.92	21.46	22.50

M		_
	FCC SAR Test	Report

Report No.: R2004A0208-S1 49 21.87 21.83 21.69 22.50 25 0 20.52 20.78 20.86 21.50 25 13 20.79 20.76 20.62 21.50 25 25 20.70 20.74 20.61 21.50 50 0 20.72 20.68 20.71 21.50 Channel/Frequency (MHz) Tune-up Bandwidth Modulation RB size **RB** offset 20025/1717.5 20175/1732.5 20325/1747.5 Limit 23.07 23.07 22.99 23.50 1 0 1 38 22.72 22.72 22.37 23.50 1 74 22.70 22.70 22.77 23.50 **QPSK** 36 0 21.75 21.75 21.65 22.50 36 18 21.76 21.76 21.65 22.50 36 39 21.69 21.69 21.58 22.50 22.50 75 0 21.81 21.81 21.69 15MHz 22.50 22.10 21.75 1 0 22.10 1 38 21.60 21.60 21.31 22.50 1 74 21.71 22.50 21.85 21.85 16QAM 36 0 20.82 20.82 20.69 21.50 18 20.83 20.83 20.70 21.50 36 36 39 20.76 20.76 20.62 21.50 20.74 20.74 20.70 21.50 75 0 Channel/Frequency (MHz) Tune-up Bandwidth Modulation RB size **RB** offset 20050/1720 20175/1732.5 20300/1745 Limit 0 22.89 23.01 22.97 23.50 1 50 22.58 22.53 23.50 23.06 1 99 22.82 22.71 23.50 23.06 **QPSK** 50 0 21.75 21.82 21.87 22.50 25 21.74 21.80 21.87 22.50 50 50 50 21.66 21.80 21.61 22.50 100 0 21.71 21.81 21.69 22.50 20MHz 1 0 22.11 21.68 21.70 22.50 1 50 21.95 21.64 21.71 22.50 1 21.93 99 21.82 21.87 22.50 16QAM 50 0 20.72 20.87 20.77 21.50 50 25 20.71 20.73 20.77 21.50 50 50 20.62 20.73 20.70 21.50 100 0 20.69 20.79 20.73 21.50

	LTE FDD B	and 5		Con	ducted Power(d	IBm)	Tung un
Bandwidth	Modulation	RB size	RB offset	Chan	nel/Frequency ((MHz)	Tune-up Limit
Bariawiatii	Wodalation	TO SIZO	TO OHOCE	20407/824.7	20525/836.5	20643/848.3	Liiiit
1.4MHz	QPSK	1	0	23.03	23.19	23.00	24.00

<u> </u>	SAR Test Report				г	Report No.: R2004A	0200 01
		1	2	23.15	23.26	23.13	24.00
		1	5	22.99	23.09	22.93	24.00
		3	0	23.09	23.25	23.07	24.00
		3	2	22.98	23.25	23.06	24.00
		3	3	23.02	23.15	22.97	24.00
		6	0	22.08	22.20	22.11	23.00
		1	0	22.04	22.30	22.00	23.00
		1	2	22.25	22.40	22.03	23.00
		1	5	22.10	22.22	21.88	23.00
	16QAM	3	0	21.83	22.09	21.85	23.00
		3	2	21.82	21.92	21.85	23.00
		3	3	22.01	21.86	21.76	23.00
		6	0	21.03	20.92	21.12	22.00
Donduidth	Madulation	DD size	DD offeet	Chan	nel/Frequency (MHz)	Tune-up
Bandwidth	Modulation	RB size	RB offset	20415/825.5	20525/836.5	20635/847.5	Limit
		1	0	23.04	23.04	23.06	24.00
		1	7	22.99	22.89	22.96	24.00
Bandwidth Mo	QPSK	1	14	23.08	23.03	23.09	24.00
		8	0	22.22	22.18	22.13	23.00
		8	4	22.21	22.18	22.13	23.00
		8	7	22.11	22.14	22.10	23.00
		15	0	22.18	22.21	22.22	23.00
		1	0	22.23	22.41	22.11	23.00
		1	7	21.85	22.10	22.05	23.00
		1	14	21.81	22.33	22.03	23.00
	16QAM	8	0	21.26	21.40	21.29	22.00
		8	4	21.29	21.40	21.30	22.00
		8	7	21.19	21.27	21.26	22.00
		15	0	21.11	21.25	21.20	22.00
Dondwidth	Modulation	DP size	DD offset	Chan	nel/Frequency ((MHz)	Tune-up
Dariuwiuiii	Modulation	RB size	RB offset	20425/826.5	20525/836.5	20625/846.5	Limit
		1	0	23.13	23.04	22.93	24.00
		1	13	23.01	22.99	22.85	24.00
		1	24	23.11	23.36	23.07	24.00
	QPSK	12	0	22.26	22.22	22.19	23.00
5MHz		12	6	22.27	22.22	22.20	23.00
		12	13	22.09	22.14	22.15	23.00
		25	0	22.22	22.19	22.15	23.00
		1	0	21.65	22.26	22.31	23.00
		1	13	21.50	21.85	22.18	23.00
	16QAM	1	24	21.56	22.07	22.34	23.00
		12	0	21.19	20.86	21.31	22.00
		12	6	21.21	20.86	21.31	22.00

FCC SAR Test Re

Report No.: R2004A0208-S1 port 12 13 21.14 20.77 21.26 22.00 25 0 21.13 21.18 22.00 20.77 Channel/Frequency (MHz) Tune-up Bandwidth Modulation **RB** offset RB size 20450/829 20525/836.5 Limit 20600/844 23.14 24.00 1 0 23.12 23.21 1 25 22.97 22.98 23.05 24.00 1 49 23.05 22.89 23.16 24.00 **QPSK** 22.29 22.20 22.20 25 0 23.00 25 13 22.29 22.20 22.15 23.00 25 25 22.11 22.08 22.18 23.00 50 0 22.16 22.22 22.31 23.00 10MHz 21.95 22.22 1 0 22.50 23.00 1 25 22.03 22.40 21.96 23.00 1 49 21.96 22.20 22.07 23.00 16QAM 25 0 21.22 21.09 21.40 22.00 25 13 21.22 21.41 22.00 21.00 25 25 21.02 21.04 21.38 22.00 0 21.08 21.30 22.00 50 21.03

	LTE FDD B	and 7		Cond	Tung up		
Donduidth	Madulation	DD size	DD offeet	Channel/Frequency (MHz)			Tune-up Limit
Bandwidth	Modulation	RB size	RB offset	20775/2502.5	21100/2535	21425/2567.5	LIIIIII
		1	0	22.41	22.41	22.04	23.50
		1	13	21.95	22.38	22.15	23.50
		1	24	22.28	22.62	22.10	23.50
	QPSK	12	0	21.10	21.54	21.22	22.50
		12	6	21.10	21.54	21.21	22.50
		12	13	21.03	21.56	21.17	22.50
5MHz		25	0	21.04	21.54	21.25	22.50
16QAM	1	0	20.79	21.11	20.87	22.50	
		1	13	21.48	21.14	21.02	22.50
		1	24	20.72	21.17	20.57	22.50
	16QAM	12	0	19.97	20.50	20.04	21.50
		12	6	20.01	20.56	20.04	21.50
		12	13	20.01	20.56	20.02	21.50
		25	0	19.97	20.33	20.27	21.50
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up
Danuwiuin	Modulation	KD SIZE	KD OIISEL	20800/2505	21100/2535	21400/2565	Limit
		1	0	22.14	22.68	22.42	23.50
10MHz	QPSK	1	25	22.03	22.64	22.31	23.50
IUIVI⊓Z	QP3N	1	49	22.27	22.79	22.23	23.50
		25	0	21.09	21.59	21.57	22.50

Part	FCC	SAR Test Repor	τ				Report No.: R2004	40206-51
Solid Soli			25	13	21.08	21.59	21.47	22.50
Table Tabl			25	25	21.17	21.58	21.33	22.50
Table Tabl			50	0	21.06	21.64	21.41	22.50
Table			1	0	21.07	21.85	21.41	22.50
Table Tabl			1	25	20.93	21.74	21.28	22.50
Part			1	49	21.15	21.95	21.13	22.50
Bandwidth Modulation RB size RB offset Chambel/Frequency (MHz) Turnov		16QAM	25	0	20.00	20.68	20.43	21.50
Bandwidth Modulation RB size RB offset Charul/Frequency (MHz) Ture 20825/2507.5 21100/2535 21375/2562.5 L			25	13	20.01	20.68	20.44	21.50
Bandwidth Modulation RB size RB offset Chamel/Frequency (MHz) Turn			25	25	20.05	20.67	20.20	21.50
Pandwidth Modulation RB size RB offset			50	0	20.13	20.58	20.30	21.50
15MHz Part	Dandwidth	Madulation	DD size	DD offeet	Chanr	nel/Frequency	(MHz)	Tune-up
Application	banawiain	Modulation	RD SIZE	RB ollset	20825/2507.5	21100/2535	21375/2562.5	Limit
Application			1	0	22.24	22.57	22.66	23.50
A STATE OF S			1	38	22.06	22.46	22.27	23.50
15MHz			1	74	22.21	22.52	22.44	23.50
15MHz 36 39 21.17 21.62 21.27 22.65 1		QPSK	36	0	21.08	21.68	21.53	22.50
15MHz			36	18	21.08	21.69	21.54	22.50
15MHz			36	39	21.17	21.62	21.27	22.50
1	4 E M I I =		75	0	21.08	21.58	21.44	22.50
1			1	0	21.37	21.85	21.52	22.50
16QAM 36			1	38	20.98	21.77	21.14	22.50
36			1	74	21.30	22.09	21.21	22.50
36 39 20.18 20.59 20.33 20.25 20.46 20.25 20.46 20.25 20.46 20.25 20.46 20.25 20.46 20.25 20.46 20.25 20		16QAM	36	0	20.11	20.65	20.50	21.50
To Turn Tu			36	18	20.12	20.65	20.51	21.50
Bandwidth Modulation RB size RB offset Channel/Frequency (MHz) Turnel/Frequency (MHz)			36	39	20.18	20.59	20.33	21.50
Bandwidth Modulation RB size RB offset 20850/2510 21100/2535 21350/2560 L 1 0 22.27 22.66 22.73 23 1 50 22.31 22.65 22.36 23 1 99 22.48 22.93 22.28 23 QPSK 50 0 21.20 21.60 21.41 22 50 25 21.20 21.59 21.42 23			75	0	20.10	20.65	20.46	21.50
1 0 22.27 22.66 22.73 23 1 50 22.31 22.65 22.36 23 1 99 22.48 22.93 22.28 23 QPSK 50 0 21.20 21.60 21.41 23 50 25 21.20 21.59 21.42 23	Dandwidth	Modulation	DD size	DD offeet	Chanr	nel/Frequency	(MHz)	Tune-up
1 50 22.31 22.65 22.36 23 1 99 22.48 22.93 22.28 23 QPSK 50 0 21.20 21.60 21.41 23 50 25 21.20 21.59 21.42 23	Banawiain	Modulation	RD SIZE	KB ollset	20850/2510	21100/2535	21350/2560	Limit
1 99 22.48 22.93 22.28 23 QPSK 50 0 21.20 21.60 21.41 22 50 25 21.20 21.59 21.42 23			1	0	22.27	22.66	22.73	23.50
QPSK 50 0 21.20 21.60 21.41 22 50 25 21.20 21.59 21.42 22			1	50	22.31	22.65	22.36	23.50
50 25 21.20 21.59 21.42 22	20MHz -	QPSK	1	99	22.48	22.93	22.28	23.50
			50	0	21.20	21.60	21.41	22.50
50 50 24.44 24.64 24.04 20			50	25	21.20	21.59	21.42	22.50
			50	50	21.11	21.64	21.21	22.50
100 0 21.24 21.56 21.34 22			100	0	21.24	21.56	21.34	22.50
20MHZ 1 0 20.79 21.67 21.34 22		_	1	0	20.79	21.67	21.34	22.50
1 50 20.66 21.64 21.49 22			1	50	20.66	21.64	21.49	22.50
1 99 21.06 21.32 21.35 22			1	99	21.06	21.32	21.35	22.50
16QAM 50 0 20.36 20.42 20.51 2°		16QAM	50	0	20.36	20.42	20.51	21.50
50 25 20.36 20.44 20.47 2 ⁻			50	25	20.36	20.44	20.47	21.50
50 50 20.21 20.48 20.23 2°			50	50	20.21	20.48	20.23	21.50
100 0 20.32 20.56 20.34 2°			100	0	20.32	20.56	20.34	21.50

	LTE FDD Ba	and 12		Con	ducted Power(c	IBm)	Tung un
Dondwidth	Madulation	DD size	DD offeet	Chan	nel/Frequency ((MHz)	Tune-up Limit
Bandwidth	Modulation	RB size	RB offset	23017/699.7	23095/707.5	23173/715.3	LIIIIII
		1	0	23.02	23.04	23.03	24.00
		1	2	23.08	23.04	23.27	24.00
		1	5	23.15	23.03	23.10	24.00
QPSK	QPSK	3	0	23.15	23.12	22.97	24.00
	3	2	23.14	23.02	22.96	24.00	
		3	3	23.12	23.05	23.06	24.00
1.4MHz		6	0	22.09	22.10	22.23	23.00
1.4101112		1	0	22.14	22.59	21.58	23.00
		1	2	22.34	22.44	21.49	23.00
		1	5	22.22	22.52	21.52	23.00
	16QAM	3	0	21.86	22.35	21.55	23.00
		3	2	22.30	22.35	21.55	23.00
		3	3	22.41	22.42	21.55	23.00
		6	0	21.11	21.25	21.09	22.00
Bandwidth	Modulation	RB size	RB offset	Chan	nel/Frequency (Tune-up	
bandwidth	iviodulation	KD SIZE	KD Ollset	23025/700.5	23095/707.5	23165/714.5	Limit
	1	0	22.86	22.99	22.78	24.00	
		1	7	22.94	23.02	22.82	24.00
		1	14	22.91	22.98	23.07	24.00
	QPSK	8	0	22.15	22.18	21.97	23.00
		8	4	22.15	22.19	21.98	23.00
		8	7	22.12	22.08	22.22	23.00
3MHz		15	0	22.24	22.13	22.14	23.00
SIVII IZ		1	0	22.19	22.16	21.39	23.00
		1	7	22.05	22.18	21.12	23.00
		1	14	22.04	22.12	21.34	23.00
	16QAM	8	0	21.18	21.19	20.88	22.00
		8	4	21.18	21.20	20.90	22.00
		8	7	21.17	21.32	21.05	22.00
		15	0	21.12	21.25	21.02	22.00
Bandwidth	Modulation	RB size	RB offset	offset Channel/Frequency (MHz)		MHz)	Tune-up
Danawiatii	Modulation	IND SIZE	IVD Ollset	23035/701.5	23095/707.5	23155/713.5	Limit
		1	0	22.86	22.90	22.80	24.00
	QPSK	1	13	22.59	22.90	22.61	24.00
		1	24	22.97	23.02	22.91	24.00
5MHz		12	0	22.12	22.11	21.98	23.00
SIVITZ		12	6	22.12	22.12	21.99	23.00
		12	13	22.13	21.98	22.05	23.00
		25	0	22.11	22.00	22.10	23.00
	16QAM	1	0	21.59	22.08	22.24	23.00

M	
	FCC SAR Test Report

Report No.: R2004A0208-S1 13 21.53 21.85 21.98 23.00 1 24 21.75 21.94 22.14 23.00 12 20.82 20.80 20.74 22.00 0 20.74 12 6 20.83 20.80 22.00 12 13 20.90 20.76 20.83 22.00 25 0 20.96 20.63 20.94 22.00 Channel/Frequency (MHz) Tune-up Bandwidth Modulation RB size **RB** offset 23060/704 23095/707.5 23130/711 Limit 1 0 23.00 23.24 23.15 24.00 1 25 23.16 23.35 23.04 24.00 49 22.99 23.06 24.00 1 23.00 **QPSK** 25 0 22.08 21.99 22.10 23.00 25 13 22.08 21.99 22.11 23.00 25 25 22.06 22.00 21.88 23.00 50 0 22.03 22.06 22.03 23.00 10MHz 1 0 22.22 22.16 21.14 23.00 1 25 22.09 22.30 22.25 23.00 49 22.10 1 21.78 22.12 23.00 16QAM 25 0 21.06 20.96 20.94 22.00 20.94 25 13 21.06 20.96 22.00 25 25 21.06 20.84 20.86 22.00

20.90

20.72

20.92

22.00

50

0

	LTE FDD Ba	and 13		Conc	Tung up		
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up Limit
Dariuwiuiri	Modulation	ND SIZE	KD Ullset	23205/779.5	23230/782	23255/784.5	LIIIII
		1	0	23.31	22.94	23.06	24.00
		1	13	23.13	22.80	22.76	24.00
		1	24	23.24	22.61	22.73	24.00
	QPSK	12	0	22.20	22.12	22.05	23.00
5MHz		12	6	22.20	22.12	22.05	23.00
	12	13	22.18	21.92	22.08	23.00	
		25	0	22.19	22.14	22.09	23.00
		1	0	22.15	22.09	21.87	23.00
		1	13	21.51	21.71	21.59	23.00
		1	24	21.53	21.54	21.64	23.00
16QAM	16QAM	12	0	20.90	21.09	21.08	22.00
	12	6	20.97	21.08	21.08	22.00	
		12	13	21.08	20.88	20.90	22.00
		25	0	21.10	20.93	20.96	22.00
Dondwidth	Modulation	DP size	DD offeet	Chann	nel/Frequency	(MHz)	Tune-up
Bandwidth	Modulation	RB size	RB offset	/	23230/782	/	Limit

TA	FCC CAR Took Row out
	FCC SAR Test Report

rcc sak lest kepolt kepolt kepolt no k200							7770200-01
		1	0	/	22.96	/	24.00
		1	25	/	23.25	/	24.00
		1	49	/	22.89	/	24.00
	QPSK	25	0	/	22.20	/	23.00
		25	13	/	22.19	/	23.00
		25	25	/	21.96	/	23.00
10MHz		50	0	/	22.12	/	23.00
TOME		1	0	/	21.72	/	23.00
		1	25	/	21.81	/	23.00
		1	49	/	21.50	/	23.00
	16QAM	25	0	/	21.29	/	22.00
		25	13	1	21.29	/	22.00
		25	25	1	20.98	/	22.00
		50	0	/	21.11	1	22.00

	LTE FDD B	and 25		Con	Conducted Power(dBm)			
Bandwidth	Modulation	RB	offset	Char	nnel/Frequency(I	MHz)	Tune-up	
Danuwium	Modulation	allocation	Oliset	26047/1850.7	26365/1882.5	26683/1914.3		
		1	0	22.57	22.50	22.45	23.50	
	1	2	22.67	22.74	22.50	23.50		
		1	5	22.63	22.54	22.41	23.50	
	QPSK	3	0	22.58	22.66	22.32	23.50	
		3	2	22.57	22.64	22.31	23.50	
		3	3	22.51	22.51	22.38	23.50	
1.4MHz		6	0	21.62	21.60	21.47	22.50	
1.41/11 12		1	0	21.94	21.86	20.78	22.50	
		1	2	22.09	21.87	20.84	22.50	
		1	5	21.90	21.81	20.52	22.50	
	16QAM	3	0	21.82	21.51	21.07	22.50	
		3	2	21.85	21.52	21.07	22.50	
		3	3	21.89	21.61	20.99	22.50	
		6	0	20.67	20.67	20.52	21.50	
Bandwidth	Modulation	RB	offset	Char	nel/Frequency(I	MHz)	Tune-up	
Danuwium	Modulation	allocation	Oliset	26055/1851.5	26365/1882.5	26675/1913.5	Turie-up	
		1	0	22.36	22.29	22.35	23.50	
		1	7	22.24	22.41	22.18	23.50	
		1	14	22.21	22.41	22.38	23.50	
3MHz	QPSK	8	0	21.64	21.55	21.62	22.50	
SIVITZ		8	4	21.63	21.56	21.62	22.50	
		8	7	21.65	21.66	21.54	22.50	
		15	0	21.69	21.54	21.51	22.50	
	16QAM	1	0	21.51	21.11	21.46	22.50	

