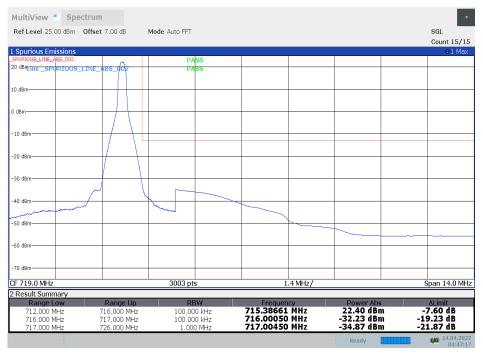


LOW BAND EDGE BLOCK-20MHz-100%RB

HIGH BAND EDGE BLOCK-20MHz-100%RB

MultiView Spec Ref Level 25.00 dBm (ode Auto FFT			SGL Count 15/15
1 Spurious Emissions					o1 Max
SPURIOUS_LINE_ABS_002		PASS			
20 dBmLine _SPURIOUS_L	INE_ABS_002	PASS			
10 dBm					
0 dBm		mar and the second and and and and and and and and and a			
5 ubili					
-10 dBm					
-20 dBm					
-30 dBm					
1					
-40-dBm					
-50 dBm					
-60 dBm					
oo usin					
-70 dBm					
			5.0.00		
CF 2.57 GHz		5005 pts	5.0 MHz/		Span 50.0 MHz
Result Summary	Range Up	RBW	Г	Davian tha	Al insia
Range Low 2.545 GHz	2.570 GHz	100.000 kHz	Frequency 2.56502 GHz	Power Abs 2.21 dBm	ΔLimit -27.79 dB
2.545 GHz 2.570 GHz	2.570 GHz 2.571 GHz	100.000 kHz	2.57000 GHz	-33.91 dBm	-23.91 dB
			2.57100 GHz	-27.27 dBm	-17.27 dB
2.571 GHz	2.575 GHz	1.000 MHz	2.57513 GHz	-29.91 dBm	-16.91 dB
2.575 GHz 2.576 GHz	2.576 GHz 2.595 GHz	1.000 MHz 1.000 MHz	2.57622 GHz	-30.18 dBm	-16.91 dB -5.18 dB
2.070 0112	2.353 002	1,000 MINZ	2107 022 0112	50120 abiii	
				👻 Ready	14.04.202 04:33:0

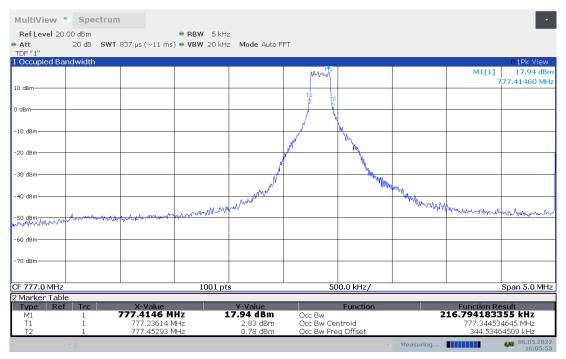


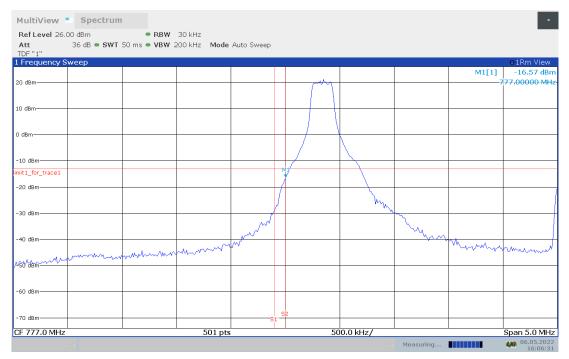
LTE band 12 LOW BAND EDGE BLOCK-1RB-low

MultiView Spectru Ref Level 25.00 dBm Offs		ode Auto FFT							SGL Count 15/15
1 Spurious Emissions									o1 Max
Limit Check		PAS				h			
20 dBmLine _SPURIOUS_LINE	_ABS_002	PAS	5						
10 dBm									
0 dBm						\square			
-10 dBm						$ \rangle$			
_SPURIOUS_LINE_ABS_002					/				
-20 dBm						+	+		
-30 dBm							-		
10 10 11			_				γ		
-40 dBm			\sim				h		
-50 dBm						+			
-60 dBm-						-			
-70 dBm									
CF 696.5 MHz		3003 pts		1	5 MHz/			<u> </u>	Span 15.0 MHz
2 Result Summary									
Range Low 689.000 MHz 698.000 MHz 699.000 MHz	Range Up 698.000 MHz 699.000 MHz 704.000 MHz	RBV 1.000 100.000 100.000	MHz kHz	Frequer 697.99550 698.99950 699.61189	MHz MHz	-3	Power Abs 84.37 dBi 81.14 dBi 22.52 dBi	n -2 n -1	∆Limit 1.37 dB 8.14 dB 7.48 dB
7						Ÿ	Ready		14.04.2022 04:47:30

