

TEST REPORT

Report Reference No.....: 180201001RFC-1

FCC ID.....: YAMMD61XVHF

Applicant's name.....: Hytera Communications Corporation Limited

Address...... Hytera Tower, Hi-Tech Industrial Park North,9108# Beihuan

Road, Nanshan District, Shenzhen, China

Road, Nanshan District, Shenzhen, China

Test item description: Digital Mobile Radio

Trade Mark Hytera

Model/Type reference..... MD615 VHF

Listed Model(s) MD612 VHF, MD616 VHF, MD618 VHF

Standard: FCC Part 74

Date of receipt of test sample....... Nov. 16, 2017

Date of issue...... Feb. 05, 2018

Result...... PASS

Tested by: Engineer Henry Lu

Reviewed by: Assistant Manager Jim Long

Approved by...... Technical Director Billy Li

Testing Laboratory Name: Shenzhen UnionTrust Quality and Technology Co., Ltd.

China

Contents

<u>1.</u>	IEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Test frequency list	6
3.4.	EUT operation mode	7
3.5.	EUT configuration	7
<u>4.</u>	TEST ENVIRONMENT	8
4.1.	Address of the test laboratory	8
4.2.	Test Facility	8
4.3.	Environmental conditions	9
4.4.	Statement of the measurement uncertainty	9
4.5.	Equipments Used during the Test	10
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Maximum Transmitter Power	11
5.2.	Occupied Bandwidth	13
5.3.	Emission Mask	17
5.4.	Modulation Limit	21
5.5.	Audio Frequency Response	24
5.6.	Frequency Stability Test	25
5.7.	Transmitter Frequency Behaviour	29
5.8.	Spurious Emission on Antenna Port	34
5.9.	Transmitter Radiated Spurious Emission	37
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	52
<u>J.</u>	TEST SETST THOTOS OF THE EST	32
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	53

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Part 74 EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES

FCC Part 15 Subpart B Unintentional Radiators

FCC Part 2 Frequency allocations and radio treaty matters, general rules and regulations.

TIA/EIA 603 D: June 2010 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

KDB579009 D03 v01: Applications Part 90 Refarming Bands.

KDB971168 D01 v02r02: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version

Version No.	Date of issue	Description		
00	Feb. 05, 2018	Original		

2. Test Description

Transmitter Requirement				
Test item	Standards requirement	Result		
rest item	FCC Section(s)	Pass	N/A	
Maximum Transmitter Power	2.1046,74.461	\boxtimes		
Modulation Limiting	2.1047(b),74.463	\boxtimes		
Audio Frequency Response	-		\boxtimes	
Occupied Bandwidth	74.462	\boxtimes		
Emission Mask	2.1049,74.462(c)	\boxtimes		
Frequency Stability	2.1055, 74.464			
Transmitter Frequency Behavior	74.462(c)	\boxtimes		
Transmitter Radiated Spurious Emission	2.1053, 2.1057,74.462(c)			
Spurious Emission On Antenna Port	2.1051, 2.1057, 74.462(c)	\boxtimes		

3. **SUMMARY**

3.1. Client Information

Applicant:	Hytera Communications Corporation Limited		
Address: Hytera Tower, Hi-Tech Industrial Park North,9108# Beihuan Road, Nanshan District, Shenzhen, China			
Manufacturer:	Hytera Communications Corporation Limited		
Address:	Hytera Tower, Hi-Tech Industrial Park North,9108# Beihuan Road, Nanshan District, Shenzhen, China		

3.2. Product Description

Name of EUT:	Digital Mobile Radio					
Trade Mark:	Hytera	Hytera				
Model No.:	MD615 VHF					
Listed Model(s):	MD612 VHF, MD616 VHF,	MD618 VHF				
Power supply:	DC 13.6V					
Adapter information:	-					
Hardware version:	Α					
Software version:	V1.01.13.001					
Operation Frequency Range:	From 136MHz to 174MHz					
Rated Output Power:	High Power: 50W (46.99dBm)/Low Power: 5W (36.99dBm)					
Modulation Type:	Analog Voice:	FM				
Modulation Type.	Digital Voice/Digital Data:	4FSK				
Digital Type:	DMR					
Channel Separation:	Analog Voice:					
Chariner Separation.	Digital Voice/Digital Data:					
	Analog Voice:	⊠12.5kHz Channel Separation: 5K25F3E ⊠25kHz Channel Separation: 10K5F3E				
Emission Designator:	Digital Voice& Data:	⊠12.5kHz Channel Separation: 7K34FXW ☐6.25kHz Channel Separation:				
	Digital Data:	⊠12.5kHz Channel Separation: 7K34FXD ☐6.25kHz Channel Separation:				
Support data rate:	9.6kbps					
Antenna Type:	External					
	Digital	52.48W for 12.5kHz Channel Separation				
Maximum Transmitter Power:	A 1	49.43W for 12.5kHz Channel Separation				
	Analog	49.43W for 25kHz Channel Separation				
	ļ.	1 · · · · · · · · · · · · · · · · · · ·				

Note:

¹⁾The product has the same digital working characters when operating in both two digitized voice/data mode. So only one set of test results for digital modulation modes are provided in this test report.