FC	C SAR Test Repo	ort				Report No.: R2004A	0208-S1
		1	7	21.27	20.55	21.10	22.50
		1	14	21.05	20.62	21.11	22.50
		8	0	20.58	20.62	20.34	21.50
		8	4	20.59	20.69	20.43	21.50
		8	7	20.61	20.73	20.38	21.50
		15	0	20.60	20.42	20.45	21.50
Bandwidth	Modulation	RB	offset	Char	nnel/Frequency(I	MHz)	Tune-up
Danuwidin	Modulation	allocation	Oliset	26065/1852.5	26365/1882.5	26665/1912.5	Turie-up
		1	0	22.35	22.76	22.16	23.50
		1	13	22.18	22.56	22.10	23.50
		1	24	22.38	22.61	22.30	23.50
	QPSK	12	0	21.62	21.70	21.43	22.50
		12	6	21.62	21.70	21.44	22.50
		12	13	21.54	21.72	21.58	22.50
5 M I →		25	0	21.51	21.63	21.49	22.50
5MHz		1	0	21.46	21.68	21.18	22.50
		1	13	21.10	21.58	21.35	22.50
		1	24	21.11	21.65	21.67	22.50
	16QAM	12	0	20.34	20.51	20.62	21.50
		12	6	20.43	20.51	20.63	21.50
		12	13	20.38	20.53	20.59	21.50
		25	0	20.45	20.53	20.56	21.50
Dava di cii dila	Madulatian	RB	-44	Char	nnel/Frequency(I	MHz)	T
Bandwidth	Modulation	allocation	offset	26090/1855	26365/1882.5	26640/1910	Tune-up
		1	0	22.61	22.77	22.49	23.50
		1	25	22.53	22.92	22.53	23.50
		1	49	22.67	22.64	22.63	23.50
	QPSK	1 25	49 0	22.67 21.58	22.64 21.77	22.63 21.57	23.50 22.50
	QPSK						
	QPSK	25	0	21.58	21.77	21.57	22.50
10M∐~	QPSK	25 25	0 13	21.58 21.57	21.77 21.77	21.57 21.58	22.50 22.50
10MHz	QPSK	25 25 25	0 13 25	21.58 21.57 21.74	21.77 21.77 21.75	21.57 21.58 21.49	22.50 22.50 22.50
10MHz	QPSK	25 25 25 50	0 13 25 0	21.58 21.57 21.74 21.65	21.77 21.77 21.75 21.71	21.57 21.58 21.49 21.62	22.50 22.50 22.50 22.50
10MHz	QPSK	25 25 25 50 1	0 13 25 0	21.58 21.57 21.74 21.65 21.68	21.77 21.77 21.75 21.71 22.01	21.57 21.58 21.49 21.62 21.10	22.50 22.50 22.50 22.50 22.50
10MHz	QPSK	25 25 25 50 1	0 13 25 0 0 25	21.58 21.57 21.74 21.65 21.68 21.56	21.77 21.77 21.75 21.71 22.01 22.09	21.57 21.58 21.49 21.62 21.10 20.88	22.50 22.50 22.50 22.50 22.50 22.50
10MHz		25 25 25 50 1 1	0 13 25 0 0 25 49	21.58 21.57 21.74 21.65 21.68 21.56 21.71	21.77 21.77 21.75 21.71 22.01 22.09 21.83	21.57 21.58 21.49 21.62 21.10 20.88 20.85	22.50 22.50 22.50 22.50 22.50 22.50 22.50
10MHz		25 25 25 50 1 1 1 25	0 13 25 0 0 25 49	21.58 21.57 21.74 21.65 21.68 21.56 21.71 20.48	21.77 21.77 21.75 21.71 22.01 22.09 21.83 20.84	21.57 21.58 21.49 21.62 21.10 20.88 20.85 20.61	22.50 22.50 22.50 22.50 22.50 22.50 22.50 21.50
10MHz		25 25 25 50 1 1 1 25 25	0 13 25 0 0 25 49 0	21.58 21.57 21.74 21.65 21.68 21.56 21.71 20.48 20.48	21.77 21.77 21.75 21.71 22.01 22.09 21.83 20.84 20.83	21.57 21.58 21.49 21.62 21.10 20.88 20.85 20.61 20.50	22.50 22.50 22.50 22.50 22.50 22.50 22.50 21.50
	16QAM	25 25 25 50 1 1 1 25 25 25	0 13 25 0 0 25 49 0 13 25 0	21.58 21.57 21.74 21.65 21.68 21.56 21.71 20.48 20.48 20.74 20.59	21.77 21.77 21.75 21.71 22.01 22.09 21.83 20.84 20.83 20.82	21.57 21.58 21.49 21.62 21.10 20.88 20.85 20.61 20.50 20.36 20.55	22.50 22.50 22.50 22.50 22.50 22.50 21.50 21.50 21.50
10MHz Bandwidth		25 25 25 50 1 1 1 25 25 25 50	0 13 25 0 0 25 49 0 13 25	21.58 21.57 21.74 21.65 21.68 21.56 21.71 20.48 20.48 20.74 20.59	21.77 21.77 21.75 21.71 22.01 22.09 21.83 20.84 20.83 20.82 20.86	21.57 21.58 21.49 21.62 21.10 20.88 20.85 20.61 20.50 20.36 20.55	22.50 22.50 22.50 22.50 22.50 22.50 21.50 21.50 21.50
	16QAM	25 25 25 50 1 1 1 25 25 25 50 RB	0 13 25 0 0 25 49 0 13 25 0	21.58 21.57 21.74 21.65 21.68 21.56 21.71 20.48 20.48 20.74 20.59 Char	21.77 21.77 21.75 21.71 22.01 22.09 21.83 20.84 20.83 20.82 20.86 nnel/Frequency(I	21.57 21.58 21.49 21.62 21.10 20.88 20.85 20.61 20.50 20.36 20.55	22.50 22.50 22.50 22.50 22.50 22.50 21.50 21.50 21.50
	16QAM	25 25 50 1 1 1 25 25 25 50 RB allocation	0 13 25 0 0 25 49 0 13 25 0	21.58 21.57 21.74 21.65 21.68 21.56 21.71 20.48 20.48 20.74 20.59 Char 26115/1857.5	21.77 21.77 21.75 21.71 22.01 22.09 21.83 20.84 20.83 20.82 20.86 nnel/Frequency(I	21.57 21.58 21.49 21.62 21.10 20.88 20.85 20.61 20.50 20.36 20.55 MHz) 26615/1907.5	22.50 22.50 22.50 22.50 22.50 22.50 21.50 21.50 21.50 21.50 Tune-up

FC	C SAR Test Rep	ort				Report No.: R2004A	A0208-S1
		36	0	21.62	21.77	21.55	22.50
		36	18	21.61	21.79	21.55	22.50
		36	39	21.80	21.78	21.40	22.50
		75	0	21.61	21.68	21.46	22.50
		1	0	21.54	21.91	21.53	22.50
		1	38	21.57	21.85	21.39	22.50
		1	74	21.48	22.23	21.26	22.50
	16QAM	36	0	20.57	20.82	20.55	21.50
		36	18	20.57	20.82	20.56	21.50
		36	39	20.76	20.71	20.36	21.50
		75	0	20.48	20.54	20.40	21.50
Danduidth	Modulation	RB	- 44 4	Chai	Channel/Frequency(MHz)		
Bandwidth Modulati	Wodulation	allocation	offset	26140/1860	26365/1882.5	26590/1905	Tune-up
		1	0	22.74	22.70	22.54	23.50
		1	50	23.02	22.85	22.65	23.50
		1	99	22.66	22.66	22.23	23.50
	QPSK	50	0	21.54	21.74	21.49	22.50
		50	25	21.64	21.74	21.49	22.50
		50	50	21.66	21.65	21.34	22.50
20MHz		100	0	21.53	21.71	21.54	22.50
ZUIVITZ		1	0	21.43	21.53	21.24	22.50
		1	50	21.28	21.51	21.44	22.50
		1	99	21.02	21.49	21.20	22.50
	16QAM	50	0	20.61	20.76	20.55	21.50
		50	25	20.62	20.76	20.55	21.50
		50	50	20.81	20.67	20.32	21.50
		100	0	20.58	20.58	20.47	21.50

	LTE FDD Ba	and 26		Conducted Power(dBm)			Tune-up	
Bandwidth	Modulation	RB size	RB offset	Chan	Channel/Frequency (MHz)			
Bandwidth	iii iviodulation	Modulation	RB Size	RB ollset	26697/814.7	26865/831.5	27033/848.3	Limit
		1	0	22.90	23.25	22.79	24.00	
		1	2	23.02	22.94	22.92	24.00	
		1	5	23.03	23.04	22.72	24.00	
	QPSK	3	0	22.92	23.11	22.85	24.00	
		3	2	22.90	23.12	22.85	24.00	
1.4MHz		3	3	22.97	23.04	22.76	24.00	
		6	0	22.00	22.12	21.93	23.00	
		1	0	21.90	22.59	21.81	23.00	
16QAM	160014	1	2	22.04	22.01	21.84	23.00	
	1	5	21.84	22.34	21.69	23.00		
		3	0	22.12	21.89	21.76	23.00	

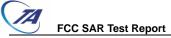
	OAK TEST KEPOT	3	2	22.20	21.89	21.76	23.00
		3	3	22.21	21.96	21.66	23.00
		6	0	21.22	21.06	20.96	22.00
			4	Chan	nel/Frequency (MHz)	Tune-up
Bandwidth	Modulation	RB size	RB offset	26705/815.5	26865/831.5	27025/847.5	Limit
		1	0	23.00	23.29	22.92	24.00
		1	7	22.94	22.97	22.80	24.00
		1	14	23.06	23.09	22.91	24.00
	QPSK	8	0	22.22	22.23	22.00	23.00
		8	4	22.23	22.22	22.00	23.00
		8	7	22.11	22.15	21.88	23.00
3MHz		15	0	22.15	22.16	21.99	23.00
SIVITZ		1	0	22.32	22.61	22.14	23.00
		1	7	21.99	22.01	21.41	23.00
		1	14	22.27	22.38	21.33	23.00
	16QAM	8	0	21.03	21.02	21.08	22.00
		8	4	21.32	21.02	21.09	22.00
		8	7	21.22	21.08	20.97	22.00
		15	0	21.19	21.10	21.19	22.00
Bandwidth	Modulation	RB size	RB offset	Chan	nel/Frequency (MHz)	Tune-up
Danawidin	Woddiation	IND SIZE	TO Oliset	26715/816.5	26865/831.5	27015/846.5	Limit
		1	0	22.96	23.27	22.81	24.00
		1	13	22.86	22.93	22.64	24.00
		1	24	22.96	23.04	22.83	24.00
	QPSK	12	0	22.08	22.18	22.12	23.00
		12	6	22.09	22.18	22.12	23.00
		12	13	22.11	22.13	21.96	23.00
5MHz		25	0	22.16	22.15	22.09	23.00
0.02		1	0	21.72	22.57	21.91	23.00
		1	13	21.45	21.99	21.60	23.00
		1	24	21.53	22.36	21.66	23.00
	16QAM	12	0	20.96	20.98	21.08	22.00
		12	6	20.96	20.97	21.08	22.00
		12	13	20.92	21.03	20.82	22.00
		25	0	21.03	21.06	20.80	22.00
Bandwidth	Modulation	RB size	RB offset		nel/Frequency (,	Tune-up
				26750/820	26865/831.5	26990/844	Limit
		1	0	23.00	23.28	22.90	24.00
		1	25	23.01	22.98	23.04	24.00
10MHz	QPSK	1	49	23.27	23.08	22.85	24.00
		25	0	22.20	22.23	22.19	23.00
		25	13	22.20	22.23	22.12	23.00
		25	25	22.04	22.17	22.04	23.00

FCC SAR Test Report Report No.: R2004A0208							0200-31
		50	0	22.11	22.17	22.15	23.00
		1	0	22.22	22.60	21.47	23.00
		1	25	21.78	22.03	21.70	23.00
		1	49	21.98	22.38	21.41	23.00
	16QAM	25	0	20.96	21.03	21.30	22.00
		25	13	20.96	21.01	21.22	22.00
		25	25	20.80	21.08	21.15	22.00
		50	0	20.85	21.11	21.04	22.00
Bandwidth	Modulation	RB size	RB offset	Chan	nel/Frequency (MHz)	Tune-up
Dariuwiutii	Modulation	ND SIZE	KD Ollset	26775/822.5	26865/831.5	26965/841.5	Limit
		1	0	23.18	23.20	23.08	24.00
		1	38	22.96	22.93	22.88	24.00
		1	74	22.92	23.02	22.90	24.00
	QPSK	36	0	22.08	22.14	22.08	23.00
		36	18	22.07	22.14	22.09	23.00
		36	39	22.03	22.09	22.01	23.00
15MHz		75	0	22.09	22.08	22.12	23.00
13101112		1	0	22.29	22.54	22.14	23.00
		1	38	21.86	21.98	21.77	23.00
		1	74	22.04	22.31	21.77	23.00
	16QAM	36	0	21.08	20.97	21.16	22.00
		36	18	21.08	20.94	21.15	22.00
		36	39	20.99	20.99	21.01	22.00
		75	0	20.98	21.02	21.20	22.00

9.4 WLAN Mode

Wi-Fi 2.4G	Chanal		Maximum Output Power (dBm)	
	Channel /Frequency(MHz)	Tune-up	Meas.	TP Set Level
Mode	,			
000 11h	1/2412	16.50	15.09	17
802.11b (1M)	6/2437	16.50	15.48	17
(TIVI)	11/2462	16.50	16.09	17
000 44 =	1/2412	20.00	18.18	14.5
802.11g (6M)	6/2437	20.00	18.29	14.5
(OIVI)	11/2462	20.00	18.72	14.5
000 44 11700	1/2412	20.00	18.21	14.5
802.11n-HT20 (MCS0)	6/2437	20.00	18.41	14.5
(IVICSU)	11/2462	20.00	18.54	14.5
000 44 11740	3/2422	19.50	19.05	14
802.11n-HT40 (MCS0)	6/2437	19.50	18.48	14
(IVICSU)	9/2452	19.50	18.74	14
Note: Initial test config	uration is 802.11n-HT4	0 mode.		

Wi-Fi 5G	Chamal		Maximum Output Power (dBm)	
(U-NII-1)	Channel /Frequency(MHz)	Tung un	Meas.	TP Set Level
Mode	// requericy(ivii iz)	Tune-up	ivieas.	TP Set Level
	36/5180	12.50	11.58	14
802.11a	40/5200	12.50	12.23	14
(6M)	44/5220	12.50	12.20	14
	48/5240	12.50	12.07	14
	36/5180	12.00	11.55	13.5
802.11n-HT20	40/5200	12.00	11.83	13.5
(MCS0)	44/5220	12.00	11.59	13.5
	48/5240	12.00	11.68	13.5
802.11n-HT40	38/5190	11.50	10.48	13
(MCS0)	46/5230	11.50	10.37	13
Note. Initial test config	uration is 802.11a mod	de, since the high	est maximum output power.	

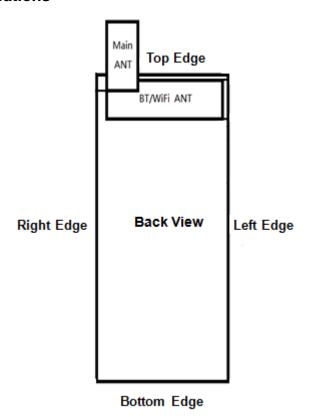

Wi-Fi 5G	Observati		Maximum Output Power (dBm)	
(U-NII-2A)	Channel Frequency(MHz)	Tune-up	Meas.	TP Set Level
Mode	,, , , , , , , , , , , , , , , , , , ,	Turio up	Wicdo.	TT OCT LOVE
	52/5260	12.50	11.98	14
802.11a	56/5280	12.50	11.32	14
(6M)	60/5300	12.50	10.96	14
	64/5320	12.50	10.05	14
	52/5260	12.00	11.65	13.5
802.11n-HT20	56/5280	12.00	11.24	13.5
(MCS0)	60/5300	12.00	10.54	13.5
	64/5320	12.00	9.86	13.5
802.11n-HT40	54/5270	11.50	10.41	13
(MCS0)	62/5310	11.50	8.76	13
Note. Initial test confid	uration is 802.11a mod	de, since the high	est maximum output power.	_

Wi-Fi 5G	Channel		Maximum Output Power (dBm)	
(U-NII-2C)	/Frequency(MHz)	Tung un	Meas.	TP Set Level
Mode	7. requeries (iiii iz)	Tune-up	IVIEdS.	TP Set Level
	100/5500	11.00	10.12	14
802.11a	116/5580	11.00	10.31	14
(6M)	132/5660	11.00	9.87	14
	140/5700	11.00	9.54	14
	100/5500	10.50	9.44	13.5
802.11n-HT20	116/5580	10.50	9.67	13.5
(MCS0)	132/5660	10.50	9.20	13.5
	140/5700	10.50	9.28	13.5
	102/5510	10.00	8.51	13
802.11n-HT40	110/5550	10.00	8.31	13
(MCS0)	118/5590	10.00	8.06	13
	134/5670	10.00	7.81	13
Note. Initial test configu	uration is 802.11a mod	le, since the high	est maximum output power.	

Maximum Output Power (dBm) Wi-Fi 5G Channel (U-NII-3) /Frequency(MHz) Tune-up Meas. TP Set Level Mode 11.00 149/5745 10.37 14 802.11a 157/5785 11.00 14 10.45 (6M) 14 165/5825 11.00 9.54 10.50 149/5745 10.12 13.5 802.11n-HT20 10.50 13.5 157/5785 9.60 (MCS0) 165/5825 10.50 9.22 13.5 10.00 13 802.11n-HT40 151/5755 9.09 (MCS0) 159/5795 10.00 8.94 13

Note. Initial test configuration is 802.11a mode, since the highest maximum output power.

9.5 Bluetooth Mode


	C	n)	T	
ВТ	Ch	Tune-up Limit (dBm)		
	Ch 0/2402 MHz	Lillit (abili)		
GFSK	7.92	8.05	7.49	9.00
π/4DQPSK	7.34	7.98	7.33	9.00
8DPSK	7.84	8.03	7.43	9.00
BLE	Ch 0/2402 MHz	Ch 19/2440 MHz	Ch 39/2480 MHz	Tune-up Limit (dBm)
GFSK	-1.38	-1.17	-1.25	1.00

CC SAR Test Report No.: R2004A0208-S1

10 Measured and Reported (Scaled) SAR Results

10.1 EUT Antenna Locations

Overal	I (Length x Width	x height): 14	8.0 mm x 61.0	0 mm x 27.0m	ım							
C	Overall Diagonal: 154.0 mm/Display Diagonal: 51.0mm											
Distance of the Antenna to the EUT surface/edge												
Antenna Back Side Front side Left Edge Right Edge Top Edge Bottom Edge												
Main-Antenna	Main-Antenna <25mm <25mm >25mm <25mm >25mm											
BT/Wi-Fi Antenna	<25mm	<25mm	<25mm	<25mm	<25mm	>25mm						
	Po	sitions for SA	AR tests									
Mode Back Side Front side Left Edge Right Edge Top Edge Bottom Edge												
Main-Antenna	Yes	Yes	N/A	Yes	Yes	N/A						

Note: 1. Per KDB 941225 D06, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

Yes

Yes

Yes

N/A

Yes

2. Per FCC KDB 447498 D01,


BT/Wi-Fi Antenna

for each exposure position, testing of other requised channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

a) ≤0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100MHz

Yes

- b) ≤0.6 W/kg or 1.5 W/kg, for1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.
- c) ≤ 0.4 W/kg or 1.0 Wkg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz.
- 3. When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

10.2 Standalone SAR test exclusion considerations

Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for product specific 10-g SAR

- > f(GHz) is the RF channel transmit frequency in GHz
- > Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Per KDB 447498 D01, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Bluetooth	Distance (mm)	MAXPower (dBm)	Frequency (MHz)	Ratio	Evaluation
Head SAR	10	9.00	2480	1.25	No
Extremities SAR	5	9.00	2480	2.50	No

10.3 Measured SAR Results

Table 8: GSM 850

				Channal		Maggurad		Limit of SA	R 1.6 W/k	g (mW/g)		
Test Position	Cover Type	Time slot	Duty Cycle	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.
				He	ead SAR(I	Distance 10	mm)					
	Standard	4Txslots	1:2.07	128/824.2	31.00	30.13	0.661	0.917	-0.072	1.22	1.120	/
Front Side	Standard	4Txslots	1:2.07	190/836.6	31.00	30.31	0.794	1.090	0.060	1.17	1.278	21
	Standard	4Txslots	1:2.07	251/848.8	31.00	30.07	0.720	0.977	-0.052	1.24	1.210	/
Front Side	Repeated	4Txslots	1:2.07	190/836.6	31.00	30.31	0.782	1.020	0.061	1.17	1.196	/
				В	ody-worn((Distance 0r	nm)					
Back Side	Standard	4Txslots	1:2.07	128/824.2	31.00	30.13	0.682	0.935	-0.130	1.22	1.142	/
Back Side	Standard	4Txslots	1:2.07	190/836.6	31.00	30.31	0.791	1.090	0.000	1.17	1.278	22
Back Side	Standard	4Txslots	1:2.07	251/848.8	31.00	30.07	0.893	1.010	0.010	1.24	1.251	/
Back Side	Repeated	4Txslots	1:2.07	190/836.6	31.00	30.31	0.773	0.983	0.020	1.17	1.152	/
				Channel/		Measured	L	imit of 10g	SAR 4 W	/kg (mW/g)	
Test Position	Cover Type	Time slot	Duty Cycle	Frequency (MHz)	Tune-up (dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
				Extr	emities S	AR(Distance	e 0mm)					
Back Side	Standard	4Txslots	1:2.07	190/836.6	31.00	30.31	1.140	2.080	-0.170	1.17	1.336	/
Front Side	Standard	4Txslots	1:2.07	190/836.6	31.00	30.31	1.280	2.200	-0.060	1.17	1.500	23
Right Edge	Standard	4Txslots	1:2.07	190/836.6	31.00	30.31	1.030	1.540	0.060	1.17	1.207	/
Top Edge	Standard	4Txslots	1:2.07	190/836.6	31.00	30.31	0.729	2.190	-0.090	1.17	0.855	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