HIGH BAND EDGE BLOCK-1RB-high

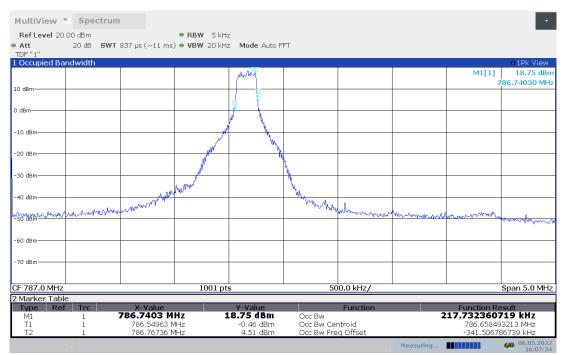
LOW BAND EDGE BLOCK-10MHz-100%RB


HIGH BAND EDGE BLOCK-10MHz-100%RB

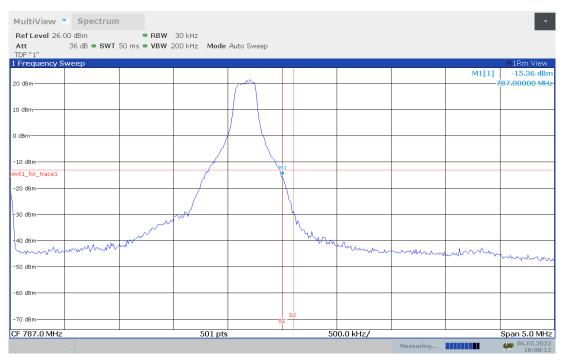


LTE band 13 OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-5M_offset



MultiView	Spectrum								-
Ref Level 26.0		■ RBW							_
Att TDF "1"	36 dB 🖷 SWT	600 ms 🖷 VBW	50 kHz Mode	Auto Sweep					
1 Frequency Sv	weep								o1Rm View
								M1[1]	-49.21 dBm 74.85900 MHz
20 dBm								,	74.85900 MH2
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
mit1_for_trace1									
-40 dBm									
									MI
-50 dBm									a second as a limited
								a	
69.dBm	lulu a de Initaliada (a constan	ويعاغلها الغارية أبر عاداده البر	in the second state of the second	alle a feather, ball, other	la collecte constal la dancée del ma		and a new papeline based		alana
	and the second	periodication of the second attention of the	And in the second s	and the standard standard stand	and the state of the state of the state	Analysis in the second s	anta) (Internet allocations)		
-70 dBm									
763.0 MHz			6000 pt:			.2 MHz/			775.0 MHz
	v		5000 pt				Measuring		06.05.2022 16:07:17

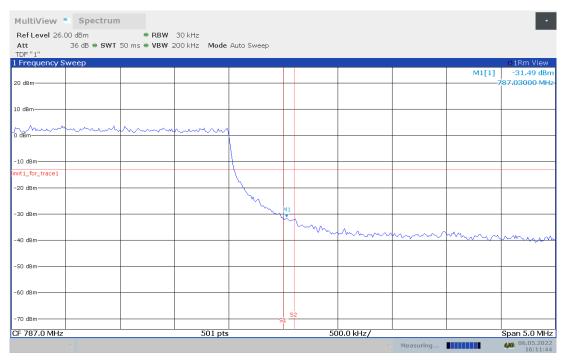


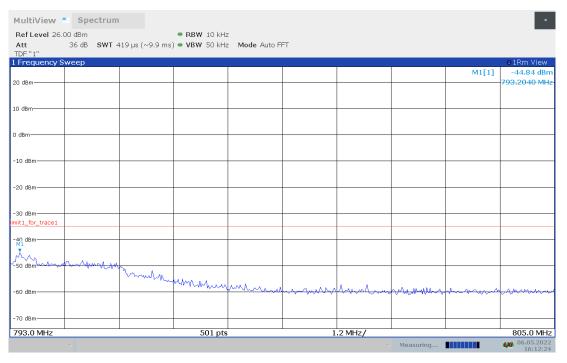
OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-5M_offset

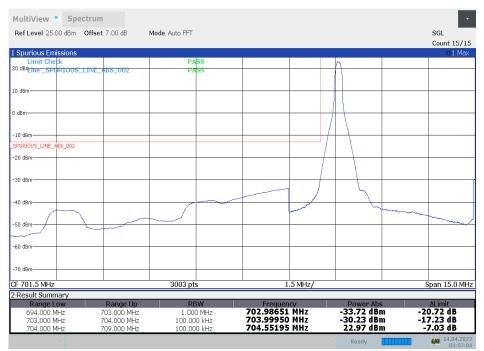
MultiView	Spectrum	1							•
Ref Level 26.0 Att TDF "1"		● RBW 600 ms ● VBW		Auto Sweep					
1 Frequency S	weep								●1Rm View
20 dBm								M1[1]	-58.56 dBm 93.43500 MHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
mit1_for_trace1									
-40 dBm									
-50 dBm									
M1									
-60 dem				lines all at Dilation de			alar sa tiliti shina <mark>bi kabi kabi</mark>		
-70 dBm	1.000	the former of the second s	a series in a series of	a dama tang di kacara	an e en la tra care e		վերա անհանձությունը։	a construction of the state	
793.0 MHz			6000 pt	5	1	.2 MHz/			805.0 MHz
	v		5000 pt				Measuring		06.05.2022 16:08:55