	Measurement Variability										
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio							
Front Side	190/836.6	1.090	1.020	1.07							
Back Side	190/836.6	1.090	0.983	1.12							

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

FCC SAR Test Report No.: R2004A0208-S1
Table 9: GSM 1900

				Channel/		Massured	Li	mit of SAR	1.6 W/k	g (mW/g)		
Test Position	Cover Type	Time slot	Duty Cycle	Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.
				Hea	d SAR(Dis	stance 10m	m)					
Front Side	standard	4 Tx Slots	1:2.07	661/1880	31.00	30.11	0.299	0.474	0.120	1.23	0.582	24
				Bod	ly-worn(D	istance 0mi	m)					
Back Side	Standard	4 Tx Slots	1:2.07	661/1880	31.00	30.11	0.223	0.373	-0.060	1.23	0.458	25
				Channel/ Measured			Limit of 10g SAR 4 W/kg (mW/g)					
Test Position	Cover Type	Time slot	Duty Cycle	Frequency (MHz)	Tune-up (dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
				Extrem	nities SAR	(Distance 0	mm)					
Back Side	Standard	4 Tx Slots	1:2.07	661/1880	31.00	30.11	0.358	0.631	-0.027	1.23	0.439	/
Front Side	Standard	4 Tx Slots	1:2.07	661/1880	31.00	30.11	0.776	1.500	0.020	1.23	0.952	26
Right Edge	Standard	4 Tx Slots	1:2.07	661/1880	31.00	30.11	0.666	1.300	0.090	1.23	0.817	/
Top Edge	Standard	4 Tx Slots	1:2.07	661/1880	31.00	30.11	0.163	0.348	0.010	1.23	0.200	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

FCC SAR Test Report Report No.: R2004A0208-S1
Table 10: UMTS Band II

- 10												
				Channel/		Measured	Li	mit of SAR	1.6 W/k	g (mW/g))	
Test Position	Cover Type	Channel Type	Duty Cycle	Frequency (MHz)	Tune-up (dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.
				Head	SAR(Dista	ance 10mm)					
	Standard	RMC 12.2K	1:1	9262/1852.4	24.00	22.98	0.476	0.746	0.000	1.26	0.943	/
Front Side	Standard	RMC 12.2K	1:1	9400/1880	24.00	22.96	0.540	0.859	0.040	1.27	1.091	27
	Standard	RMC 12.2K	1:1	9538/1907.6	24.00	22.79	0.504	0.836	-0.030	1.32	1.105	/
Front Side	Repeated	RMC 12.2K	1:1	9538/1907.6	24.00	22.79	0.495	0.819	0.010	1.32	1.082	/
				Body	-worn(Dis	tance 0mm))					
Back Side	Standard	RMC 12.2K	1:1	9262/1852.4	24.00	22.98	0.439	0.715	-0.150	1.26	0.904	/
Back Side	Standard	RMC 12.2K	1:1	9400/1880	24.00	22.96	0.446	0.720	-0.080	1.27	0.915	28
Back Side	Standard	RMC 12.2K	1:1	9538/1907.6	24.00	22.79	0.430	0.688	0.130	1.32	0.909	/
Back Side	Repeated	RMC 12.2K	1:1	9400/1880	24.00	22.96	0.446	0.713	0.029	1.27	0.906	/
				Channel/		Measured	Lin	nit of 10g S	AR 4 W/	kg (mW/g	g)	
Test Position	Cover Type	Channel Type	Duty Cycle	Frequency (MHz)	Tune-up (dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
				Extremit	ies SAR(I	Distance 0m	nm)					
Back Side	standard	RMC 12.2K	1:1	9400/1880	24.00	22.96	0.708	1.260	-0.130	1.27	0.900	/
Front Side	standard	RMC 12.2K	1:1	9400/1880	24.00	22.96	1.550	3.030	0.010	1.27	1.969	29
Right Edge	standard	RMC 12.2K	1:1	9400/1880	24.00	22.96	1.110	2.060	0.000	1.27	1.410	/
Top Edge	standard	RMC 12.2K	1:1	9400/1880	24.00	22.96	0.298	0.620	-0.025	1.27	0.379	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

	Measurement Variability										
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio							
Front Side	9538/1907.6	0.836	0.819	1.02							
Back Side	9400/1880	0.720	0.713	1.01							

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

		IVITO Bana IV										
				Channel/		Measured		imit of SAR	1.6 W/k	g (mW/g)		
Test Position	Cover Type	Channel Type	Duty Cycle	Frequency	Tune-up (dBm)			Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.
					Head SA	AR(Distance	∍ 10mm)					
	Standard	RMC 12.2K	1:1	1413/1732.6	24.00	23.01	0.529	0.815	0.021	1.26	1.024	/
Front Side	Standard	RMC 12.2K	1:1	1312/1712.4	24.00	23.01	0.608	0.936	-0.020	1.26	1.176	30
ļ	Standard	RMC 12.2K	1:1	1513/1752.6	24.00	23.03	0.406	0.677	0.027	1.25	0.846	/
Front Side	Repeated	RMC 12.2K	1:1	1312/1712.4	24.00	23.01	0.612	0.928	0.030	1.26	1.166	/
				Body	-worn(Dis	tance 0mm))					
Back Side	Standard	RMC 12.2K	1:1	1413/1732.6	24.00	23.01	0.542	0.858	0.130	1.26	1.078	31
Back Side	Standard	RMC 12.2K	1:1	1312/1712.4	24.00	23.01	0.525	0.831	0.026	1.26	1.044	1
Back Side	Standard	RMC 12.2K	1:1	1513/1752.6	24.00	23.03	0.464	0.703	0.110	1.25	0.879	1
Back Side	Repeated	RMC 12.2K	1:1	1413/1732.6	24.00	23.01	0.565	0.833	0.160	1.26	1.046	1
				Channell		Macaurad		nit of 10g S	AR 4 W/	kg (mW/g	1)	
Test Position	Cover Type	Channel Type	Duty Cycle	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)		Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
				E	xtremitie	s SAR(Dista	ance 0mm)					
Back Side	Standard	RMC 12.2K	1:1	1413/1732.6	24.00	23.01	0.751	1.290	0.034	1.26	0.943	/
Front Side	Standard	RMC 12.2K	1:1	1413/1732.6	24.00	23.01	0.981	1.850	0.070	1.26	1.232	32
Right Edge	Standard	RMC 12.2K	1:1	1413/1732.6	24.00	23.01	0.574	1.030	0.020	1.26	0.721	/
Top Edge	Standard	RMC 12.2K	1:1	1413/1732.6	24.00	23.01	0.369	0.858	0.150	1.26	0.463	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

		Measurement Variability		
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio
Front Side	1312/1712.4	0.936	0.928	1.01
Back Side	1413/1732.6	0.858	0.833	1.03

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

	DIC 12. 01											
				Channel/		Measured		imit of SAR	1.6 W/k	g (mW/g)		
Test Position	Cover Type	Channel Type	Duty Cycle	Frequency	Tune-up (dBm)			Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.
				Head	SAR(Dist	ance 10mm)					
	Standard	RMC 12.2K	1:1	4132/826.4	24.00	23.19	0.679	0.930	-0.160	1.21	1.121	/
Front Side	Standard	RMC 12.2K	1:1	4183/836.6	24.00	23.28	0.695	0.953	0.010	1.18	1.125	33
ļ	Standard	RMC 12.2K	1:1	4233/846.6	24.00	23.21	0.661	0.906	0.010	1.20	1.087	/
Front Side	Repeated	RMC 12.2K	1:1	4183/836.6	24.00	23.28	0.673	0.948	0.028	1.18	1.119	/
				Body-	-worn(Dis	stance 0mm))					
Back Side	Standard	RMC 12.2K	1:1	4132/826.4	24.00	23.19	0.539	0.733	0.126	1.21	0.883	/
Back Side	Standard	RMC 12.2K	1:1	4183/836.6	24.00	23.28	0.544	0.750	0.040	1.18	0.885	34
Back Side	Standard	RMC 12.2K	1:1	4233/846.6	24.00	23.21	0.506	0.721	0.030	1.20	0.865	/
Back Side	Repeated	RMC 12.2K	1:1	4183/836.6	24.00	23.28	0.549	0.734	0.023	1.18	0.866	/
				Channel/		Measured		nit of 10g S	AR 4 W/	kg (mW/g	j)	
Test Position	Cover Type	Channel Type	Duty Cycle	Frequency	Tune-up (dBm)			Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
				Extremit	ies SAR([Distance 0m	nm)					
Back Side	Standard	RMC 12.2K	1:1	4183/836.6	24.00	23.28	0.869	1.490	-0.060	1.18	1.026	/
Front Side	Standard	RMC 12.2K	1:1	4183/836.6	24.00	23.28	0.943	1.580	-0.040	1.18	1.113	35
Right Edge	Standard	RMC 12.2K	1:1	4183/836.6	24.00	23.28	0.837	1.260	-0.060	1.18	0.988	/
Top Edge	Standard	RMC 12.2K	1:1	4183/836.6	24.00	23.28	0.507	1.590	-0.070	1.18	0.598	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

	Measurement Variability										
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio							
Front Side	4183/836.6	0.953	0.948	1.01							
Back Side	4183/836.6	0.750	0.734	1.02							

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table	13: LT	E Band 2	(20MHz)

	Table 13.		and 2 (20	VII 12)				1	imit of SAR	1 6 W/k	a (mW/a)		
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)		Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.
					Head SAR(QPSK, Dis	stance 10m	m)					
	Standard	1:1	1	0	18700/1860	23.50	22.70	0.458	0.726	0.010	1.20	0.873	/
Front Side	Standard	1:1	1	0	18900/1880	23.50	22.99	0.424	0.684	-0.080	1.12	0.769	/
	Standard	1:1	1	99	19100/1900	23.50	22.73	0.524	0.835	-0.100	1.19	0.997	36
Front Side	Standard	1:1	50%	0	18900/1880	22.50	21.78	0.323	0.521	-0.020	1.18	0.615	/
Front Side	Standard	1:1	100%	0	18900/1880	22.50	21.75	0.384	0.611	0.040	1.19	0.726	/
Front Side	Repeated	1:1	1	99	19100/1900	23.50	22.73	0.531	0.828	0.011	1.19	0.989	/
Body-worn(QPSK, Distance 0mm)													
Back Side	Standard	1:1	1	0	18700/1860	23.50	22.70	0.426	0.720	0.031	1.20	0.866	/
Back Side	Standard	1:1	1	0	18900/1880	23.50	22.99	0.478	0.771	-0.028	1.12	0.867	37
Back Side	Standard	1:1	1	99	19100/1900	23.50	22.73	0.415	0.715	0.000	1.19	0.854	/
Back Side	Standard	1:1	50%	0	18900/1880	22.50	21.78	0.377	0.613	0.030	1.18	0.724	/
Back Side	Standard	1:1	100%	0	18900/1880	22.50	21.75	0.385	0.602	0.121	1.19	0.715	/
Back Side	Repeated	1:1	1	0	18900/1880	23.50	22.99	0.470	0.755	0.110	1.12	0.849	/
					Channel/		Measured	Lin	nit of 10g S	AR 4 W/	kg (mW/g	j)	
Test	Cover	Duty	RB	RB	Frequency	Tune-up	power	Measured	Measured	Power	Scaling	Report	Plot
Position	Type	Cycle	allocation	offset	(MHz)	(dBm)	(dBm)	SAR10g	SAR1g	Drift	Factor	SAR10g	No.
				_		A D. (O D O L (District			(dB)			
					extremities S	•	<u> </u>						
Back Side	standard	1:1	1	0	18900/1880	23.50	22.99	0.702	1.230	0.080	1.12	0.789	/
Front Side	standard	1:1	1	0	18900/1880	23.50	22.99	1.650	3.200	-0.060	1.12	1.856	38
Right Edge	standard	1:1	1	0	18900/1880	23.50	22.99	1.080	1.950	-0.023	1.12	1.215	/
Top Edge	standard	1:1	1	0	18900/1880	23.50	22.99	0.305	0.627	-0.140	1.12	0.343	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	standard	1:1	50%	0	18900/1880	22.50	21.78	0.526	0.923	0.150	1.18	0.621	/
Front Side	standard	1:1	50%	0	18900/1880	22.50	21.78	1.280	2.510	0.130	1.18	1.511	/
Right Edge	standard	1:1	50%	0	18900/1880	22.50	21.78	0.872	1.650	-0.040	1.18	1.029	/
Top Edge	standard	1:1	50%	0	18900/1880	22.50	21.78	0.222	0.457	-0.070	1.18	0.262	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

Measurement Variability											
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio							
Front Side	19100/1900	0.835	0.828	1.01							
Back Side	18900/1880	0.771	0.755	1.02							

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table	14:	LTE	Band 4	4 (20	MHz)

	Table 1-	T. LIL	Band 4 (2	0111112				1 :	mit of SAR	16 W/L	a (mW/a)		
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)			Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.
					Head SAR	QPSK, Di	stance 10m	m)					
	Standard	1:1	1	99	20050/1720	23.50	23.06	0.508	0.798	-0.050	1.11	0.883	/
Front Side	Standard	1:1	1	50	20175/1732.5	23.50	23.06	0.495	0.777	-0.022	1.11	0.860	/
	Standard	1:1	1	0	20300/1745	23.50	22.97	0.541	0.840	-0.240	1.13	0.949	39
Front Side	Standard	1:1	50%	0	20300/1745	22.50	21.87	0.376	0.587	0.020	1.16	0.679	/
Front Side	Standard	1:1	100%	0	20175/1732.5	22.50	21.81	0.390	0.606	-0.050	1.17	0.710	/
Front Side	Repeated	1:1	1	0	20300/1745	23.50	22.97	0.537	0.832	0.026	1.13	0.940	/
					Body-worr	n(QPSK, D	istance 0m	m)					
Back Side	Standard	1:1	1	99	20050/1720	23.50	23.06	0.496	0.792	-0.030	1.11	0.876	/
Back Side	Standard	1:1	1	50	20175/1732.5	23.50	23.06	0.531	0.847	-0.050	1.11	0.937	40
Back Side	Standard	1:1	1	0	20300/1745	23.50	22.97	0.511	0.825	0.032	1.13	0.932	/
Back Side	Standard	1:1	50%	0	20300/1745	22.50	21.87	0.364	0.559	0.042	1.16	0.646	/
Back Side	Standard	1:1	100%	0	20175/1732.5	22.50	21.81	0.382	0.566	0.140	1.17	0.663	/
Back Side	Repeated	1:1	1	50	20175/1732.5	23.50	23.06	0.533	0.816	0.100	1.11	0.903	/
					Channel/		Measured	Lin	Limit of 10g SAR 4 W/kg (mW/g)				
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Frequency (MHz)	Tune-up (dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
					Extremities S	AR(QPSK	, Distance (0mm)					
Back Side	standard	1:1	1	50	20175/1732.5	23.50	23.06	0.608	1.040	0.160	1.11	0.673	/
Front Side	standard	1:1	1	50	20175/1732.5	23.50	23.06	1.020	2.000	-0.090	1.11	1.129	41
Right Edge	standard	1:1	1	50	20175/1732.5	23.50	23.06	0.568	1.040	-0.160	1.11	0.629	/
Top Edge	standard	1:1	1	50	20175/1732.5	23.50	23.06	0.354	0.823	0.036	1.11	0.392	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	standard	1:1	50%	0	20300/1745	22.50	21.87	0.373	0.630	0.028	1.16	0.431	/
Front Side	standard	1:1	50%	0	20300/1745	22.50	21.87	0.664	1.360	0.070	1.16	0.768	/
Right Edge	standard	1:1	50%	0	20300/1745	22.50	21.87	0.243	0.437	-0.020	1.16	0.281	/
Top Edge	standard	1:1	50%	0	20300/1745	22.50	21.87	0.276	0.650	0.160	1.16	0.319	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

Measurement Variability											
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio							
Front Side	20300/1745	0.840	0.832	1.01							
Back Side	20175/1732.5	0.847	0.816	1.04							

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table	15.	ITF	Band 5	(1	0MHz)
Iabic	ıJ.		Dallu 3	, , .	

	Table 10.		,					Li	imit of SAR	1.6 W/k	g (mW/g)					
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.			
					Head SAR(QPSK, Dis	stance 10m	m)								
	Standard	1:1	1	0	20450/829	24.00	23.12	0.443	0.599	0.090	1.22	0.734	/			
Front Side	Standard	1:1	1	0	20525/836.5	24.00	23.14	0.428	0.585	-0.022	1.22	0.713	/			
	Standard	1:1	1	0	20600/844	24.00	23.21	0.512	0.701	-0.040	1.20	0.841	42			
Front Side	Standard	1:1	50%	0	20450/829	23.00	22.29	0.350	0.472	0.020	1.18	0.556	/			
Front Side	Standard	1:1	100%	0	20600/844	23.00	22.31	0.442	0.603	0.050	1.17	0.707	/			
Front Side	Repeated	1:1	1	0	20600/844	24.00	23.21	0.518	0.695	-0.020	1.20	0.834	/			
					Body-worn	(QPSK, D	istance 0mi	m)								
Back Side	Standard	1:1	1	0	20600/844	24.00	23.21	0.410	0.560	-0.120	1.20	0.672	43			
Back Side	Standard	1:1	50%	0	20450/829	23.00	22.29	0.384	0.463	0.070	1.18	0.545	/			
					Channel/		Measured	Lin	Limit of 10g SAR 4 W/kg (mW/g)							
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Frequency (MHz)	Tune-up (dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.			
					Extremities S/	Extremities SAR(QPSK, Distance 0mm)										
Back Side	standard					(, Distance u	mm)								
Front Side		1:1	1	0	20600/844	24.00	23.21	0.870	1.470	0.040	1.20	1.044	/			
	standard	1:1	1	0	20600/844 20600/844	•		<u> </u>	1.470 1.540	0.040	1.20	1.044	/ 44			
Right Edge	standard standard					24.00	23.21	0.870					/ 44 /			
		1:1	1	0	20600/844	24.00	23.21 23.21	0.870	1.540	0.033	1.20	1.092	/ 44 /			
Right Edge	standard	1:1	1	0	20600/844	24.00 24.00 24.00	23.21 23.21 23.21	0.870 0.910 0.620	1.540 0.910	0.033	1.20 1.20	1.092 0.744	/ 44 / / N/A			
Right Edge Top Edge	standard standard	1:1 1:1 1:1	1 1 1	0 0	20600/844 20600/844 20600/844	24.00 24.00 24.00 24.00	23.21 23.21 23.21 23.21	0.870 0.910 0.620 0.316	1.540 0.910 0.981	0.033 -0.070 -0.190	1.20 1.20 1.20	1.092 0.744 0.379	/			
Right Edge Top Edge Left Edge	standard standard N/A	1:1 1:1 1:1 N/A	1 1 1 N/A	0 0 0 N/A	20600/844 20600/844 20600/844 N/A	24.00 24.00 24.00 24.00 N/A	23.21 23.21 23.21 23.21 N/A	0.870 0.910 0.620 0.316 N/A	1.540 0.910 0.981 N/A	0.033 -0.070 -0.190 N/A	1.20 1.20 1.20 N/A	1.092 0.744 0.379 N/A	/ / N/A			
Right Edge Top Edge Left Edge Bottom Edge	standard standard N/A N/A	1:1 1:1 1:1 N/A N/A	1 1 1 N/A N/A	0 0 0 N/A N/A	20600/844 20600/844 20600/844 N/A N/A	24.00 24.00 24.00 24.00 N/A N/A	23.21 23.21 23.21 23.21 N/A N/A	0.870 0.910 0.620 0.316 N/A	1.540 0.910 0.981 N/A N/A	0.033 -0.070 -0.190 N/A N/A	1.20 1.20 1.20 N/A N/A	1.092 0.744 0.379 N/A N/A	/ / N/A			
Right Edge Top Edge Left Edge Bottom Edge Back Side	standard standard N/A N/A standard	1:1 1:1 1:1 N/A N/A 1:1	1 1 1 N/A N/A 50%	0 0 0 N/A N/A 0	20600/844 20600/844 20600/844 N/A N/A 20450/829	24.00 24.00 24.00 24.00 N/A N/A 24.00	23.21 23.21 23.21 23.21 N/A N/A 22.29	0.870 0.910 0.620 0.316 N/A N/A 0.691	1.540 0.910 0.981 N/A N/A 1.210	0.033 -0.070 -0.190 N/A N/A -0.040	1.20 1.20 1.20 N/A N/A 1.48	1.092 0.744 0.379 N/A N/A 1.024	/ / N/A N/A /			
Right Edge Top Edge Left Edge Bottom Edge Back Side Front Side	standard standard N/A N/A standard standard	1:1 1:1 1:1 N/A N/A 1:1 1:1	1 1 1 N/A N/A 50% 50%	0 0 0 N/A N/A 0	20600/844 20600/844 20600/844 N/A N/A 20450/829 20450/829	24.00 24.00 24.00 24.00 N/A N/A 24.00 24.00	23.21 23.21 23.21 23.21 N/A N/A 22.29 22.29	0.870 0.910 0.620 0.316 N/A N/A 0.691 0.669	1.540 0.910 0.981 N/A N/A 1.210 1.110	0.033 -0.070 -0.190 N/A N/A -0.040 0.130	1.20 1.20 1.20 N/A N/A 1.48	1.092 0.744 0.379 N/A N/A 1.024 0.992	/ N/A N/A /			
Right Edge Top Edge Left Edge Bottom Edge Back Side Front Side Right Edge	standard standard N/A N/A standard standard standard	1:1 1:1 1:1 N/A N/A 1:1 1:1	1 1 1 N/A N/A 50% 50%	0 0 0 N/A N/A 0 0	20600/844 20600/844 20600/844 N/A N/A 20450/829 20450/829 20450/829	24.00 24.00 24.00 24.00 N/A N/A 24.00 24.00	23.21 23.21 23.21 23.21 N/A N/A 22.29 22.29	0.870 0.910 0.620 0.316 N/A N/A 0.691 0.669	1.540 0.910 0.981 N/A N/A 1.210 1.110 0.745	0.033 -0.070 -0.190 N/A N/A -0.040 0.130 0.070	1.20 1.20 1.20 N/A N/A 1.48 1.48	1.092 0.744 0.379 N/A N/A 1.024 0.992	/ N/A N/A /			