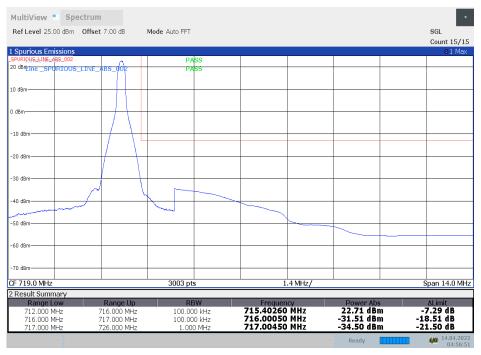
LOW BAND EDGE BLOCK-10M-100%RB


MultiView	Spectrum									-
Ref Level 26.0		● RB₩								_
Att TDF "1"	36 dB 🖷 SWT	50 ms 🗢 VBW 2	200 kHz Mode	Auto Sweep						
1 Frequency S	weep						1			o1Rm View
20 dBm									M1[1]	-31.01 dBm 77.00000 MHz-
20 uBm									,	77100000 MH2
10 dBm										
10 0011										
0 dBm							mm	m	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
							(
-10 dBm										
limit1_for_trace1										
-20 dBm										
-30 dBm					M	1,~/				
			mm	mon	^					
-40, dBm	man	mmm	/							
-50 dBm										
-60 dBm										
					s					
-70 dBm				S		2				
CF 777.0 MHz		·	501 pts			50	0.0 kHz/		·	Span 5.0 MHz
								Measuring		06.05.2022 16:10:26