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

Measurement Variability										
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio						
Front Side	20600/844	0.701	0.695	1.01						

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table	16:	LTE	Band 7	(20MHz)
IUNIC			Dalla 1	_UIVII I_/

	Table 10.		and 7 (20	11112)				11	mit of SAR	1 6 W/k	a (mW/a)		
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)		Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.
					Head SAR	QPSK, Di	stance 10m	ım)					
	Standard	1:1	1	99	20850/2510	23.50	22.48	0.449	0.851	0.130	1.26	1.076	45
Front Side	Standard	1:1	1	99	21100/2535	23.50	22.93	0.388	0.744	0.110	1.14	0.848	/
	Standard	1:1	1	0	21350/2560	23.50	22.73	0.402	0.777	0.100	1.19	0.928	/
Front Side	Standard	1:1	50%	50	21100/2535	22.50	21.64	0.311	0.599	0.027	1.22	0.730	/
Front Side	Standard	1:1	100%	0	21100/2535	22.50	21.56	0.341	0.657	0.037	1.24	0.816	/
Front Side	Repeated	1:1	1	99	20850/2510	23.50	22.48	0.452	0.849	0.028	1.26	1.074	/
					Body-worr	(QPSK, D	istance 0m	m)			•		
Back Side	Standard	1:1	1	99	20850/2510	23.50	22.48	0.359	0.721	0.040	1.26	0.912	/
Back Side	Standard	1:1	1	99	21100/2535	23.50	22.93	0.383	0.766	-0.032	1.14	0.873	46
Back Side	Standard	1:1	1	0	21350/2560	23.50	22.73	0.397	0.725	-0.110	1.19	0.866	/
Back Side	Standard	1:1	50%	50	21100/2535	22.50	21.64	0.301	0.588	-0.110	1.22	0.717	/
Back Side	Standard	1:1	100%	0	21100/2535	22.50	21.56	0.313	0.602	0.010	1.24	0.747	/
Back Side	Repeated	1:1	1	99	20850/2510	23.50	22.48	0.349	0.711	0.037	1.26	0.899	/
					a			Lin	nit of 10g S	AR 4 W/kg (mW/g)			
Test	Cover	Duty	RB	RB	Channel/	Tune-up	Measured	Management	Manager	Power	0	D	Plot
Position	Туре	Cycle	allocation	offset	Frequency (MHz)	(dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Drift	Scaling Factor	Report SAR10g	No.
					 Extremities S	AB/OBSK	Distance	() () ()		(dB)			
Daals Cida	Ctondord	4.4	4		21100/2535	`	1	,	0.000	0.050	4 4 4	0.574	
Back Side	Standard	1:1	1	99		23.50	22.93	0.503	0.988	-0.059	1.14	0.574	/
Front Side	Standard	1:1	1	99	21100/2535	23.50	22.93	1.590	3.750	-0.100	1.14	1.813	47
Right Edge	Standard	1:1	1	99	21100/2535	23.50	22.93	0.848	1.890	0.024	1.14	0.967	/
Top Edge	Standard	1:1	1	99	21100/2535	23.50	22.93	0.571	1.290	-0.031	1.14	0.651	· ·
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	Standard	1:1	50%	50	21100/2535	22.50	21.64	0.401	0.786	0.090	1.22	0.489	/
Front Side	Standard	1:1	50%	50	21100/2535	22.50	21.64	1.350	3.200	0.029	1.22	1.646	/
Right Edge	Standard	1:1	50%	50	21100/2535	22.50	21.64	0.791	1.790	0.010	1.22	0.964	/
Top Edge	Standard	1:1	50%	50	21100/2535	22.50	21.64	0.452	1.030	-0.120	1.22	0.551	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

Measurement Variability											
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio							
Front Side	20850/2510	0.851	0.849	1.00							
Back Side	20850/2510	0.721	0.711	1.01							

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table	17.	ITE	Rand	12	(10MHz)
Table	17:		Danu	12	

			,		a			Limit of SAR 1.6 W/kg (mW/g)					
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.
Head SAR(QPSK, Distance 10mm)													
Front Side	standard	1:1	1	25	23095/707.5	24.00	23.35	0.435	0.610	-0.035	1.16	0.708	48
Front Side	standard	1:1	50%	13	23130/711	23.00	22.11	0.365	0.515	0.140	1.23	0.632	/
	Body-worn(QPSK, Distance 0mm)												
Back Side	Standard	1:1	1	25	23095/707.5	24.00	23.35	0.407	0.588	-0.010	1.16	0.683	49
Back Side	Standard	1:1	50%	13	23130/711	23.00	22.11	0.315	0.449	0.030	1.23	0.551	/
					Channel/		Measured	Limit of 10g SAR 4 W/kg (mW/g)					
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Frequency (MHz)	Tune-up (dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
Extremities SAR(QPSK, Distance 0mm)													
Back Side	Standard	1:1	1	25	23095/707.5	24.00	23.35	0.532	0.858	0.034	1.16	0.618	/
Front Side	Standard	1:1	1	25	23095/707.5	24.00	23.35	0.761	1.180	0.190	1.16	0.884	50
Right Edge	Standard	1:1	1	25	23095/707.5	24.00	23.35	0.734	1.060	-0.060	1.16	0.853	/
Top Edge	Standard	1:1	1	25	23095/707.5	24.00	23.35	0.288	0.942	-0.120	1.16	0.334	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	Standard	1:1	50%	13	23130/711	23.00	22.11	0.465	0.779	-0.090	1.23	0.571	/
Front Side	Standard	1:1	50%	13	23130/711	23.00	22.11	0.602	0.926	0.130	1.23	0.739	/
Right Edge	Standard	1:1	50%	13	23130/711	23.00	22.11	0.577	0.839	0.020	1.23	0.708	/
Top Edge	Standard	1:1	50%	13	23130/711	23.00	22.11	0.228	0.750	-0.090	1.23	0.280	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

Table	18.	ITF	Band	13	(10MHz)
Iabic	10.		Dalla	10	

					Channell		Massured	Limit of SAR 1.6 W/kg (mW/g)					
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Channel/ Frequency (MHz)	Tune-up (dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.
	Head SAR(QPSK, Distance 10mm)												
Front Side	Standard	1:1	1	25	23230/782	24.00	23.25	0.530	0.717	0.080	1.19	0.852	51
Front Side	Standard	1:1	50%	0	23230/782	23.00	22.20	0.429	0.581	0.010	1.20	0.699	/
Front Side	Standard	1:1	100%	0	23230/782	23.00	22.12	0.500	0.678	0.010	1.22	0.830	/
Front Side	Repeated	1:1	1	25	23230/782	24.00	23.25	0.516	0.702	-0.021	1.19	0.834	/
					Body-worr	(QPSK, D	istance 0m	m)					
Back Side	Standard	1:1	1	25	23230/782	24.00	23.25	0.559	0.761	-0.190	1.19	0.904	52
Back Side	Standard	1:1	50%	0	23230/782	23.00	22.20	0.463	0.595	0.020	1.20	0.715	/
Back Side	Standard	1:1	100%	0	23230/782	23.00	22.12	0.504	0.665	-0.033	1.22	0.814	/
Back Side	Repeated	1:1	1	25	23230/782	24.00	23.25	0.547	0.732	0.140	1.19	0.870	/
	Channel/ Measured Limit of 10g SAR 4 V				AR 4 W/	kg (mW/g							
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Frequency (MHz)	Tune-up (dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
				Е	xtremities S	AR(QPSK	, Distance (0mm)					
Back Side	Standard	1:1	1	25	23230/782	24.00	23.25	0.825	1.290	0.100	1.19	0.981	/
Front Side	Standard	1:1	1	25	23230/782	24.00	23.25	0.941	1.470	0.080	1.19	1.118	53
Right Edge	Standard	1:1	1	25	23230/782	24.00	23.25	0.827	1.240	-0.037	1.19	0.983	/
Top Edge	Standard	1:1	1	25	23230/782	24.00	23.25	0.267	0.862	-0.170	1.19	0.317	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	Standard	1:1	50%	0	23230/782	23.00	22.20	0.640	0.990	-0.020	1.20	0.769	/
Front Side	Standard	1:1	50%	0	23230/782	23.00	22.20	0.716	1.120	-0.030	1.20	0.861	/
Right Edge	Standard	1:1	50%	0	23230/782	23.00	22.20	0.641	0.967	0.020	1.20	0.771	/
Top Edge	Standard	1:1	50%	0	23230/782	23.00	22.20	0.202	0.650	-0.140	1.20	0.243	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

Measurement Variability										
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio						
Front Side	23230/782	0.717	0.702	1.02						
Back Side	23230/782	0.761	0.732	1.04						

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Report No.: R2004A0208-S1

	4.0			~=	(001111)
iable	19:	LIE	Band	25	(20MHz)

		,		,						()			
	Duty Cycle	RB allocation	RB offset	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)			Power Drift (dB)	g (mW/g) Scaling Factor	Report SAR1g	Plot No.	
				Head SAR(C	PSK, Dis	tance 10mn	n)						
tandard	1:1	1	50	26140/1860	23.50	23.02	0.478	0.758	-0.050	1.12	0.847	54	
tandard	1:1	1	50	26365/1882.5	23.50	22.85	0.432	0.698	0.110	1.16	0.811	/	
tandard	1:1	1	50	26590/1905	23.50	22.65	0.446	0.721	-0.080	1.22	0.877	/	
tandard	1:1	50%	25	26365/1882.5	22.50	21.74	0.374	0.607	-0.040	1.19	0.723	/	
tandard	1:1	100%	0	26365/1882.5	22.50	21.71	0.339	0.551	0.170	1.20	0.661	/	
epeated	1:1	1	50	26590/1905	23.50	22.65	0.438	0.715	0.012	1.22	0.870	/	
				Body-worn(QPSK, Di	stance 0mn	n)						
tandard	1:1	1	50	26140/1860	23.50	23.02	0.457	0.739	0.160	1.12	0.825	55	
tandard	1:1	1	50	26365/1882.5	23.50	22.85	0.403	0.700	0.021	1.16	0.813	/	
tandard	1:1	1	50	26590/1905	23.50	22.65	0.421	0.652	0.116	1.22	0.793	/	
tandard	1:1	50%	25	26365/1882.5	22.50	21.74	0.353	0.594	0.030	1.19	0.708	/	
tandard	1:1	100%	0	26365/1882.5	22.50	21.71	0.381	0.609	-0.100	1.20	0.730	/	
epeated	1:1	1	50	26140/1860	23.50	23.02	0.412	0.728	-0.011	1.12	0.813	/	
				Channel/		Mossurod	Lin	nit of 10g S	AR 4 W/	kg (mW/g	1)		
	Duty Cycle	RB allocation	RB offset	Frequency (MHz)	Tune-up (dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.	
				Extremities SA	R(QPSK,	Distance O	\						
andard	1:1		Extremities SAR(QPSK, Distance 0mm) Back Side Standard 1:1 1 50 26140/1860 23.50 23.02 0.673 1.180 -0.070 1.12 0.752 /										
		1	50	26140/1860	23.50	23.02	0.673	1.180	-0.070	1.12	0.752	/	
andard	1:1	1	50 50	26140/1860 26140/1860	23.50		-	1.180 2.710	-0.070 -0.021	1.12 1.12	0.752 1.608	/ 56	
andard andard						23.02	0.673						
	1:1	1	50	26140/1860	23.50	23.02 23.02	0.673	2.710	-0.021	1.12	1.608		
andard	1:1 1:1	1	50 50	26140/1860 26140/1860	23.50 23.50	23.02 23.02 23.02	0.673 1.440 0.283	2.710 0.570	-0.021 0.025	1.12 1.12	1.608 0.316	56	
andard andard	1:1 1:1 1:1	1 1 1	50 50 50	26140/1860 26140/1860 26140/1860	23.50 23.50 23.50	23.02 23.02 23.02 23.02	0.673 1.440 0.283 0.283	2.710 0.570 0.570	-0.021 0.025 0.025	1.12 1.12 1.12	1.608 0.316 0.316	56 /	
andard andard N/A	1:1 1:1 1:1 N/A	1 1 1 N/A	50 50 50 N/A	26140/1860 26140/1860 26140/1860 N/A	23.50 23.50 23.50 N/A	23.02 23.02 23.02 23.02 N/A	0.673 1.440 0.283 0.283 N/A	2.710 0.570 0.570 N/A	-0.021 0.025 0.025 N/A	1.12 1.12 1.12 N/A	1.608 0.316 0.316 N/A	56 / / N/A	
andard andard N/A N/A	1:1 1:1 1:1 N/A N/A	1 1 1 N/A N/A	50 50 50 N/A N/A	26140/1860 26140/1860 26140/1860 N/A N/A	23.50 23.50 23.50 N/A N/A	23.02 23.02 23.02 23.02 N/A N/A	0.673 1.440 0.283 0.283 N/A N/A	2.710 0.570 0.570 N/A N/A	-0.021 0.025 0.025 N/A N/A	1.12 1.12 1.12 N/A N/A	1.608 0.316 0.316 N/A N/A	56 / / N/A N/A	
andard N/A N/A andard	1:1 1:1 1:1 N/A N/A 1:1	1 1 1 N/A N/A 50%	50 50 50 N/A N/A 25	26140/1860 26140/1860 26140/1860 N/A N/A 26365/1882.5	23.50 23.50 23.50 N/A N/A 22.50	23.02 23.02 23.02 23.02 N/A N/A 21.74	0.673 1.440 0.283 0.283 N/A N/A 0.508	2.710 0.570 0.570 N/A N/A 0.880	-0.021 0.025 0.025 N/A N/A 0.100	1.12 1.12 1.12 N/A N/A 1.19	1.608 0.316 0.316 N/A N/A 0.605	56 / / N/A N/A /	
andard N/A N/A andard andard andard	1:1 1:1 1:1 N/A N/A 1:1	1 1 1 N/A N/A 50% 50%	50 50 50 N/A N/A 25 25	26140/1860 26140/1860 26140/1860 N/A N/A 26365/1882.5 26365/1882.5	23.50 23.50 23.50 N/A N/A 22.50 22.50	23.02 23.02 23.02 23.02 N/A N/A 21.74	0.673 1.440 0.283 0.283 N/A N/A 0.508 1.120	2.710 0.570 0.570 N/A N/A 0.880 2.160	-0.021 0.025 0.025 N/A N/A 0.100 0.050	1.12 1.12 1.12 N/A N/A 1.19 1.19	1.608 0.316 0.316 N/A N/A 0.605 1.334	56 / / N/A N/A /	
andard N/A N/A andard andard andard andard	1:1 1:1 1:1 N/A N/A 1:1 1:1	1 1 1 N/A N/A 50% 50%	50 50 N/A N/A 25 25	26140/1860 26140/1860 26140/1860 N/A N/A 26365/1882.5 26365/1882.5 26365/1882.5	23.50 23.50 23.50 N/A N/A 22.50 22.50	23.02 23.02 23.02 23.02 N/A N/A 21.74 21.74	0.673 1.440 0.283 0.283 N/A N/A 0.508 1.120 0.900	2.710 0.570 0.570 N/A N/A 0.880 2.160 1.670	-0.021 0.025 0.025 N/A N/A 0.100 0.050 -0.040	1.12 1.12 1.12 N/A N/A 1.19 1.19	1.608 0.316 0.316 N/A N/A 0.605 1.334 1.072	56 / / N/A N/A /	
ta t	andard peated	andard 1:1 beated 1:1	Andard 1:1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Andard 1:1 1 50 Andard 1:1 1 1 1 1 50 Andard 1:1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Head SAR(Grandard	RB RB RB RB RB RB RB RB	RB RB Offset Frequency (MHz) Power (dBm) Power	Cover Type Cycle Cycle	New Cycle Duty RB Allocation Offset Frequency (MHz) Tune-up (dBm) Measured (dBm) Measure	Duty Cycle Duty Cycle RB RB RB RB Channel/ Frequency (MHz) Tune-up (dBm) Measured power (dBm) Measured SAR10g Measured SAR10g Power (dBm) Measured SAR10g Measured SAR10g Power Drift (dB)	New	Power Properation Proper	

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

Measurement Variability												
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio								
Front Side	26590/1905	0.721	0.715	1.01								
Back Side	26140/1860	0.739	0.728	1.02								

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

FCC SAR Test Report No.: R2004A0208-S1
Table 20: LTE Band 26 (15MHz)

	Table 20). LIL	Danu 20 (I SIVII I	-)								
					Channel/		Manager	Li	imit of SAR	1.6 W/k	g (mW/g)		
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	Plot No.
					Head SAR(QPSK, Di	stance 10m	m)					
	Standard	1:1	1	0	26765/821.5	24.00	23.18	0.328	0.447	0.000	1.21	0.540	/
Front Side	Standard	1:1	1	0	26865/831.5	24.00	23.20	0.416	0.565	0.140	1.20	0.679	/
	Standard	1:1	1	0	26965/841.5	24.00	23.08	0.444	0.602	-0.050	1.24	0.744	57
Front Side	Standard	1:1	50%	0	26865/831.5	23.00	22.14	0.407	0.555	0.100	1.22	0.677	/
		l	1	l	Body-worn	(QPSK, D	istance 0m	m)	<u> </u>	•			
Back Side	Standard	1:1	1	0	26865/831.5	24.00	23.20	0.295	0.402	-0.050	1.20	0.483	58
Back Side	Standard	1:1	50%	0	26865/831.5	23.00	22.14	0.211	0.358	0.120	1.22	0.436	/
					Channel/		Manager	Limit of 10g SAR 4 W/kg (mW/g)					
Test Position	Cover Type	Duty Cycle	RB allocation	RB offset	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
					Extremities S	AR(QPSK	, Distance	0mm)					
Back Side	Standard	1:1	1	0	26865/831.5	24.00	23.20	0.756	1.240	-0.080	1.20	0.909	/
Front Side	Standard	1:1	1	0	26865/831.5	24.00	23.20	0.840	1.360	0.030	1.20	1.010	/
Right Edge	Standard	1:1	1	0	26865/831.5	24.00	23.20	0.898	1.360	0.060	1.20	1.080	59
Top Edge	Standard	1:1	1	0	26865/831.5	24.00	23.20	0.294	0.876	-0.100	1.20	0.353	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	Standard	1:1	50%	0	26865/831.5	23.00	22.14	0.565	0.935	0.010	1.22	0.689	/
Front Side	Standard	1:1	50%	0	26865/831.5	23.00	22.14	0.632	1.040	0.060	1.22	0.770	/
Right Edge	Standard	1:1	50%	0	26865/831.5	23.00	22.14	0.644	0.975	-0.020	1.22	0.785	/
Top Edge	Standard	1:1	50%	0	26865/831.5	23.00	22.14	0.233	0.695	0.030	1.22	0.284	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(1g).