HIGH BAND EDGE BLOCK-1RB-10M-100%RB

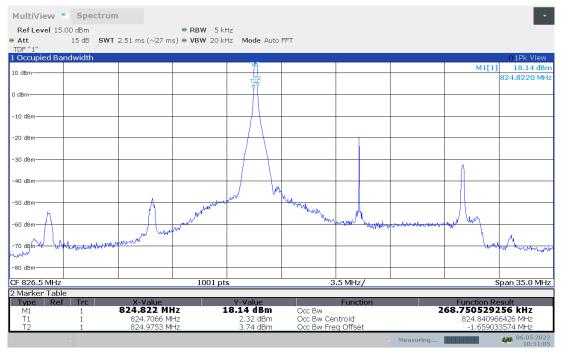

HIGH BAND EDGE BLOCK-1RB-10M_offset

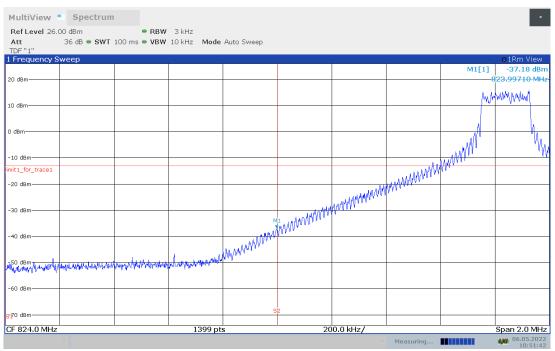


LTE band 17 LOW BAND EDGE BLOCK-1RB-low

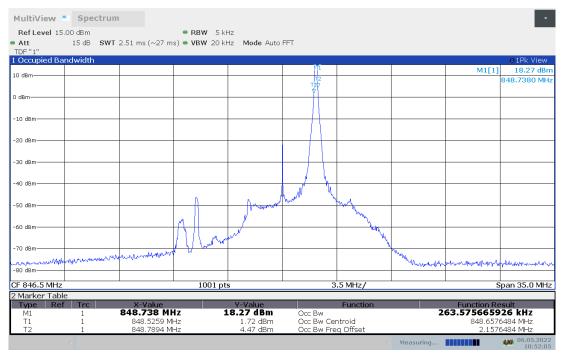

HIGH BAND EDGE BLOCK-1RB-high

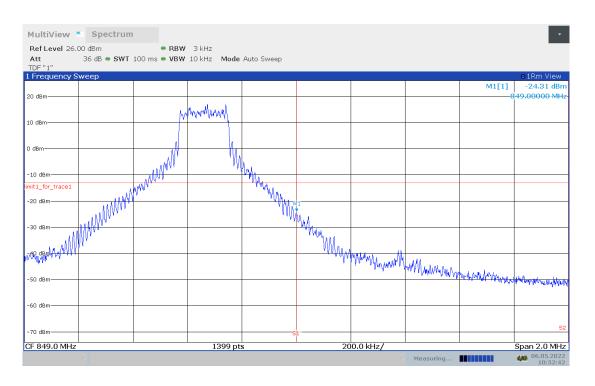
LOW BAND EDGE BLOCK-20MHz-100%RB


HIGH BAND EDGE BLOCK-20MHz-100%RB



LTE band 26PART22 OBW: 1RB-LOW_offset


LOW BAND EDGE BLOCK-1RB-15M_offset



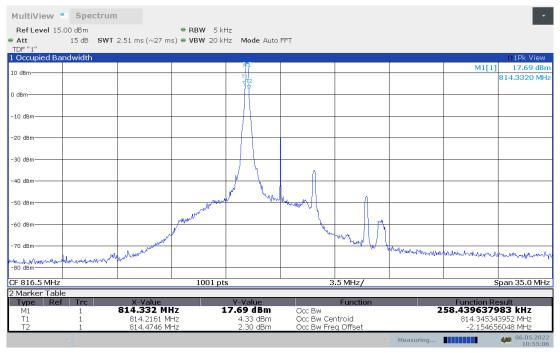
OBW: 1RB-HIGH_offset

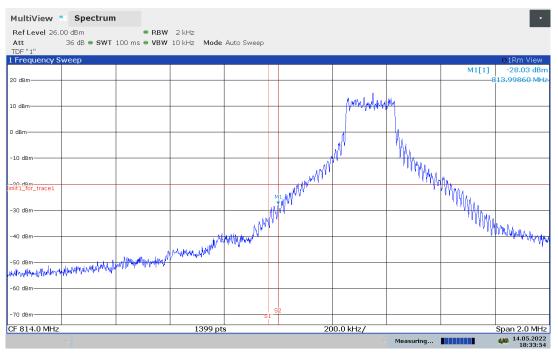
HIGH BAND EDGE BLOCK-1RB-5M_offset



LOW BAND EDGE BLOCK-15MHz-100%RB

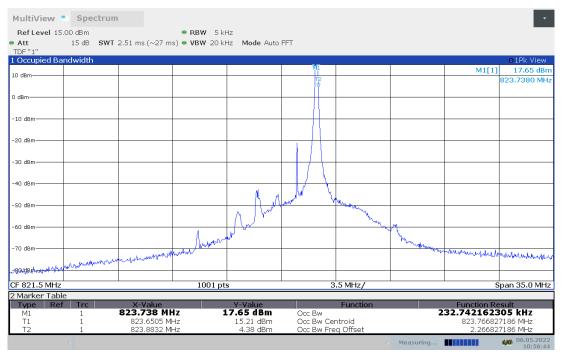
MultiView	Spectrum								•
Ref Level 26.									
Att TDF "1"		50 ms 🖷 VBW	1 MHz Mode	Auto Sweep					
1 Frequency S	weep								●1Rm View
20 dBm								M1[1]	-24.65 dBm 821.8740 MHz -
20 000									0211074010112
10 dBm									
10 0011					~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
0 dBm									
o ubiii									
-10 dBm									
limit1_for_trace1									
-20 dBm			M1		/				
	h		\sim		/				
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
				s	2				
5-70 dBm									
CF 824.0 MHz			501 pts		1	.5 MHz/			pan 15.0 MHz
							Measuring		06.05.2022 10:54:01


HIGH BAND EDGE BLOCK-15MHz-100%RB

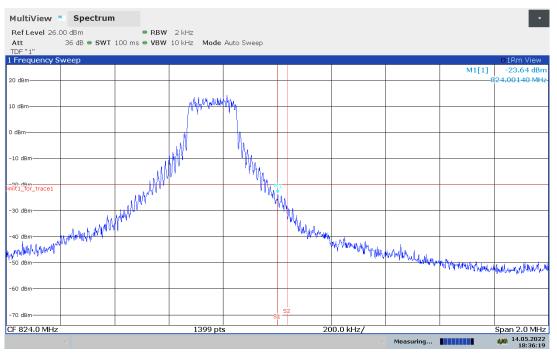


LTE band 26PART90 OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-5M_offset



		/ 3 kHz						
Att 36 dB ● ⊓DF "1"	SWT 100 ms - VBW	10 kHz Mode	Auto Sweep					
Frequency Sweep								●1Rm View
							M1[1]	-30.96 dBi 13.95710 MF
D dBm								13.95710 MF
) dBm								
dBm								
LO dBm								
it1_for_trace1								
20 dBm								
0 dBm								
O dBm								de la Martin
								MAN MAN
50 dBm							a daubah to the help fille	yerr.
			. with a solution	with when when when you'd	Melloshan Isanagarhad	Weld Manufacture and the second	and Mus .	
50 dBm	with white and white whi	La hange in the atternet of	Markey, Burn of the one					
alauguran was the shaded and a shader	dealer.							
10 d8m								
08.9625 MHz	1	1399 pts	5	50	0.0 kHz/			813.9625 M⊢



OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-3M_offset

Ref Level 26.00 dBm	● RBW 2 k	⊔ <i>→</i>					_
	- KBW, 2K Ims (~262 ms) ● VBW, 10 k		FET				
DF "1"	(ma (··202 ma) • • • • • • • • • • •	In the Add					
Frequency Sweep							●1Rm View
						M1[1]	-37.55 dB
I dBm							24.04290 MI
dBm							
dBm							
0 dBm							+
t1_for_trace1							
0 dBm							
0 dBm							
o ubii							
0 dBm							
~							
0 demon							
"Nu							
0 dBm							
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
0 dBm							an anno
24.0375 MHz	1399 pt	6	50	0.0 kHz/	1	1	1 829.0375 MF