FCC SAR Test Report No.: R2004A0208-S1
Table 21: Wi-Fi (2.4G)

Test	Cover	Mode	Duty	Channel/	Tune-up	Measured		Limit of SAR	1.6 W/kg (mW/g)		Plot
Position	Туре	802.11b	Cycle	Frequency (MHz)	dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	No.
				1	Head SAR	(Distance 1	0mm)					
Front Side	standard	DSSS	100.0%	6/2437	16.50	15.48	0.057	0.101	0.148	1.26	0.128	60
					Body-wor	n(Distance	0mm)					
Back Side	standard	DSSS	100.0%	6/2437	16.50	15.48	0.083	0.157	-0.140	1.26	0.199	61
				Channel/		Measured	L	imit of 10g S	AR 4 W/kg	(mW/g)		
Test Position	Cover Type	Mode 802.11b	Duty Cycle	Frequency (MHz)	Tune-up dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
				Ext	tremities	SAR(Distan	ce 0mm)					
Back Side	standard	DSSS	100.0%	6/2437	16.50	15.48	0.326	0.776	-0.190	1.26	0.412	62
Front Side	standard	DSSS	100.0%	6/2437	16.50	15.48	0.107	0.197	0.046	1.26	0.135	/
Left Edge	standard	DSSS	100.0%	6/2437	16.50	15.48	0.104	0.227	0.180	1.26	0.132	/
Right Edge	standard	DSSS	100.0%	6/2437	16.50	15.48	0.021	0.039	0.050	1.26	0.026	/
Top Edge	standard	DSSS	100.0%	6/2437	16.50	15.48	0.016	0.030	0.040	1.26	0.020	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Note: 1. The v	alue with b	lue color is	s the maxi	mum SAR Va	lue of eacl	h test band.						

	MAX Adjusted SAR												
Mode	Test	Channel/ Frequency	MAX Reported SAR _{1g}	802.11b Tune-up	Tune-up limit	Scaling	Adjusted SAR _{1g}						
	Position	(MHz)	(W/kg)	limit (dBm)	(dBm)	Factor	(W/kg)						
802.11g	Back Side	6/2437	0.199	16.50	20.00	2.24	0.446						
802.11n HT20	Back Side	6/2437	0.199	16.50	20.00	2.24	0.446						
802.11n HT40	Back Side	6/2437	0.199	16.50	19.50	2.00	0.397						

Note: SAR is not required for OFDM when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Table 22: Wi-Fi (5G,U-NII-1)

	Table 22:	****	, , , , , , , , , , , , , , , , , , , 	-,								
Test	Cover	Mode	Dutv	Channel/	Tune-up	Measured		Limit of SAR	1.6 W/kg (ı	mW/g)		Plot
Position	Туре	802.11a	Cycle	Frequency (MHz)	dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	No.
				1	Head SAR	(Distance 1	0mm)					
Front Side	standard	OFDM	100.0%	40/5200	12.50	12.23	0.031	0.080	0.110	1.06	0.085	63
					Body-wor	n(Distance	0mm)					
Back Side	standard	OFDM	100.0%	40/5200	12.50	12.23	0.024	0.069	0.057	1.06	0.074	64
				Channel/		Measured	L	imit of 10gS	AR 4 W/kg	(mW/g)		
Test Position	Cover Type	Mode 802.11a	Duty Cycle	Frequency (MHz)	Tune-up dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
									(4.2)			
				Ext	tremities (SAR(Distand	ce 0mm)		(4.2)			
Back Side	standard	OFDM	100.0%	Ext 40/5200	tremities \$	SAR(Distand	ce 0mm) 0.089	0.270	0.000	1.06	0.095	/
Back Side Front Side	standard standard	OFDM OFDM	100.0%		ı	`		0.270 0.190		1.06	0.095 0.081	/
				40/5200	12.50	12.23	0.089		0.000			/ / 65
Front Side	standard	OFDM	100.0%	40/5200 40/5200	12.50 12.50	12.23 12.23	0.089	0.190	0.000	1.06	0.081	/ / 65 /
Front Side Left Edge	standard standard	OFDM OFDM	100.0%	40/5200 40/5200 40/5200	12.50 12.50 12.50	12.23 12.23 12.23	0.089 0.076 0.216	0.190 0.651	0.000 0.021 0.012	1.06	0.081	/ / 65 /

Note: 1. The value with blue color is the maximum SAR Value of each test band.

The highest reported SAR for a test configuration is > 1.2 W/kg, SAR is required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.

independently for SAR.

Table 23: Wi-Fi (5G,U-NII-2A)

Per 248227, for band U-NII-1 and U-NII-2A, when the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested

Limit of SAR 1.6 W/kg (mW/g) Channel/ Measured Plot Test Cover Mode **Duty** Tune-up Frequency power Measured Measured **Power** Scaling Report **Position** Type 802.11a Cycle dBm) No. (MHz) (dBm) SAR10q SAR1q Drift (dB) **Factor** SAR 1g Head SAR(Distance 10mm) Front Side OFDM 100.0% 52/5260 12.50 11.98 0.038 0.099 0.112 66 standard 0.099 1.13 Body-worn(Distance 0mm) Back Side standard **OFDM** 100.0% 52/5260 12.50 11.98 0.031 0.090 0.081 1.13 0.035 67 Limit of 10gSAR 4 W/kg (mW/g) Channel/ Measured **Plot** Test Cover Mode Duty Tune-up **Power** Frequency power Scaling Measured Measured Report **Position** 802.11a Cycle dBm) No. Type Drift (MHz) (dBm) SAR10g SAR1g Factor SAR10g (dB) Extremities SAR(Distance 0mm) Back Side standard OFDM 100.0% 52/5260 12.50 11.98 0.091 0.280 0.015 1.13 0.103 / Front Side OFDM 100.0% 52/5260 standard 12.50 11.98 0.085 0.219 0.063 1.13 0.096 / Left Edge standard OFDM 100.0% 52/5260 12.50 11.98 0.227 0.689 0.020 1.13 0.256 68 Right Edge standard **OFDM** 100.0% 52/5260 12.50 11.98 0.016 0.053 0.034 1.13 0.018 / Top Edge standard OFDM 100.0% 52/5260 12.50 11.98 0.028 0.063 0.104 1.13 0.031 / Bottom Edge N/A N/A

Note: 1. The value with blue color is the maximum SAR Value of each test band.

Table 24: Wi-Fi (5G,U-NII-20	C)
------------------------------	----

Test	Cover	Mode	Dutv	Channel/	abm) (db)	power		Limit of SAF	R 1.6 W/kg	(mW/g)		Plot
Position	Туре	802.11a	Cycle	(MHz)		Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	No.	
				Н	lead SAR(Distance 10	Dmm)					
Front Side	standard	OFDM	100.0%	116/5580	11.00	10.31	0.037	0.088	0.139	1.17	0.103	69
				E	Body-worr	(Distance 0	mm)					
Back Side	standard	OFDM	100.0%	116/5580	11.00	10.31	0.078	0.208	0.189	1.17	0.091	70
				Channel/		Measured	L	imit of 10gS	SAR 4 W/kg	(mW/g)		
Test Position	Cover Type	Mode 802.11a	Duty Cycle	Frequency (MHz)	Tune-up dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
				Ext	remities S	AR(Distanc	e 0mm)					
Back Side	standard	OFDM	100.0%	116/5580	11.00	10.31	0.136	0.421	0.015	1.17	0.159	/
Front Side	standard	OFDM	100.0%	116/5580	11.00	10.31	0.094	0.236	0.194	1.17	0.110	/
Left Edge	standard	OFDM	100.0%	116/5580	11.00	10.31	0.184	0.489	0.020	1.17	0.216	71
Right Edge	standard	OFDM	100.0%	116/5580	11.00	10.31	0.022	0.073	0.110	1.17	0.026	/
Top Edge	standard	OFDM	100.0%	116/5580	11.00	10.31	0.022	0.054	0.197	1.17	0.025	/
Bottom Edge		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Note: 1. The v	alue with b	lue color is	s the maxi	mum SAR Va	lue of eac	h test band.						



Table 25: Wi-Fi (5G,U-NII-3)

Test	Cover	Mode	Duty	Channel/	Tune-up	Measured		Limit of SAF	R 1.6 W/kg	(mW/g)		Plot
Position	Туре	802.11a	Cycle	Frequency (MHz)	dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	No.
				Н	lead SAR(Distance 10	mm)					
Front Side	standard	OFDM	100.0%	157/5785	11.00	10.45	0.033	0.083	0.034	1.14	0.094	72
				E	Body-worn	(Distance 0	mm)					
Back Side	standard	OFDM	100.0%	157/5785	11.00	10.45	0.060	0.159	0.100	1.14	0.180	73
				Channel/		Measured	L	imit of 10gS	SAR 4 W/kg	(mW/g)		
Test Position	Cover Type	Mode 802.11a	Duty Cycle	Frequency (MHz)	Tune-up dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
				Ext	remities S	AR(Distanc	e 0mm)					
Back Side	standard	OFDM	100.0%	157/5785	11.00	10.45	0.117	0.344	0.036	1.14	0.133	/
Front Side	standard	OFDM	100.0%	157/5785	11.00	10.45	0.093	0.250	0.040	1.14	0.105	/
Left Edge	standard	OFDM	100.0%	157/5785	11.00	10.45	0.118	0.320	0.080	1.14	0.134	74
Right Edge	standard	OFDM	100.0%	157/5785	11.00	10.45	0.014	0.051	0.099	1.14	0.016	/
Top Edge	standard	OFDM	100.0%	157/5785	11.00	10.45	0.016	0.046	-0.170	1.14	0.018	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Note: 1. The v	alue with b	lue color is	s the maxi	mum SAR Va	lue of eac	h test band.						

FCC SAR Test Report No.: R2004A0208-S1

Table 2	6:	BT
---------	----	----

Test Co	Cover		Duty	Channel/	Tune-up	Measured		Limit of SAF	R 1.6 W/kg	(mW/g)		Plot
Position	Mode	Cycle	Frequency (MHz)	dBm)	power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	No.	
				E	Body-worr	n(Distance 0	mm)					
Back Side	standard	GFSK	76.0%	39/2441	9.00	8.05	0.013	0.027	0.070	1.64	0.044	75

Band	Configuration	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR (W/kg)		
Bluetooth	Head SAR	2480	9.00	10	0.167		
	Extremities SAR	2480	9.00	5	0.133		

For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 based on the formula below.

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]· $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

FCC SAR Test Report No.: R2004A0208-S1

10.4 Simultaneous Transmission Analysis

Simultaneous Transmission Configurations	Head SAR	Extremities SAR
GSM + Bluetooth	Yes	Yes
WCDMA + Bluetooth	Yes	Yes
LTE + Bluetooth	Yes	Yes
GSM + Wi-Fi-2.4GHz	Yes	Yes
WCDMA + Wi-Fi-2.4GHz	Yes	Yes
LTE + Wi-Fi-2.4GHz	Yes	Yes
GSM + Wi-Fi-5GHz	Yes	Yes
WCDMA + Wi-Fi-5GHz	Yes	Yes
LTE + Wi-Fi-5GHz	Yes	Yes
Wi-Fi-2.4GHz + Bluetooth	Yes	Yes
Wi-Fi-5GHz + Bluetooth	Yes	Yes

General Note:

- 1. The Scaled SAR summation is calculated based on the same configuration and test position.
- 2. Per KDB 447498 D01, simultaneous transmission SAR is compliant if,
- i) Scalar SAR summation < 1.6W/kg, simultaneously transmission SAR measurement is not necessary.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.

Report No.: R2004A0208-S1

The maximum $SAR_{1g/10g}$ Value for Main-Antenna

Test Positio	GAR _{1g/10g} (W/kg)	GSM 850	GSM 1900	WCDMA Band II	WCDMA Band IV	WCDMA Band V	LTE FDD 2	LTE FDD 4	LTE FDD 5	LTE FDD 7	LTE FDD 12	LTE FDD 13	LTE FDD 25	LTE FDD 26	MAX. SAR _{1g/10g}
Head SAR		1.278	0.582	1.105	1.176	1.125	0.997	0.949	0.841	1.076	0.708	0.852	0.877	0.744	1.278
Body-worn		1.278	0.458	0.915	1.078	0.885	0.867	0.937	0.672	0.912	0.683	0.904	0.825	0.483	1.278
	Back Side	1.336	0.439	0.900	0.943	1.026	0.789	0.673	1.044	0.574	0.618	0.981	0.752	0.909	1.336
	Front Side	1.500	0.952	1.969	1.232	1.113	1.856	1.129	1.092	1.813	0.884	1.118	1.608	1.010	1.969
Extremities	Right Edge	1.207	0.817	1.410	0.721	0.988	1.215	0.629	0.749	0.967	0.853	0.983	1.072	1.080	1.410
SAR	Top Edge	0.855	0.200	0.379	0.463	0.598	0.343	0.392	0.385	0.651	0.334	0.317	0.316	0.353	0.855
	Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

About BT, Wi-Fi 2.4G and Main-Antenna

SAR _{1g/10g} (W/k		Main-antenna	ВТ	Wi-Fi 2.4G	MAX. ΣSAR _{1g/10g}	
Test Position						
Head SAR	Front Side	1.278	0.167	0.128	1.573	
Body-worn	Back Side	1.278	0.044	0.199	1.521	
Extremities SAR	Back Side	1.336	0.133	0.412	1.881	
	Front Side	1.969	0.133	0.135	2.237	
	Right Edge	1.410	0.133	0.132	1.675	
	Top Edge	0.855	0.133	0.026	1.014	
	Left Edge	NA	0.133	0.020	0.153	
	Bottom Edge	NA	NA	NA	NA	

Note: 1.The value with blue color is the maximum $\Sigma SAR_{1g/10g}$ Value.

2.MAX. $\Sigma SAR_{1g/10g}$ =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

MAX. $\Sigma SAR_{1g} = 1.573W/kg < 1.6W/kg$ and MAX. $\Sigma SAR_{10g} = 2.237W/kg < 4$ W/kg, so the Simultaneous transimition SAR with volum scan are not required for BT and Main-Antenna.

About BT, Wi-Fi 5G and Main-Antenna

Test Position	SAR _{1g/10g} (W/kg)	Main-antenna	ВТ	Wi-Fi 5G	MAX. ΣSAR _{1g/10g}
Head SAR	Front Side	1.278	0.167	0.112	1.557
Body-worn	Back Side	1.278	0.044	0.180	1.502
	Back Side	1.336	0.133	0.159	1.628
	Front Side	1.969	0.133	0.110	2.212
Extremities	Right Edge	1.410	0.133	0.256	1.799
SAR	Top Edge	0.855	0.133	0.026	1.014
	Left Edge	NA	0.133	0.031	0.164
	Bottom Edge	NA	NA	NA	NA

Note: 1.The value with blue color is the maximum $\Sigma SAR_{1g/10g}$ Value.

2.MAX. $\Sigma SAR_{1g/10g}$ =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

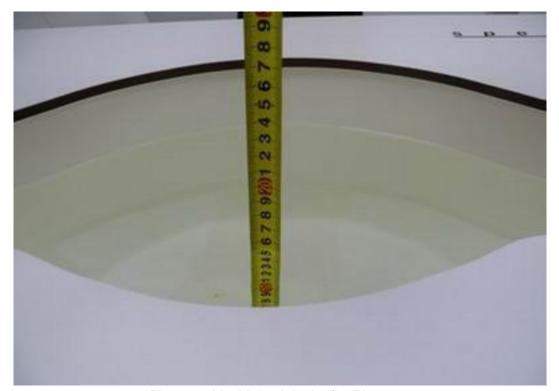
MAX. $\Sigma SAR_{1g} = 1.557W/kg < 1.6W/kg$ and MAX. $\Sigma SAR_{10g} = 2.212W/kg < 4$ W/kg, so the Simultaneous transimition SAR with volum scan are not required for Wi-Fi and Main-Antenna.

11 Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528- 2013 is not required in SAR reports submitted for equipment approval. This also applies to the 10-g SAR required for phablets in KDB Publication 648474.

Report No.: R2004A0208-S1

ANNEX A: Test Layout



Tissue Simulating Liquids

For the measurement of the field distribution inside the flat phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For Head and Body-worn testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Picture 3 and Picture 4.

Picture 3: liquid depth in the head Phantom

Picture 4: Liquid depth in the flat Phantom

FCC SAR Test Report No.: R2004A0208-S1

ANNEX B: System Check Results

Plot 1 System Performance Check at 750 MHz TSL

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3

Date: 5/25/2020

Communication System:CW (0); Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; $\sigma = 0.88 \text{ S/m}$; $\varepsilon_r = 42.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

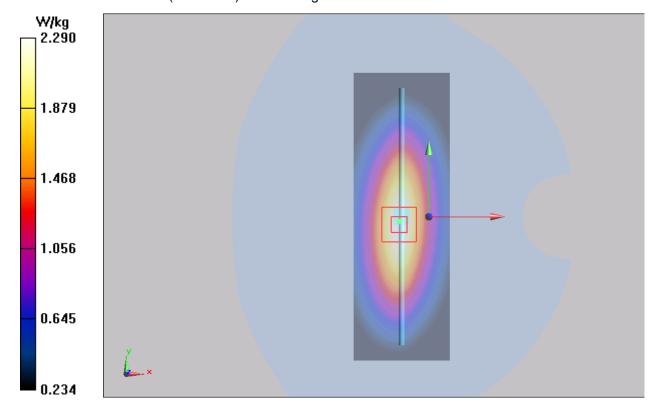
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.54, 9.54, 9.54); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=15mm,Pin=250mW/Area Scan (4x12x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 2.29 W/kg

d=15mm,Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.653 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.16 W/kg

SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (measured) = 2.29 W/kg

Plot 2 System Performance Check at 750 MHz TSL

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3

Date: 6/28/2020

Communication System:CW (0); Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; σ = 0.87 S/m; ε_r = 42.0; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

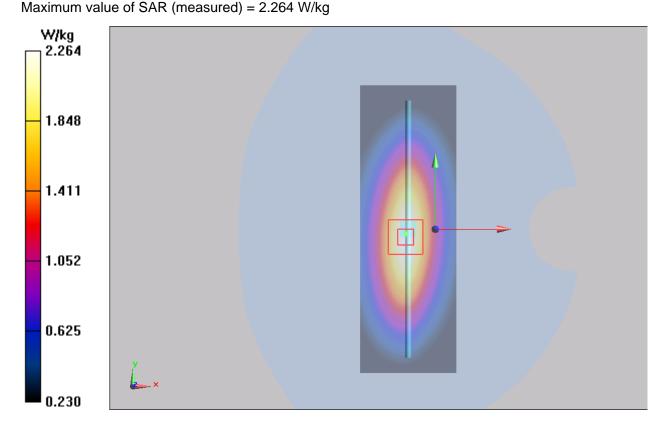
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN7515; ConvF(9.88, 9.88, 9.88); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=15mm,Pin=250mW/Area Scan (4x12x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 2.31 W/kg

d=15mm,Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.557 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 3.14 W/kg

SAR(1 g) = 2.10 W/kg; SAR(10 g) = 1.37 W/kg

Plot 3 System Performance Check at 835 MHz TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2

Date: 5/20/2020

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.87$ S/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.20, 9.20, 9.20); Calibrated: 6/19/2019;

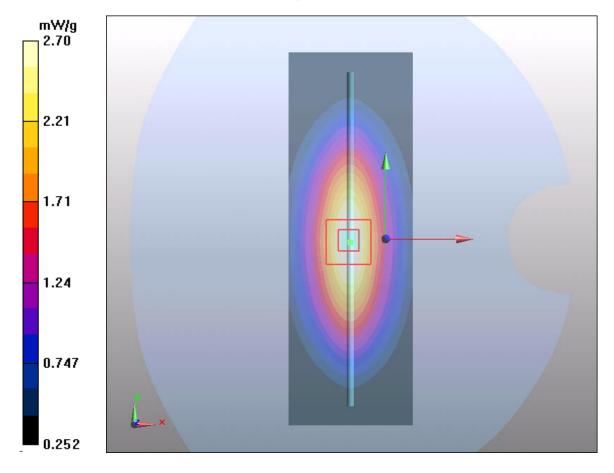
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=15mm, Pin=250mW/Area Scan (4x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.59 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 54.3 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.65 mW/g

Maximum value of SAR (measured) = 2.70 mW/g

Plot 4 System Performance Check at 835 MHz TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2

Date: 5/23/2020

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.20, 9.20, 9.20); Calibrated: 6/19/2019;

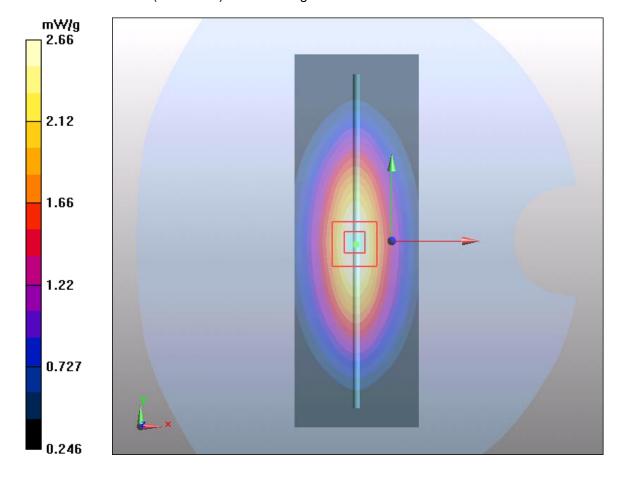
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=15mm, Pin=250mW/Area Scan (4x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.64 mW/g

d=15mm, Pin=250mW/Zoom Scan(5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 54.4 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.61 mW/g

Maximum value of SAR (measured) = 2.66 mW/g

Plot 5 System Performance Check at 835 MHz TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2

Date: 6/28/2020

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.88$ S/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 -SN7515; ConvF(9.60, 9.60, 9.60); Calibrated: 10/22/2019;

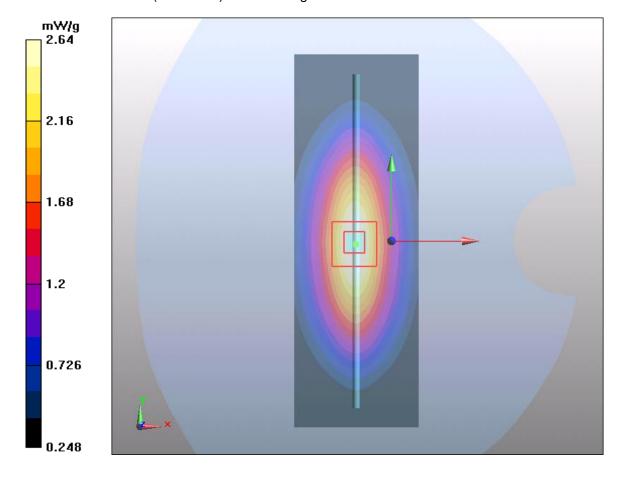
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=15mm, Pin=250mW/Area Scan (4x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.64 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 54.4 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.64 mW/g

Plot 6 System Performance Check at 1750 MHz TSL

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2

Date: 5/21/2020

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ S/m}$; $\epsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.21, 8.21, 8.21); Calibrated: 6/19/2019;

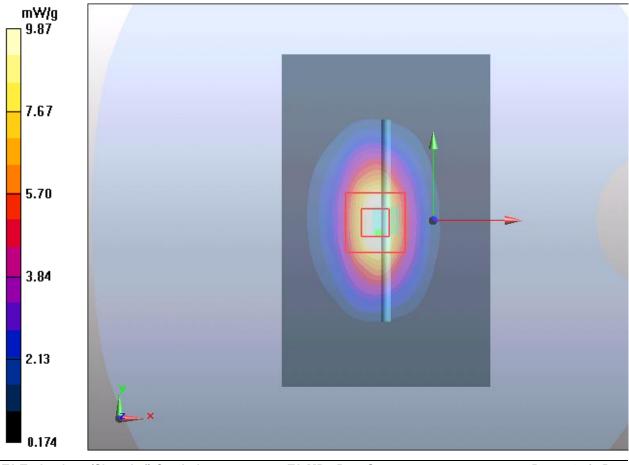
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.77 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 80 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 15.51 W/kg

SAR(1 g) = 9.11 mW/g; SAR(10 g) = 4.77 mW/g

Maximum value of SAR (measured) = 9.87 mW/g

Plot 7 System Performance Check at 1750 MHz TSL DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2

Date: 6/28/2020

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.36 \text{ mho/m}$; $\epsilon_r = 40.2$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 -SN7515; ConvF(8.55, 8.55, 8.55); Calibrated: 10/22/2019;

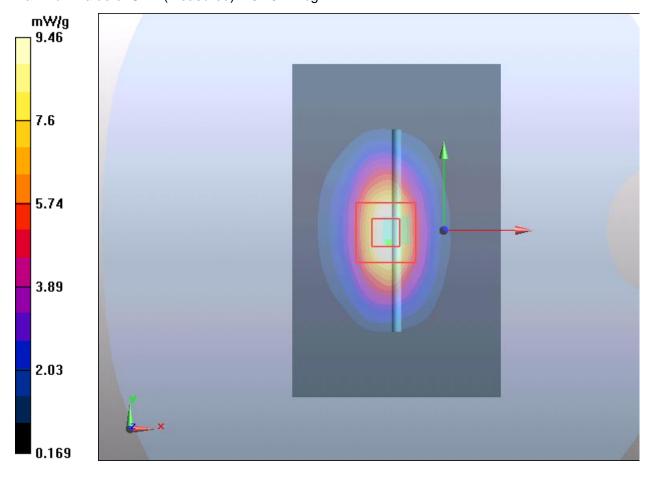
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.11 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 80 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 15.47 W/kg

SAR(1 g) = 8.96 mW/g; SAR(10 g) = 4.75 mW/g

Maximum value of SAR (measured) = 9.46 mW/g

Plot 8 System Performance Check at 1900 MHz TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2

Date: 5/19/2020

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.43 \text{ S/m}$; $\varepsilon_r = 40.2$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.79, 7.79, 7.79); Calibrated: 6/19/2019;

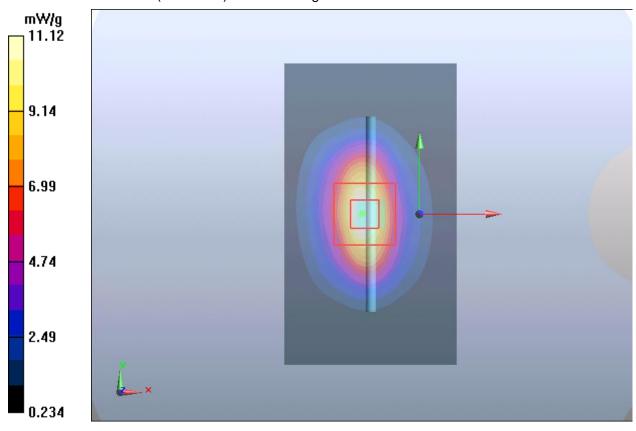
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 11.23 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 85.0 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.85 mW/g; SAR(10 g) = 4.93 mW/g

Maximum value of SAR (measured) = 11.12 mW/g

Plot 9 System Performance Check at 1900 MHz

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2

Date: 5/22/2020

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.40 \text{ mho/m}$; $\varepsilon_r = 40.0$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.79, 7.79, 7.79); Calibrated: 6/19/2019;

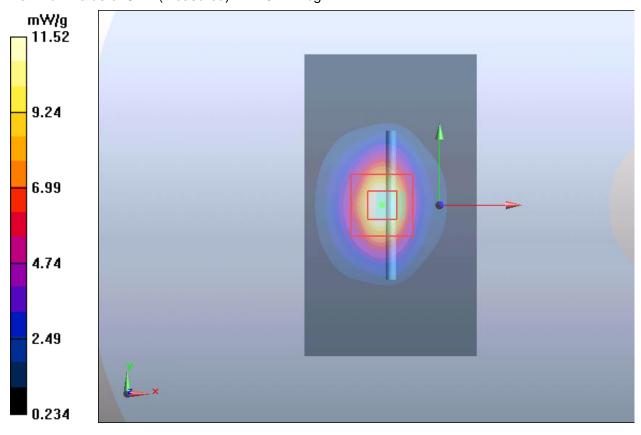
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 12.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 87.8 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 20.1 W/kg

SAR(1 g) = 10.55 mW/g; SAR(10 g) = 5.39 mW/g

Maximum value of SAR (measured) = 11.52 mW/g

Plot 10 System Performance Check at 1900 MHz TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2

Date: 6/28/2020

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ S/m}$; $\epsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 -SN7515; ConvF(8.18, 8.18, 8.18); Calibrated: 10/22/2019;

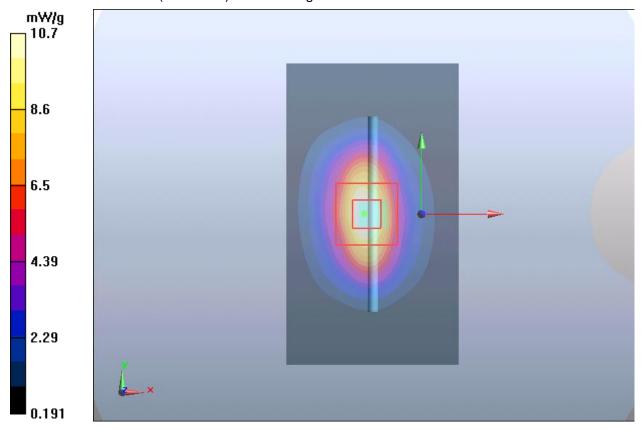
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 11.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 85.5 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.88 mW/g; SAR(10 g) = 4.9 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

Plot 11 System Performance Check at 2450 MHz TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2

Date: 5/24/2020

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ S/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.50, 7.50, 7.50); Calibrated: 6/19/2019;

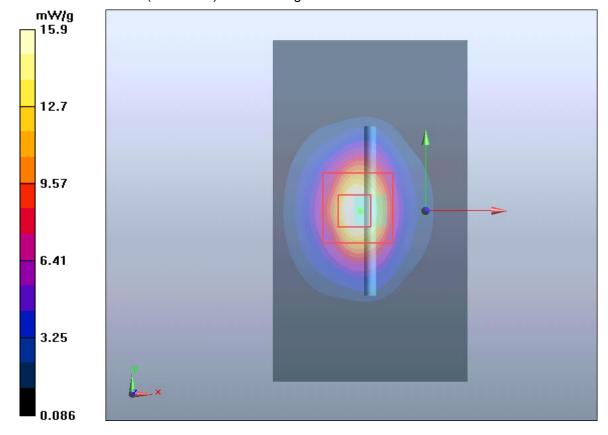
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 18.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 88.8 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 30 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.22 mW/g

Maximum value of SAR (measured) = 15.9 mW/g

Plot 12 System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2

Date: 6/28/2020

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

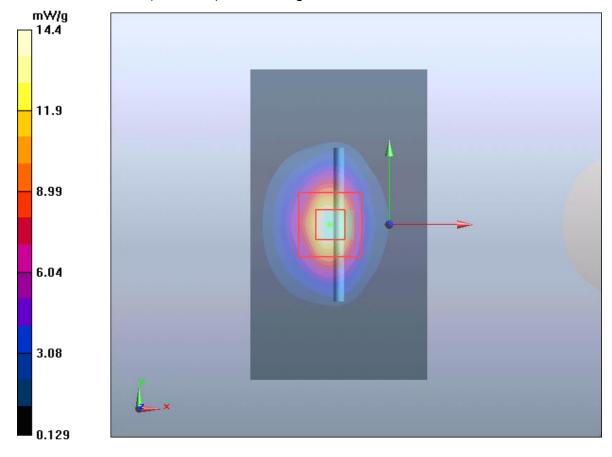
Probe: EX3DV4 -SN7515; ConvF(7.45, 7.45,7.45); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 16 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 81.2 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 6.20 mW/g Maximum value of SAR (measured) = 14.4 mW/g

Plot 13 System Performance Check at 2600 MHz TSL

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2

Date: 5/24/2020

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2600 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

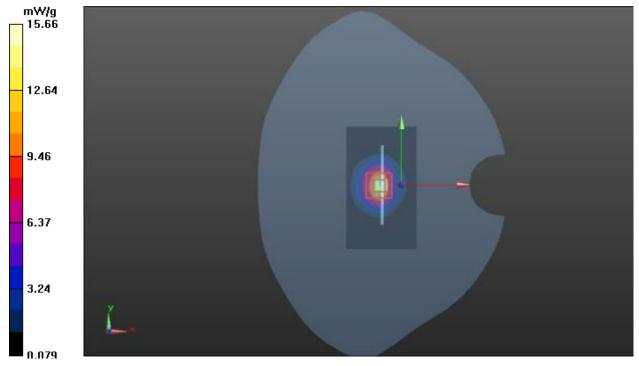
Probe: EX3DV4 - SN3677; ConvF(7.20, 7.20, 7.20); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid:dx=12mm, dy=12mm

Maximum value of SAR (measured) = 17.59 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.998 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 31.858 W/kg

SAR(1 g) = 13.88 mW/g; SAR(10 g) = 6.09 mW/g

Maximum value of SAR (measured) = 15.66 mW/g

Plot 14 System Performance Check at 2600 MHz Head TSL

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2

Date: 6/28/2020

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2600 MHz; $\sigma = 2.01 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

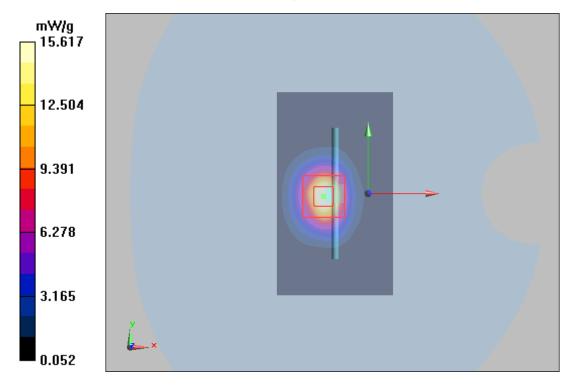
Probe: EX3DV4 -SN7515; ConvF(7.30, 7.30,7.30); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid:dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 17.439 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.998 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 31.858 W/kg

SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.07 mW/g

Maximum value of SAR (measured) = 15.617 mW/g

Plot 15 System Performance Check at 5250 MHz TSL

DUT: Dipole 5250 MHz; Type: D5GHzV2; Serial: D5GHzV2

Date: 5/26/2020

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; $\sigma = 4.80 \text{ S/m}$; $\varepsilon_r = 35.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

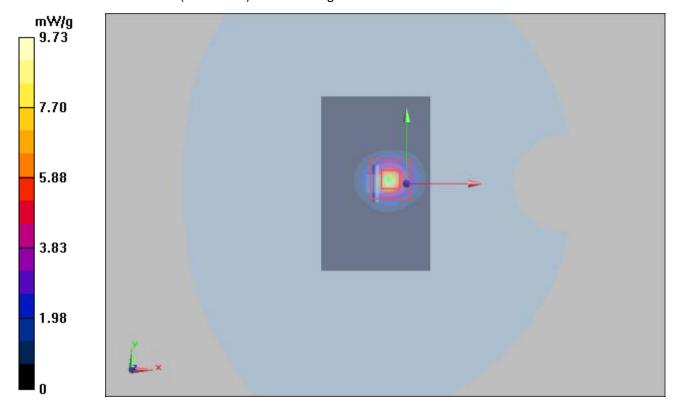
Probe: EX3DV4 - SN3677; ConvF(5.56, 5.56, 5.56); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=100mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 9.14 mW/g


d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 33.6 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 52.2 W/kg

SAR(1 g) = 7.87 mW/g; SAR(10 g) = 2.25 mW/g

Maximum value of SAR (measured) = 9.73 mW/g

Plot 16 System Performance Check at 5250 MHz Body TSL

DUT: Dipole 5250 MHz; Type: D5GHzV2; Serial: D5GHzV2

Date: 6/29/2020

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; $\sigma = 4.86$ S/m; $\varepsilon_r = 36.0$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 -SN7515; ConvF(5.38, 5.38,5.38); Calibrated: 10/22/2019;

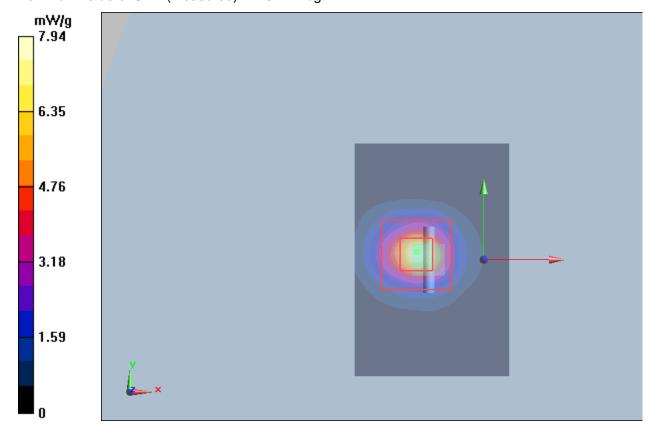
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=100mW/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 7.69 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm

Reference Value = 36.3 V/m; Power Drift = 0.0277 dB

Peak SAR (extrapolated) = 47.7 W/kg

SAR(1 g) = 7.46 mW/g; SAR(10 g) = 2.26 mW/g

Maximum value of SAR (measured) = 7.94 mW/g

Plot 17 System Performance Check at 5600 MHz TSL

DUT: Dipole 5600 MHz; Type: D5GHzV2; Serial: D5GHzV2

Date: 5/27/2020

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; σ = 5.21 S/m; ε_r = 34.2; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(4.90, 4.90, 4.90); Calibrated: 6/19/2019;

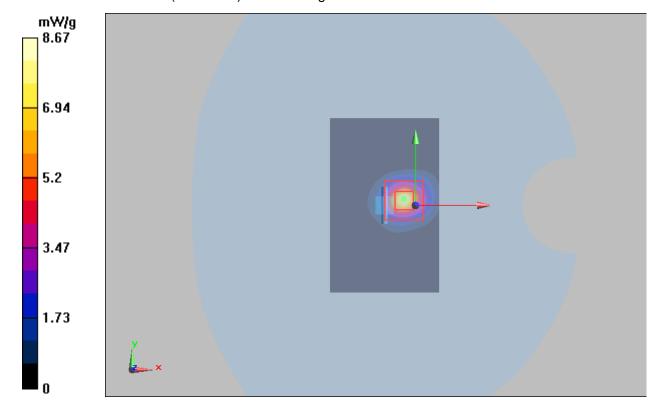
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=100mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 8.25 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm

Reference Value = 23.1 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 22.9 W/kg

SAR(1 g) = 7.67 mW/g; SAR(10 g) = 2.27 mW/g

Maximum value of SAR (measured) = 8.67 mW/g

Plot 18 System Performance Check at 5600 MHz Body TSL

DUT: Dipole 5600 MHz; Type: D5GHzV2; Serial: D5GHzV2

Date:6/29/2020

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.19 \text{ S/m}$; $\varepsilon_r = 34.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 -SN7515; ConvF(4.77, 4.77,4.77); Calibrated: 10/22/2019;

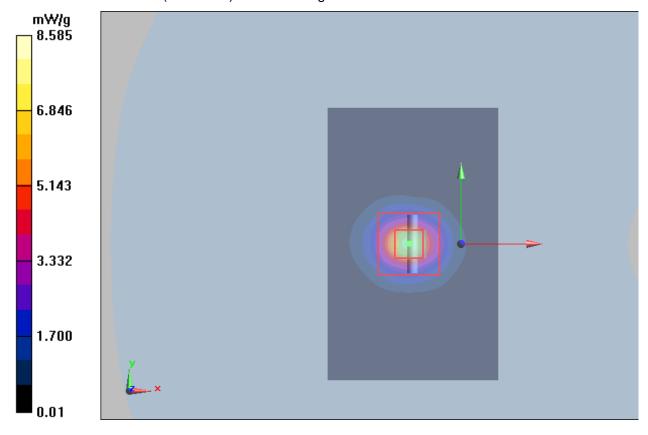
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

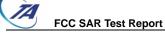
Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=100mW/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 7.84 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm


Reference Value = 38 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 22.6 W/kg

SAR(1 g) = 8.10 mW/g; SAR(10 g) = 2.11 mW/g

Maximum value of SAR (measured) = 8.585 mW/g

Plot 19 System Performance Check at 5750 MHz TSL

DUT: Dipole 5750 MHz; Type: D5GHzV2; Serial: D5GHzV2

Date: 5/27/2020

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5750 MHz; $\sigma = 5.21 \text{ S/m}$; $\varepsilon_r = 34.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

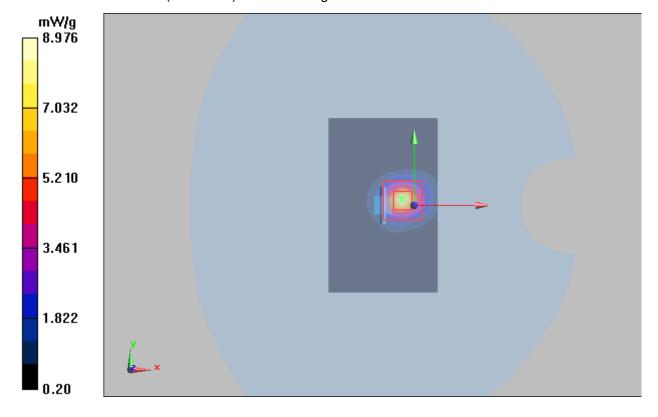
Probe: EX3DV4 - SN3677; ConvF(4.99, 4.99, 4.99); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=100mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 8.31 mW/g


d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 23.1 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 23.4 W/kg