## LOW BAND EDGE BLOCK-10M 100%RB

MultiView	Spectrum								•
Ref Level 26.		RBW							
Att TDF "1"	36 dB 🖷 SWT	50 ms VBW 5	500 kHz Mode	Auto Sweep					
1 Frequency S	weep	1	I						●1Rm View
00 d0								M1[1]	-30.39 dBm 13.94750 MHz-
20 dBm								c	13-94730 MH2
10 dBm									
to usm									
0 dBm									
o ubiii									
-10 dBm									
limit1_for_trace1									
-20 dBm									
-30 dBm									M1
									~~~~
-40 dBm				Arman	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		La maria	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
min	mount								
-50 dBm									
-60 dBm									
-70 dBm									
808.9625 MH	2	1	501 pts		50	0.0 kHz/		:	813.9625 MHz
							Measuring		06.05.2022 10:59:26

MultiView	Spectrum	1							-
RefLevel 26.0 Att TDF "1"		● RBW : 50 ms VBW	100 kHz 1 MHz Mode	Auto Sweep					
1 Frequency Sv	weep								●1Rm View
20 dBm								M1[1]	-26.84 dBm 14.00000 MHz
10 dBm									
0 dBm							- pro-		
-10 dBm							/		
					M1 WWW	www.w			
-30 dBm					MI				
-40 dBm			~~~~~	~					
-50 dBm									
-60 dBm									
					52				
-70 dBm			501 pts	Si	20	0.0 kHz/			Span 2.0 MHz
	7		001 pt0				Measuring		40 14.05.2022 18:38:23

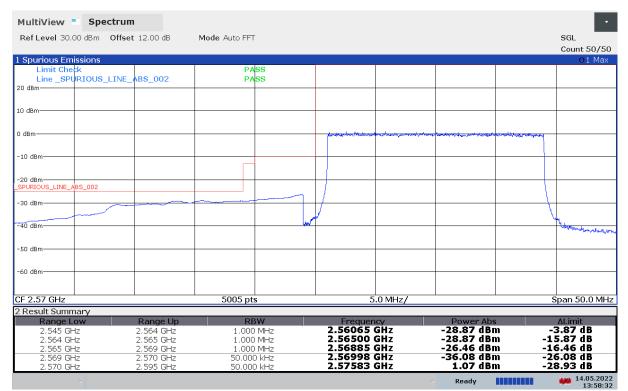
HIGH BAND EDGE BLOCK-10M-100%RB

MultiView	Spectrum	1							•
Ref Level 26.		• RBW 1							SGL
Att TDF "1"		50 ms VBW	1 MHz Mode	Auto Sweep					
1 Frequency S	weep							1	1Rm View
								M1[1]	-26.32 dBm
20 dBm									24.00400 MHz-
10 dBm									
0 dBm		W							
U UBIII									
-10 dBm									
10 0.011			\sum						
-20-dBm			m						
limit1_for_trace1				" more of	1				
-30 dBm					har was a second a se				
00 00							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm				s	52 1				
CF 824.0 MHz			501 pts		20	00.0 kHz/			Span 2.0 MHz
	v						Ready		44.05.2022 18:46:41

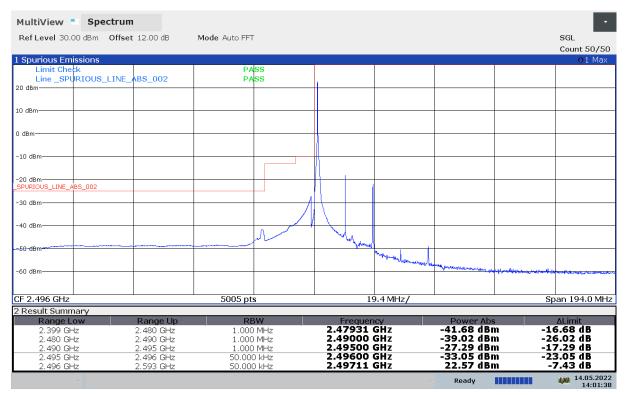
MultiView	Spectrum	l.							-
Ref Level 26. Att TDF "1"		• RBW 50 ms VBW 5		Auto Sweep					
1 Frequency S	weep								●1Rm View
								M1[1]	-29.26 dBm
20 dBm								8	24.05250 MHz
10 dBm									
10 000									
0 dBm									
-10 dBm									
limit1_for_trace1									
-20 dBm									
M1									
-30 dBm									
m									
	mum		~~~~	mm	mm	m	min	mm	~~~~~
-40 dBm									~ ~ ~ ~
-50 dBm									
-60 dBm									
-00 0811									
-70 dBm									
824.0375 MH	7	1	501 pts		50	00.0 kHz/		1	829.0375 MHz
02 10070 1111	~		001 pt3				Measuring		06.05.2022
						· · · · ·	measuring		11:00:43