SAR(1 g) = 7.66 mW/g; SAR(10 g) = 2.27 mW/g

Maximum value of SAR (measured) = 8.976 mW/g

Plot 20 System Performance Check at 5750 MHz Body TSL

DUT: Dipole 5750 MHz; Type: D5GHzV2; Serial: D5GHzV2

Date:6/29/2020

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5750 MHz; σ = 5.30 S/m; ε_r = 34.0; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 -SN7515; ConvF(4.94, 4.94,4.94); Calibrated: 10/22/2019;

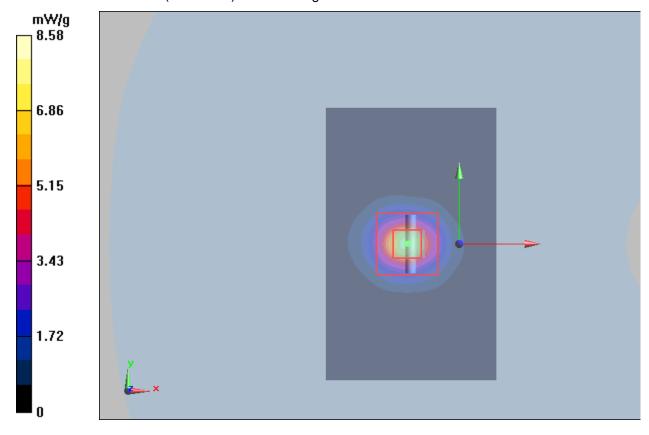
Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=100mW/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 7.84 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm

Reference Value = 38 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 22.6 W/kg

SAR(1 g) = 7.15 mW/g; SAR(10 g) = 1.99 mW/g

Maximum value of SAR (measured) = 8.58 mW/g

FCC SAR Test Report No.: R2004A0208-S1

ANNEX C: Highest Graph Results

Plot 21 GSM 850 GPRS (4Txslots) Front Side Middle (Distance 10mm)

Date: 5/20/2020

Communication System: UID 0, GPRS-4UP (0); Frequency: 836.6 MHz; Duty Cycle: 1:2.07 Medium parameters used: f = 837 MHz; $\sigma = 0.923$ S/m; $\epsilon r = 42.201$; $\rho = 1000$ kg/m3

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

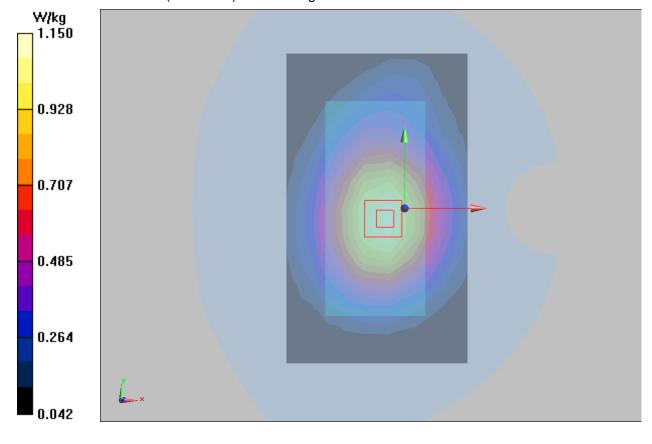
Probe: EX3DV4 - SN3677; ConvF(9.20, 9.20, 9.20); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.11 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.95 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.794 W/kg

Maximum value of SAR (measured) = 1.15 W/kg

Plot 22 GSM 850 GPRS (4Txslots) Back Side Middle (Distance 0mm)

Date: 6/28/2020

Communication System: UID 0, GPRS 4TX (0); Frequency: 836.6 MHz; Duty Cycle: 1:2.07 Medium parameters used: f = 837 MHz; $\sigma = 0.923$ S/m; $\epsilon r = 42.201$; $\rho = 1000$ kg/m3

Ambient Temperature:22.3 ℃ Liquid Temperature: 21.5℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

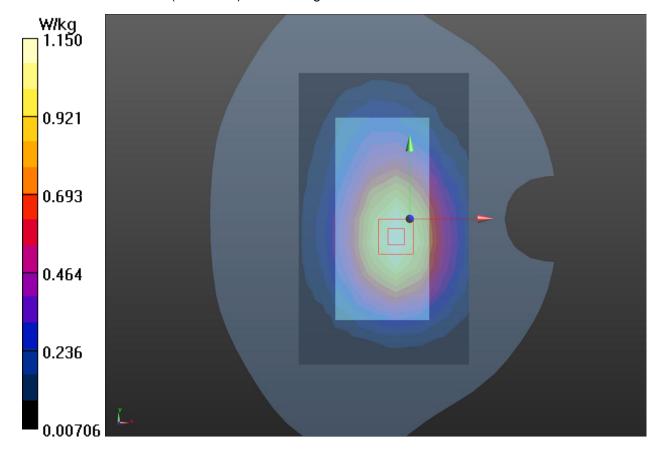
Probe: EX3DV4 -SN7515; ConvF(9.60, 9.60, 9.60); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Back Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.17 W/kg


Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 33.46 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.791 W/kg

Maximum value of SAR (measured) = 1.15 W/kg

FCC SAR Test Report No.: R2004A0208-S1

Plot 23 GSM 850 GPRS (4Txslots) Front Side Middle (Distance 0mm)

Date: 5/20/2020

Communication System: UID 0, GPRS-4UP (0); Frequency: 836.6 MHz; Duty Cycle: 1:2.07 Medium parameters used: f = 837 MHz; $\sigma = 0.923$ S/m; $\epsilon r = 42.201$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

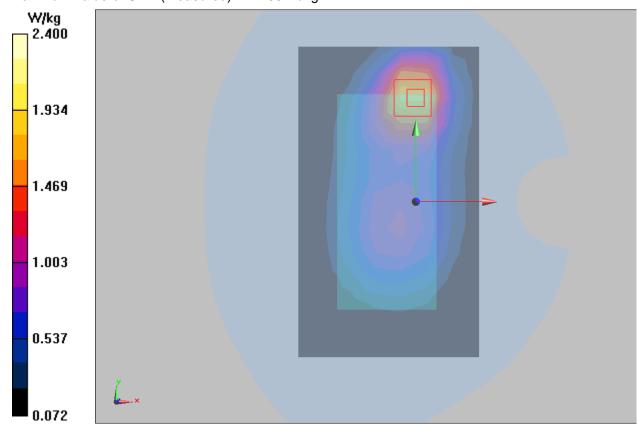
Probe: EX3DV4 - SN3677; ConvF(9.20, 9.20, 9.20); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.01 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 33.27 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 6.11 W/kg

SAR(1 g) = 2.2 W/kg; SAR(10 g) = 1.28 W/kg

Maximum value of SAR (measured) = 2.400 W/kg

Plot 24 GSM 1900 GPRS (4Txslots) Front Side Middle (Distance 10mm)

Date: 5/19/2020

Communication System: UID 0, GPRS-4UP (0); Frequency: 1880 MHz; Duty Cycle: 1:2.07 Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\epsilon r = 38.948$; $\rho = 1000$ kg/m3

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

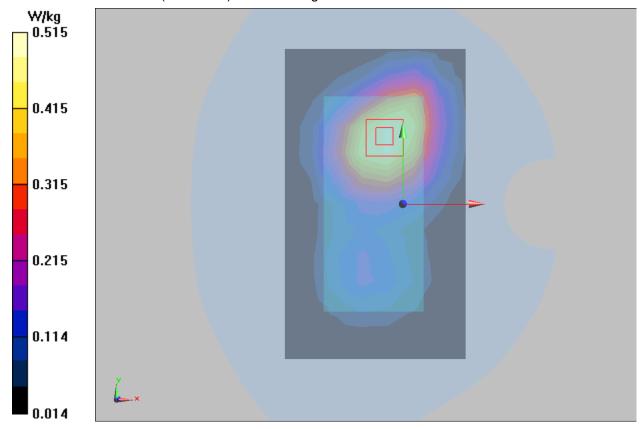
Probe: EX3DV4 - SN3677; ConvF(7.79, 7.79, 7.79); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.489 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.14 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.751 W/kg

SAR(1 g) = 0.474 W/kg; SAR(10 g) = 0.299 W/kg

Maximum value of SAR (measured) = 0.515 W/kg

Plot 25 GSM 1900 GPRS (4Txslots) Back Side Middle (Distance 0mm)

Date: 6/28/2020

Communication System: UID 0, GPRS 4TX (0); Frequency: 1880 MHz; Duty Cycle: 1:2.07 Medium parameters used: f = 1880 MHz; σ = 1.393 S/m; ϵr = 38.344; ρ = 1000 kg/m3

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

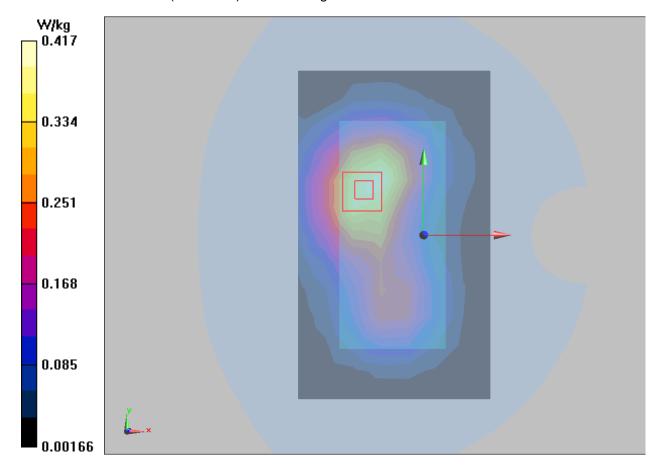
Probe: EX3DV4 -SN7515; ConvF(8.18, 8.18, 8.18); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Back Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.419 W/kg


Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.98 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.598 W/kg

SAR(1 g) = 0.373 W/kg; SAR(10 g) = 0.223 W/kg

Maximum value of SAR (measured) = 0.417 W/kg

Plot 26 GSM 1900 GPRS (4Txslots) Front Side Middle (Distance 0mm)

Date: 5/19/2020

Communication System: UID 0, GPRS-4UP (0); Frequency: 1880 MHz; Duty Cycle: 1:2.07 Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\epsilon r = 38.948$; $\rho = 1000$ kg/m3

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

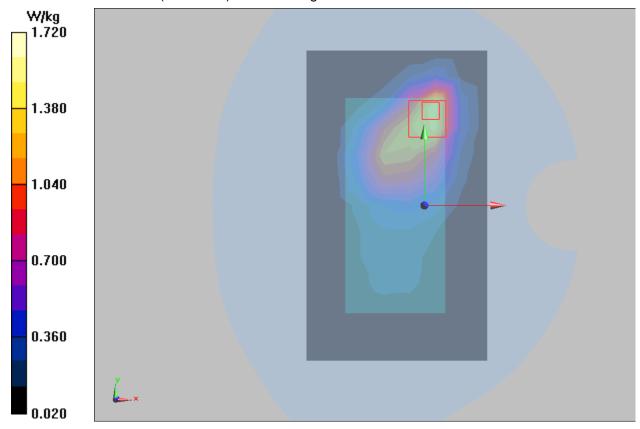
Probe: EX3DV4 - SN3677; ConvF(7.79, 7.79, 7.79); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.44 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.90 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.85 W/kg

SAR(1 g) = 1.5 W/kg; SAR(10 g) = 0.776 W/kg

Maximum value of SAR (measured) = 1.720 W/kg

Plot 27 UMTS Band II Front Side Middle (Distance 10mm)

Date: 5/19/2020

Communication System: UID 0, WCDMA 1900 (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\epsilon r = 38.948$; $\rho = 1000$ kg/m3

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

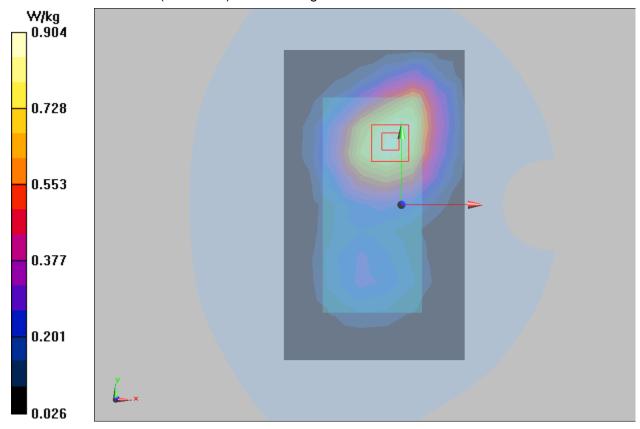
Probe: EX3DV4 - SN3677; ConvF(7.79, 7.79, 7.79); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.866 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.08 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.859 W/kg; SAR(10 g) = 0.540 W/kg

Maximum value of SAR (measured) = 0.904 W/kg

Plot 28 UMTS Band II Back Side Middle (Distance 0mm)

Date: 6/28/2020

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.393$ S/m; $\epsilon r = 38.344$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

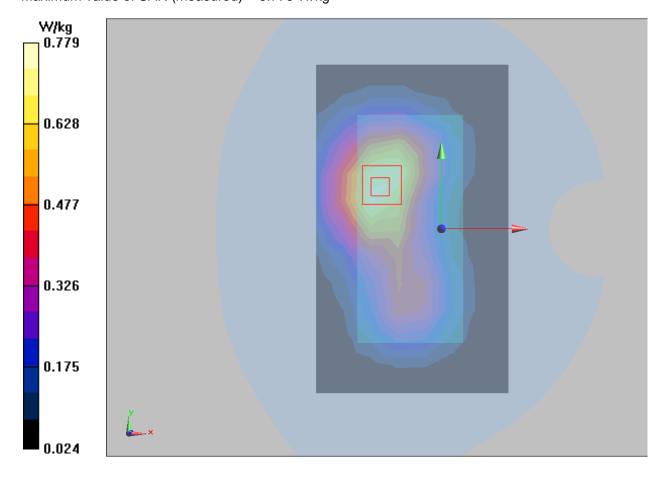
Probe: EX3DV4 -SN7515; ConvF(8.18, 8.18, 8.18); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Back Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.740 W/kg


Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.20 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.720 W/kg; SAR(10 g) = 0.446 W/kg

Maximum value of SAR (measured) = 0.779 W/kg

Plot 29 UMTS Band II Front Side Middle (Distance 0mm)

Date: 5/19/2020

Communication System: UID 0, WCDMA 1900 (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\epsilon r = 38.948$; $\rho = 1000$ kg/m3

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

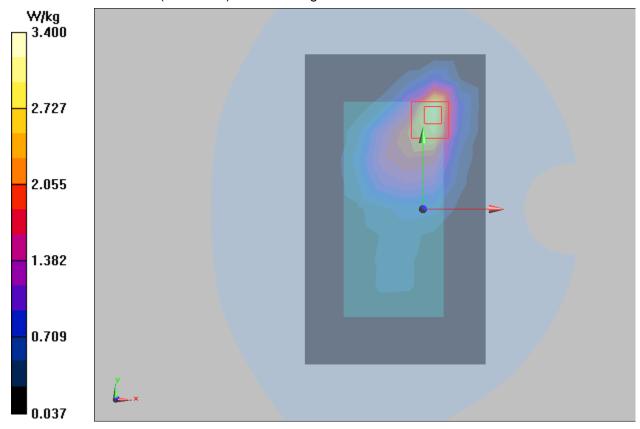
Probe: EX3DV4 - SN3677; ConvF(7.79, 7.79, 7.79); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 3.12 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.06 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 6.02 W/kg

SAR(1 g) = 3.03 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 3.400 W/kg

Plot 30 UMTS Band IV Front Side Low (Distance 10mm)

Date: 5/21/2020

Communication System: UID 0, WCDMA (0); Frequency: 1712.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.298 \text{ S/m}$; $\epsilon r = 39.443$; $\rho = 1000 \text{ kg/m}$ 3

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

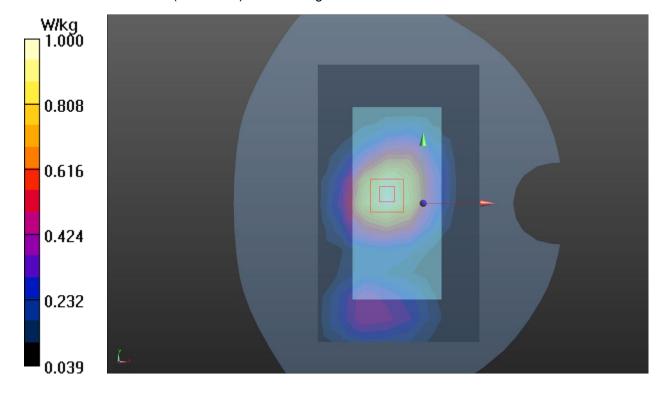
Probe: EX3DV4 - SN3677; ConvF(8.21, 8.21, 8.21); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Low/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.973 W/kg


Front Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.04 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.936 W/kg; SAR(10 g) = 0.608 W/kg

Maximum value of SAR (measured) = 1.00 W/kg

Plot 31 UMTS Band IV Back Side Middle (Distance 0mm)

Date: 6/28/2020

Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1733 MHz; $\sigma = 1.293$ S/m; $\epsilon r = 38.782$; $\rho = 1000$ kg/m3

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

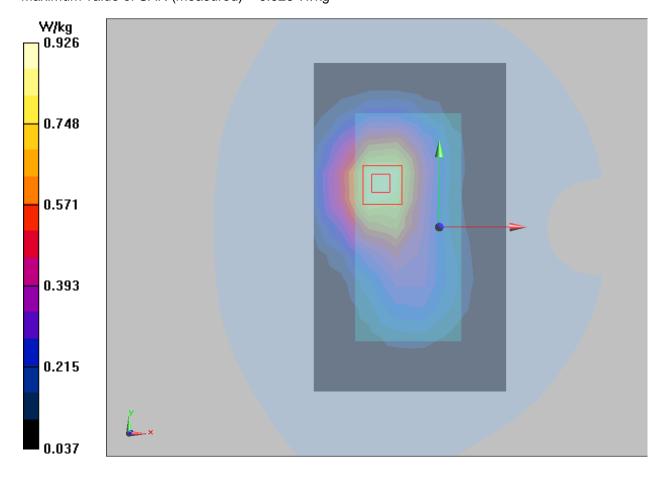
Probe: EX3DV4 -SN7515; ConvF(8.55, 8.55, 8.55); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Back Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.838 W/kg


Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.10 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.858 W/kg; SAR(10 g) = 0.542 W/kg

Maximum value of SAR (measured) = 0.926 W/kg

Plot 32 UMTS Band IV Front Side Middle (Distance 0mm)

Date: 5/21/2020

Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1733 MHz; $\sigma = 1.312$ S/m; $\epsilon r = 39.365$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

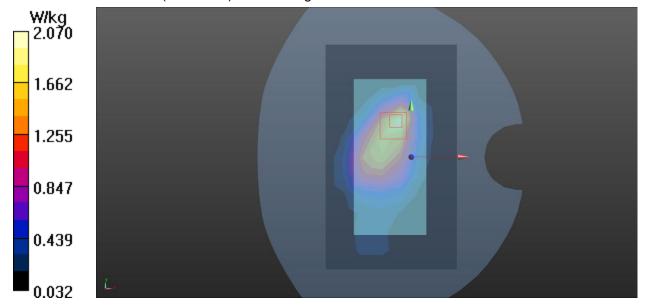
Probe: EX3DV4 - SN3677; ConvF(8.21, 8.21, 8.21); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.98 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.54 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 3.57 W/kg

SAR(1 g) = 1.85 W/kg; SAR(10 g) = 0.981 W/kg

Maximum value of SAR (measured) = 2.07 W/kg

Plot 33 UMTS Band V Front Side Middle (Distance 10mm)

Date: 5/20/2020

Communication System: UID 0, WCDMA 850 (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.99$ S/m; $\epsilon r = 42.922$; $\rho = 1000$ kg/m3

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

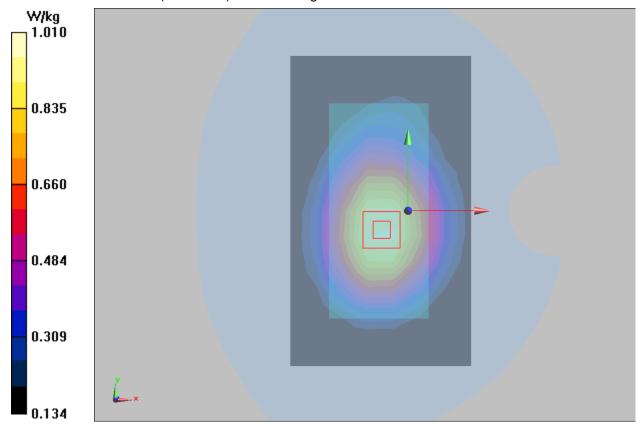
Probe: EX3DV4 - SN3677; ConvF(9.20, 9.20, 9.20); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.970 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.49 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.953 W/kg; SAR(10 g) = 0.695 W/kg

Maximum value of SAR (measured) = 1.010 W/kg

Plot 34 UMTS Band V Back Side Middle (Distance 0mm)

Date: 6/28/2020

Communication System: UID 0, WCDMA 850 (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.923$ S/m; $\epsilon r = 42.201$; $\rho = 1000$ kg/m3

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

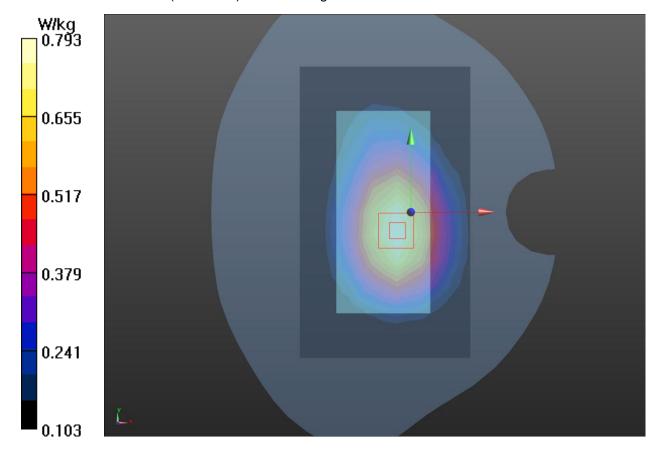
Probe: EX3DV4 -SN7515; ConvF(9.60, 9.60, 9.60); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Back Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.800 W/kg


Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.04 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.971 W/kg

SAR(1 g) = 0.750 W/kg; SAR(10 g) = 0.544 W/kg

Maximum value of SAR (measured) = 0.793 W/kg

Plot 35 UMTS Band V Front Side Middle (Distance 0mm)

Date: 5/20/2020

Communication System: UID 0, WCDMA 850 (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.99$ S/m; $\epsilon r = 42.922$; $\rho = 1000$ kg/m3

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

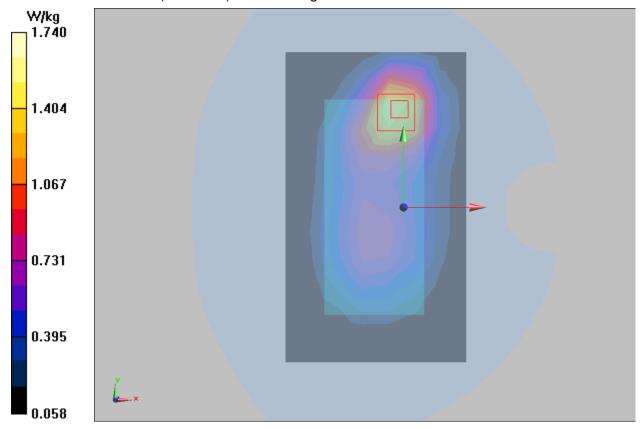
Probe: EX3DV4 - SN3677; ConvF(9.20, 9.20, 9.20); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.56 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.28 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 2.64 W/kg

SAR(1 g) = 1.58 W/kg; SAR(10 g) = 0.943 W/kg

Maximum value of SAR (measured) = 1.740 W/kg

Plot 36 LTE Band 2 1RB Front Side High (Distance 10mm)

Date: 5/22/2020

Communication System: UID 0, LTE-FDD (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.434$ S/m; $\epsilon r = 38.861$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

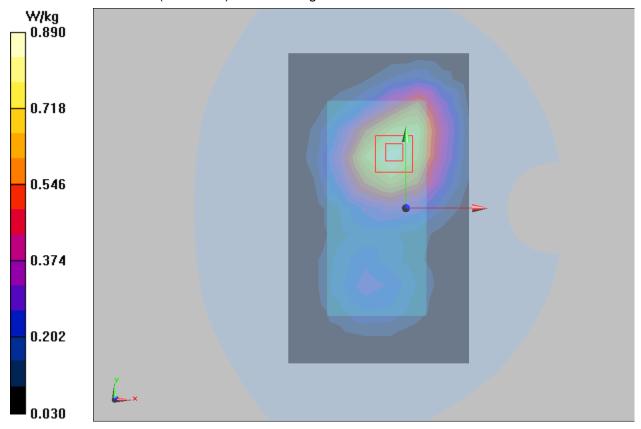
Probe: EX3DV4 - SN3677; ConvF(7.79, 7.79, 7.79); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side High/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.873 W/kg


Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.34 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.835 W/kg; SAR(10 g) = 0.524 W/kg

Maximum value of SAR (measured) = 0.890 W/kg

Plot 37 LTE Band 2 1RB Back Side Middle (Distance 0mm)

Date: 6/28/2020

Communication System: UID 0, LTE (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.393$ S/m; $\epsilon r = 38.344$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

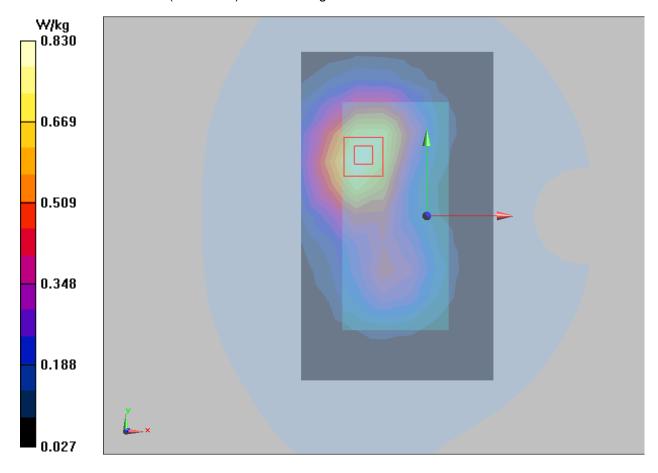
Probe: EX3DV4 -SN7515; ConvF(8.18, 8.18, 8.18); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Back Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.843 W/kg


Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.69 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.771 W/kg; SAR(10 g) = 0.478 W/kg

Maximum value of SAR (measured) = 0.830 W/kg

Plot 38 LTE Band 2 1RB Front Side Middle (Distance 0mm)

Date: 5/22/2020

Communication System: UID 0, LTE-FDD (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\epsilon r = 38.948$; $\rho = 1000$ kg/m3

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

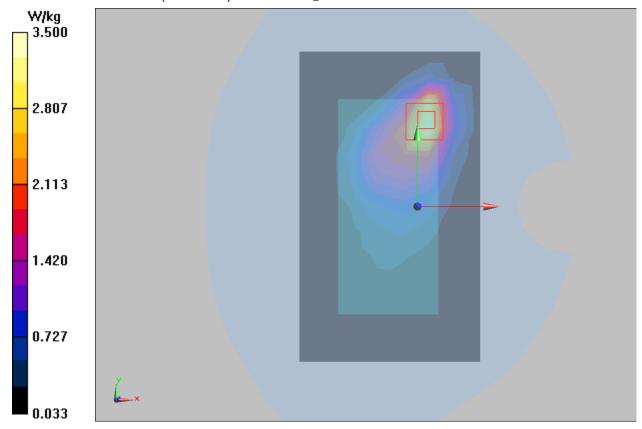
Probe: EX3DV4 - SN3677; ConvF(7.79, 7.79, 7.79); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 3.32 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.37 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 6.27 W/kg

SAR(1 g) = 3.2 W/kg; SAR(10 g) = 1.65 W/kg

Maximum value of SAR (measured) = 3.500 W/kg

Plot 39 LTE Band 4 1RB Front Side High (Distance 10mm)

Date: 5/21/2020

Communication System: UID 0, LTE-FDD (0); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.323$ S/m; $\epsilon r = 39.378$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

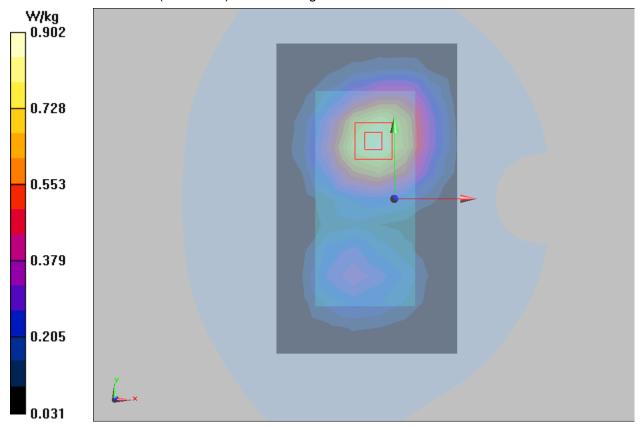
Probe: EX3DV4 - SN3677; ConvF(8.21, 8.21, 8.21); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side High/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.868 W/kg


Front Side /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.89 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.840 W/kg; SAR(10 g) = 0.541 W/kg

Maximum value of SAR (measured) = 0.902 W/kg

Plot 40 LTE Band 4 1RB Back Side Middle (Distance 0mm)

Date: 6/28/2020

Communication System: UID 0, LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.293 \text{ S/m}$; $\epsilon r = 38.785$; $\rho = 1000 \text{ kg/m}$ 3

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

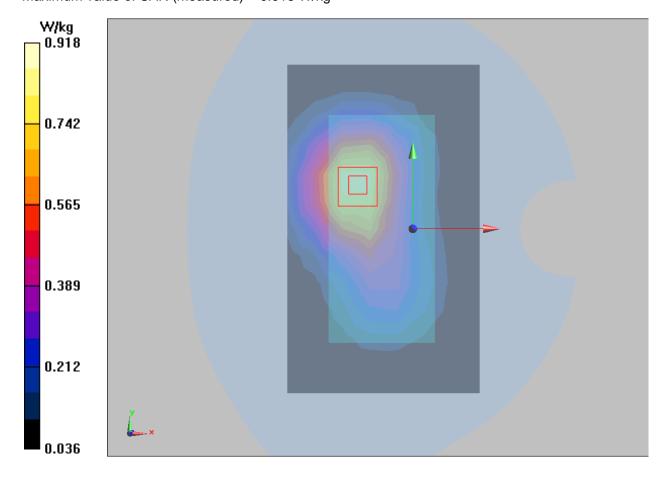
Probe: EX3DV4 -SN7515; ConvF(8.55, 8.55, 8.55); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Back Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.825 W/kg


Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.43 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.847 W/kg; SAR(10 g) = 0.531 W/kg

Maximum value of SAR (measured) = 0.918 W/kg

Plot 41 LTE Band 4 1RB Front Side Middle (Distance 0mm)

Date: 5/21/2020

Communication System: UID 0, LTE-FDD (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.313 \text{ S/m}$; $\epsilon r = 39.384$; $\rho = 1000 \text{ kg/m}$ 3

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

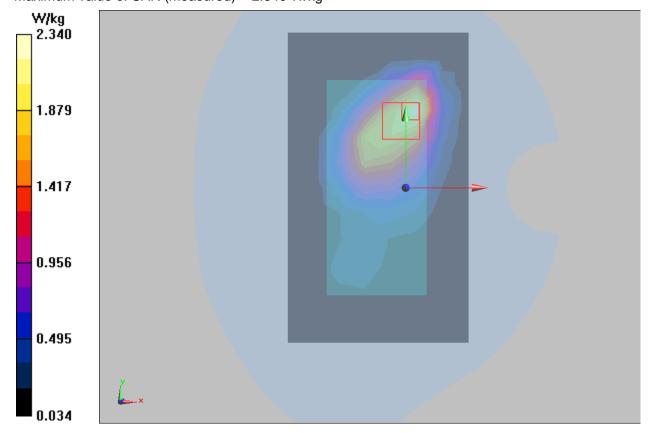
Probe: EX3DV4 - SN3677; ConvF(8.21, 8.21, 8.21); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.31 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.62 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 4.08 W/kg

SAR(1 g) = 2.000 W/kg; SAR(10 g) = 1.020 W/kg

Maximum value of SAR (measured) = 2.340 W/kg

Plot 42 LTE Band 5 1RB Front Side High (Distance 10mm)

Date: 5/23/2020

Communication System: UID 0, LTE-FDD (0); Frequency: 844 MHz; Duty Cycle: 1:1 Medium parameters used: f = 844 MHz; $\sigma = 0.928$ S/m; $\epsilon r = 42.206$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

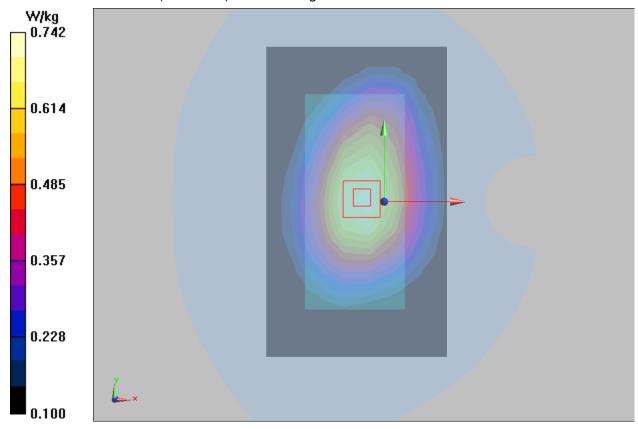
Probe: EX3DV4 - SN3677; ConvF(9.20, 9.20, 9.20); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side High/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.729 W/kg


Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.40 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.903 W/kg

SAR(1 g) = 0.701 W/kg; SAR(10 g) = 0.512 W/kg

Maximum value of SAR (measured) = 0.742 W/kg

Plot 43 LTE Band 5 1RB Back Side High (Distance 0mm)

Date: 6/28/2020

Communication System: UID 0, LTE (0); Frequency: 844 MHz; Duty Cycle: 1:1 Medium parameters used: f = 844 MHz; $\sigma = 0.928$ S/m; $\epsilon r = 42.206$; $\rho = 1000$ kg/m3

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

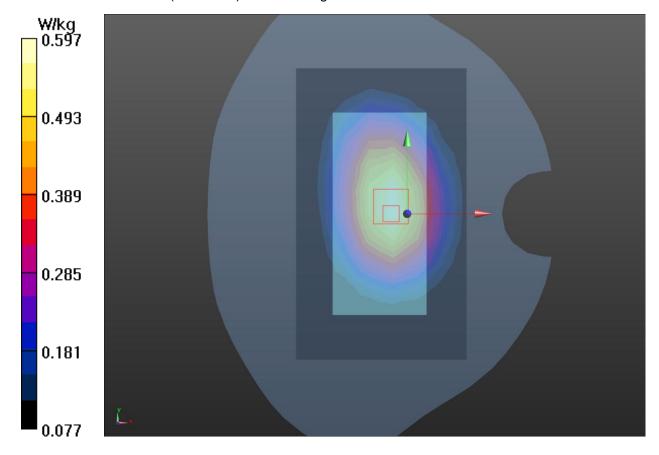
Probe: EX3DV4 -SN7515; ConvF(9.60, 9.60, 9.60); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Back Side High/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.594 W/kg


Back Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.04 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.729 W/kg

SAR(1 g) = 0.560 W/kg; SAR(10 g) = 0.410 W/kg

Maximum value of SAR (measured) = 0.597 W/kg

Plot 44 LTE Band 5 1RB Front Side High (Distance 0mm)

Date: 5/23/2020

Communication System: UID 0, LTE-FDD (0); Frequency: 844 MHz; Duty Cycle: 1:1 Medium parameters used: f = 844 MHz; $\sigma = 0.928$ S/m; $\epsilon r = 42.206$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

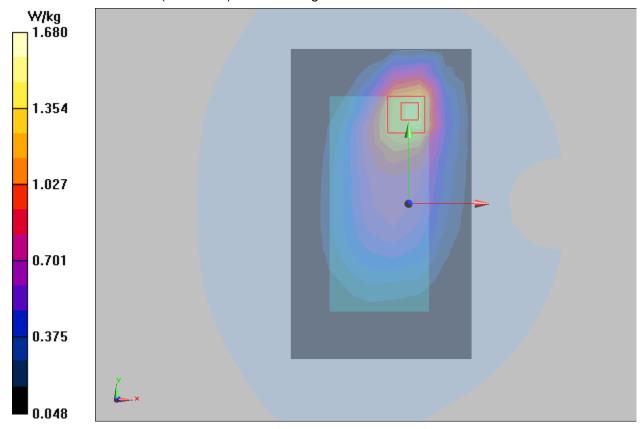
Probe: EX3DV4 - SN3677; ConvF(9.20, 9.20, 9.20); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side High/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.43 W/kg


Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.94 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 2.61 W/kg

SAR(1 g) = 1.54 W/kg; SAR(10 g) = 0.910 W/kg

Maximum value of SAR (measured) = 1.680 W/kg

Plot 45 LTE Band 7 1RB Front Side Low (Distance 10mm)

Date: 5/24/2020

Communication System: UID 0, LTE-FDD (0); Frequency: 2510 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2510 MHz; $\sigma = 1.866$ S/m; $\epsilon r = 40.379$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

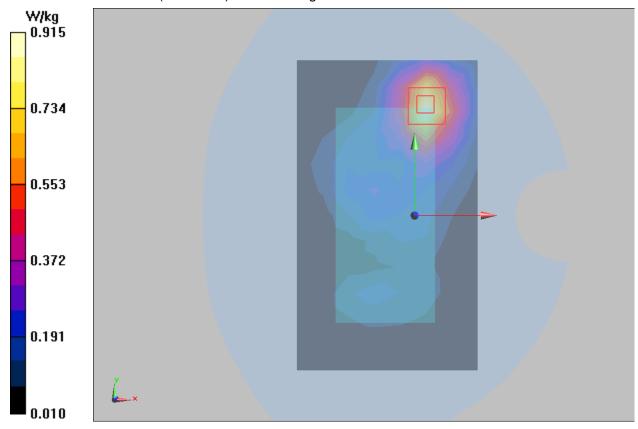
Probe: EX3DV4 - SN3677; ConvF(7.20, 7.20, 7.20); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Low/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.931 W/kg


Front Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.03 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 0.851 W/kg; SAR(10 g) = 0.449 W/kg

Maximum value of SAR (measured) = 0.915 W/kg

Plot 46 LTE Band 7 1RB Back Side Middle (Distance 0mm)

Date: 6/28/2020

Communication System: UID 0, LTE (0); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2535 MHz; $\sigma = 1.904$ S/m; $\epsilon r = 39.093$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

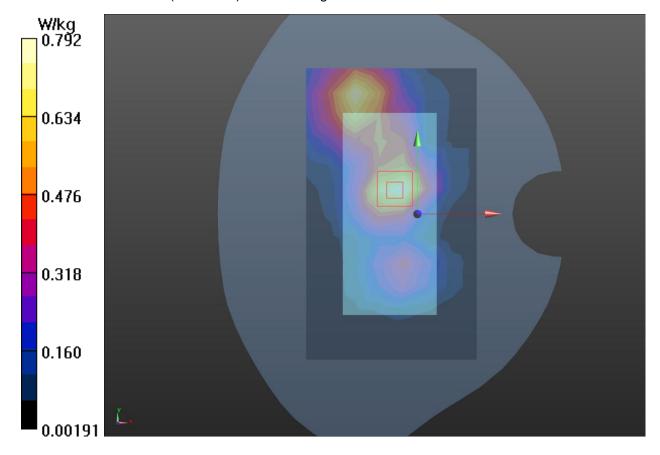
Probe: EX3DV4 -SN7515; ConvF(7.30, 7.30,7.30); Calibrated: 10/22/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Back Side Middle/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.815 W/kg


Back Side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.06 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 0.857 W/kg

SAR(1 g) = 0.766 W/kg; SAR(10 g) = 0.383 W/kg

Maximum value of SAR (measured) = 0.792 W/kg

Plot 47 LTE Band 7 1RB Front Side Middle (Distance 0mm)

Date: 5/24/2020

Communication System: UID 0, LTE-FDD (0); Frequency: 2535 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2535 MHz; $\sigma = 1.894$ S/m; $\epsilon r = 40.308$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

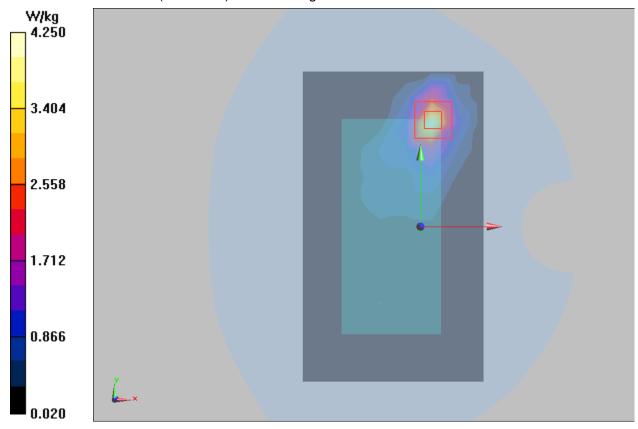
Probe: EX3DV4 - SN3677; ConvF(7.20, 7.20, 7.20); Calibrated: 6/19/2019;

Electronics: DAE4 SN1317; Calibrated: 10/23/2019 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Front Side Middle/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 4.34 W/kg


Front Side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.92 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 8.92 W/kg

SAR(1 g) = 3.75 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 4.250 W/kg