LTE band 38 LOW BAND EDGE BLOCK-1RB-low

MultiView Spec		Node Auto FFT				SGL Count 50/50
1 Spurious Emissions						o1 Max
Limit Check		PASS				
Line _SPURIOUS_L	INE_ABS_002	PASS				
20 dBm						
10 dBm						
) dBm						
10 dBm						
-20 dBm			$-1/\lambda$			
SPURIOUS_LINE_ABS_002						
						1
-30 dBm						
			\land			
-40 dBm						
				manan .	λ.	
-50 dBm				man	Una merenada	hand 1
						a contraction have been a contraction of the
-60 dBm						
-oo usm						
CF 2.57 GHz		5005 pts		5.0 MHz/		Span 50.0 MH:
Result Summary						
Range Low	Range Up	RBW	Freque	ncv	Power Abs	ΔLimit
2.545 GHz	2.564 GHz	1.000 MHz	2.56399		-36.60 dBn	n -11.60 dB
2.564 GHz	2.565 GHz	1.000 MHz	2.56500		-34.86 dBn	
2.565 GHz	2.569 GHz	1.000 MHz	2.56900		-23.50 dBn	
2.569 GHz	2.570 GHz	50.000 kHz	2.57000		-30.68 dBn	
2.570 GHz	2.595 GHz	50.000 kHz	2.57109	UNZ	20.77 dBn	
					Ready	### 14.05.202 13:59:2


HIGH BAND EDGE BLOCK-1RB-high

LOW BAND EDGE BLOCK-20MHz-100%RB


HIGH BAND EDGE BLOCK-20MHz-100%RB

MultiView Spec	trum					•
•						
Ref Level 30.00 dBm (Offset 12.00 dB	Mode Auto FFT				SGL
						Count 50/50
1 Spurious Emissions						⊖1 Max
_SPURIOUS_LINE_ABS_002		PASS				
Line _SPURIOUS_L	INE_ABS_002	PASS				
20 dBm						
10 dBm						
0 dBm	angenetaria and a set of the second and a	เหล่ามากระบบชาติสารณ์ เหลือ เป็นสารณ์ เป็นสารณ์ เป็นสารณ์ เป็นสารณ์ เป็นสารณ์ เป็นสารณ์ เป็นสารณ์ เป็นสารณ์ เป็		+		
-10 dBm						
-20 dBm						
20 45						
-30 dBm						
			N I			
40,dBmatant/m/			Tw.			
-50 dBm						
-60 dBm						
CF 2.62 GHz		5005 pts		5.0 MHz/		Span 50.0 MHz
2 Result Summary						
Range Low	Range Up	RBW	Freque		Power Abs	ΔLimit
2.595 GHz	2.620 GHz	50.000 kHz	2.60285		1.09 dBm	
2.620 GHz 2.621 GHz	2.621 GHz 2.625 GHz	50.000 kHz 1.000 MHz	2.62002 2.62100		-37.45 dBm -28.34 dBm	
2.621 GHz 2.625 GHz	2.625 GHz	1.000 MHz	2.62574		-28.34 UBI	
2.625 GHz	2.645 GHz	1.000 MHz	2.62601		-30.55 dBm	
21020 0112	21010 0112	11000 11112				14.05.2022
					Ready	4/0 14.05.2022 13:54:29

LTE band 41 LOW BAND EDGE BLOCK-1RB-low


HIGH BAND EDGE BLOCK-1RB-high

LOW BAND EDGE BLOCK-20MHz-100%RB

HIGH BAND EDGE BLOCK-20MHz-100%RB

A.7 Conducted Spurious Emission

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

1. In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency given below:

(a) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) If the equipment operates at or above 10 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- 3. The number of sweep points of spectrum analyzer is greater than $2 \times \text{span/RBW}$.

A. 7.2 Measurement Limit

Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

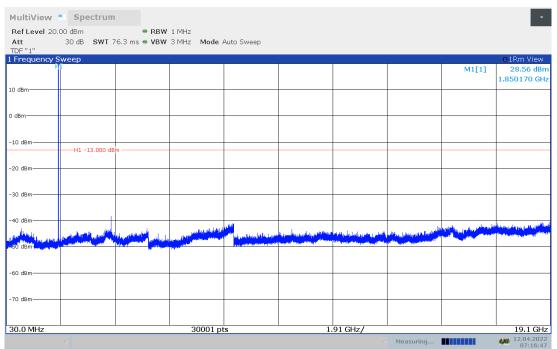
Part 27.53(c) states for operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power of any emission shall be attenuated outside the 776-788 MHz band, the power of any emission shall be attenuated outside the 776-788 MHz band, the power of any emission shall be attenuated outside the 776-788 MHz band, the power of any emission shall be attenuated outside the 776-788 MHz band, the power of any emission shall be attenuated outside the 776-788 MHz band, the power of any emission shall be attenuated outside the 776-788 MHz band, the power of any emission shall be attenuated outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

Part 27.53(f) states for operations in the 746–758 MHz,775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to -70dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals.

©Copyright. All rights reserved by CTTL.

Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

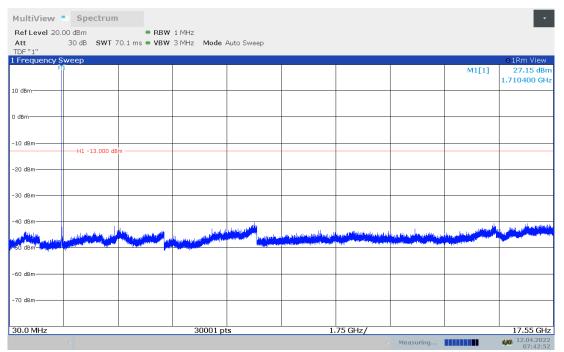
Part 90.691 states that out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116Log₁₀(f/6.1) decibels or 50 + 10 Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz. For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.



A. 7.3 Measurement result Only the worst case result is given below

LTE band 2 : 30MHz – 19.1GHz

Spurious emission limit –13dBm.

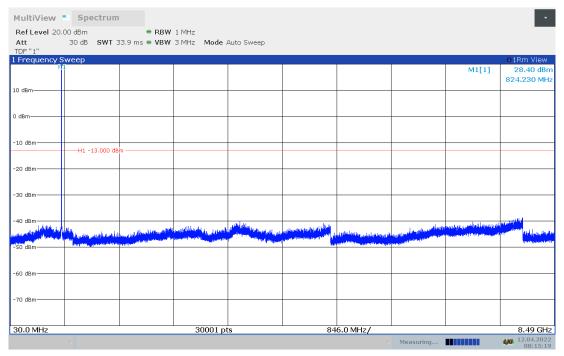

NOTE: peak above the limit line is the carrier frequency.

LTE band 4 : 30MHz – 17.55GHz

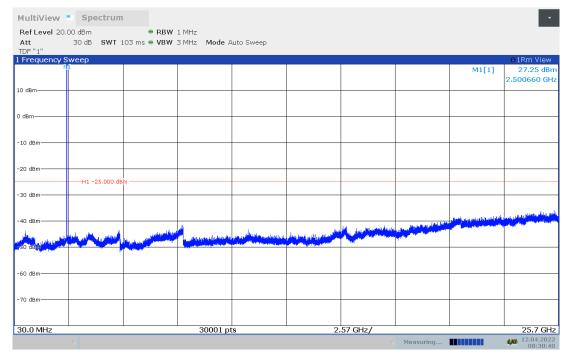
Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.

Page 225 of 233



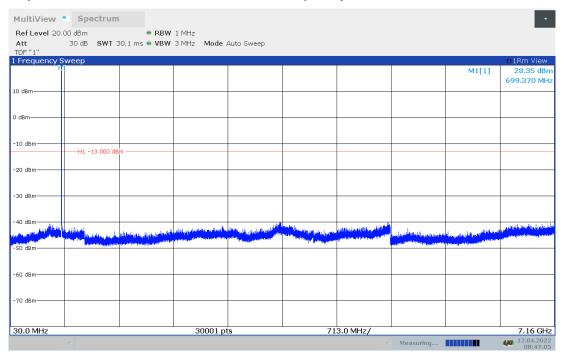
LTE band 5 : 30MHz - 8.49GHz

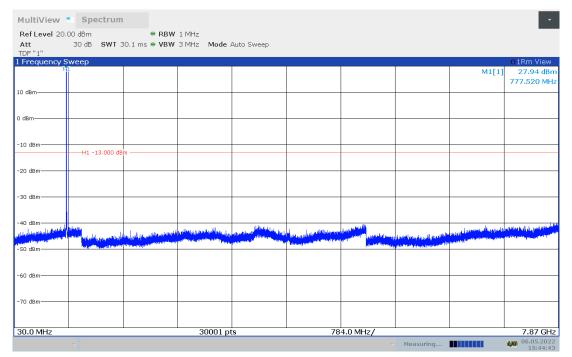

Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.

LTE band 7 20MHz QPSK: 30MHz – 25.7GHz

Spurious emission limit -25dBm.

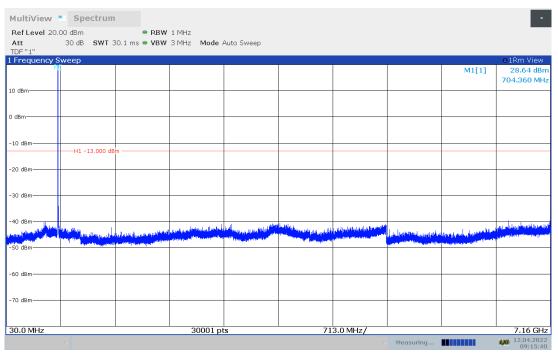



LTE band 12: 30MHz - 7.16GHz

Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.

LTE band 13

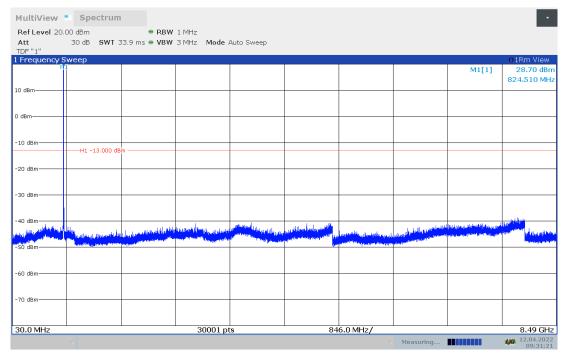


MultiView	Spectrum								•
Ref Level 20.0 Att TDF "1"	30 dB SWT 37.4		 RBW 1 MHz VBW 3 MHz 	Mode Auto FF	Т				
l Frequency S	weep								●1Rm View
								M1[1]	-45.39 dBn 56281040 GH
.0 dBm									50201010 01
) dBm									
10 dBm									
20 dBm									
30 dBm									
40-dBm									
м1			~						
50 dBm	$\sim \sim $	\sim	$\sim\sim$	$\sim\sim\sim\sim\sim$	~~~~	rmm	$\sim\sim\sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim\sim\sim$
-60 dBm									
-70 dBm									
1.559 GHz			20001			.1 MHz/			1.61 GH
1.339 GHZ	-		30001 pt	.5	5	.1 MEZ/			06.05.2022 15:45:27

LTE band 17: 30MHz – 7.16GHz

Spurious emission limit –13dBm.

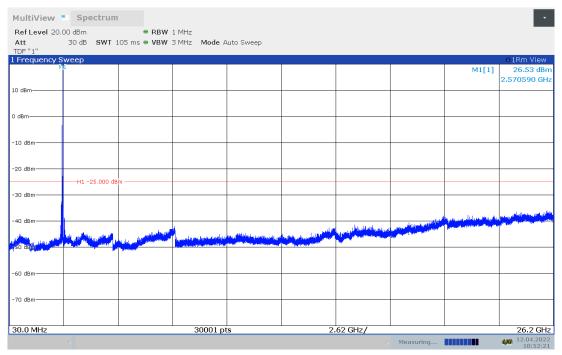
LTE band 26(814MHz-824MHz): 30MHz - 8.24GHz


Spurious emission limit -13dBm.

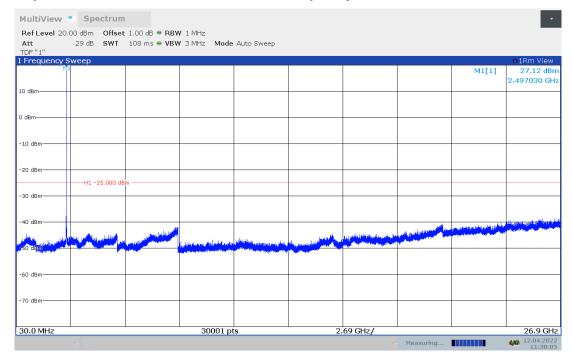
NOTE: peak above the limit line is the carrier frequency.

LTE band 26(824MHz-849MHz): 30MHz - 8.49GHz

Spurious emission limit -13dBm.



LTE band 38: 30MHz - 26.2GHz


Spurious emission limit -25dBm.

NOTE: peak above the limit line is the carrier frequency.

LTE band 41: 30MHz – 26.9GHz

Spurious emission limit –25dBm.

A.8 Peak-to-Average Power Ratio

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB

a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;

c) Set the number of counts to a value that stabilizes the measured CCDF curve;

d) Record the maximum PAPR level associated with a probability of 0.1%.

LTE band 2

Frequency(MHz)	Bandwidth(MHz)	PAPR(dB)		
	Banuwiutii(ivinz)	QPSK	16QAM	
1880.0	20	5.44	6.38	

LTE band 4

Frequency(MHz)	Dondwidth(MHz)	PAPR(dB)		
	Bandwidth(MHz)	QPSK	16QAM	
1732.5	20	5.48	6.28	

LTE band 7

Frequency(MHz)	Pondwidth(MH=)	PAPR(dB)		
	Bandwidth(MHz)	QPSK	16QAM	
2535.0	20	5.06	5.84	

LTE band 12

Frequency (MHz)	Dondwidth(MHz)	PAPR(dB)		
Frequency(MHz)	Bandwidth(MHz)	QPSK	16QAM	
707.5	10	5.16	5.94	

LTE band 13

Frequency(MHz)	Bandwidth(MHz)	PAPR(dB)		
	Danuwiutii(ivinz)	QPSK	16QAM	
782.0	10	5.02	5.82	

LTE band 17

Frequency(MHz)	Bandwidth(MHz)	PAPR(dB)		
	Danuwiutii(ivinz)	QPSK	16QAM	
710.0	10	4.94	5.80	

LTE band 26(814MHz -824MHz)

Frequency(MHz)	Bandwidth(MHz)	PAPR(dB)		
	Danuwiutii(ivinz)	QPSK	16QAM	
819.0	10	4.84	5.68	

LTE band 26(824MHz -849MHz)

	Frequency(MHz)	Bandwidth(MHz)	PAPR(dB)		
		banuwiutii(ivinz)	QPSK	16QAM	
	836.5	15	5.04	5.80	

LTE band 38

Frequency(MHz)	Bandwidth(MHz)	PAPR(dB)	
	banuwiutii(ivinz)	QPSK	16QAM
2595.0	20	7.62	8.44

LTE band 41

Frequency(MHz)	Bandwidth(MHz)	PAPR(dB)	
		QPSK	16QAM
2593.0	20	7.74	8.56

Annex B: Accreditation Certificate

END OF REPORT