3.3. Test frequency list

FCC Part 74									
Mode	ode Modulation Channel Separation (kHz)		Modulation I				Test Frequency (MHz)		
			152.885~154	CH _{L1}	153.065				
		12.5	157.45~161.575	CH _{M1}	160.995				
			12.5	161.625~161.775	CH _{M2}	161.655			
Analog	FM	EN4	162.0375~173.2	CH _{H1}	173.175				
Analog	FIVI	FIVI		152.885~154	CH _{L1}	153.065			
							25	157.45~161.575	CH _{M1}
		23	161.625~161.775	CH _{M2}	161.655				
			162.0375~173.2	CH _{H1}	173.175				
	4FSK	4FSK 12.5	152.885~154	CH _{L1}	153.065				
Digital			157.45~161.575	CH _{M1}	160.995				
Digital		12.5	161.625~161.775	CH _{M2}	161.655				
			162.0375~173.2	СНн1	173.175				

Note:

In section KDB 634817 D01 Sections II)f)1) and 2):

- (1) Test only on the allowed frequencies.
- (2) Test at least one frequency in each band for each rule part applied under and ensure the device is capable of operating on the frequency under each rule part. This requirement may result in testing on multiple frequencies. Testing on one frequency may be acceptable if multiple listed bands for a rule part with a continuous frequency range are split to remove a conflict with other rules and the technical requirements in the split bands are the same. Additional requirements for RF exposure may apply.

3.4. EUT operation mode

Test	T	Danahidan	Power	r level	Digital	Ana	ılog	CDC	DT
mode	Transmitting Rece	Receiving	High	Low	12.5kHz	12.5kHz	25kHz	GPS	ВТ
TX1	√		√		√				
TX2	√			√	√				
TX3	√		√			√			
TX4	√			√		√			
TX5	~		√				√		
TX6	√			√			1		
RX1		√			√)	
RX2		√				√			
RX3		√					√		
RX4		1						√	
RX5		√							√

 $[\]sqrt{\cdot}$: is operation mode.

3.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

	Power Cable	Length (m):	
		Shield :	Unshielded
		Detachable :	Undetachable
\circ	Multimeter	Manufacturer:	1
		Model No.:	1

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Shenzhen UnionTrust Quality and Technology Co., Ltd..

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab

Designation Number: CN1194

Test Firm Registration Number: 259480

4.3. Environmental conditions

Normal Conditon			
Relative humidity:	20 % to 75 %.		
Air Pressure:	950~1050mba		
Voltage:	DC 13.6V		

4.4. Statement of the measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed

at approximately the 95% confidence level using a	coverage factor of k=2.
---	-------------------------

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB
8	Transmitter power conducted	±0.62 dB
9	Frequency stability	±28 Hz
10	Occupied Bandwidth	±37 Hz
11	FM deviation	±25 Hz
12	Modulation Limiting	±0.54 %
13	Low Pass Filter Response	±0.87 dB
14	Audio level	±0.80 dB
15	Transient Frequency Behavior	±7.4 %

4.5. Equipments Used during the Test

	Radiated Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number				
>	3M Chamber & Accessory Equipment	ETS- LINDGREN	3M	N/A	Dec. 20, 2015	(mm dd, yyyy) Dec. 19, 2018		
>	Receiver	R&S	ESIB26	100114	Dec. 10, 2017	Dec. 10, 2018		
•	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 10, 2017	Dec. 10, 2018		
•	Loop Antenna	ETS- LINDGREN	6502	00202525	Dec. 22, 2017	Dec. 22, 2018		
•	Broadband Antenna	ETS- LINDGREN	3142E	00201566	Dec. 17, 2017	Dec. 17, 2018		
>	Preamplifier	HP	8447F	2805A02960	Dec. 10, 2017	Dec. 10, 2018		
>	Horn Antenna (Pre-amplifier)	ETS- LINDGREN	3117-PA	00201874	Dec. 17, 2017	Dec. 17, 2018		
V	Multi device Controller	ETS- LINDGREN	7006-001	00160105	N/A	N/A		
>	High Pass Filter	hangwei	OSF- HPF60300P20- LC	N/A	N/A	N/A		
>	Test Software	Audix	e3	Software Version: 9.160323				

		Condu	ıcted RF test E	quipment List		
Used	Equipment	Manutacturor Model No. Serial Number		Cal. Due date (mm dd, yyyy)		
>	Receiver	R&S	ESR7	1316.3003K07- 101181-K3	Dec. 10, 2017	Dec. 10, 2018
~	RF COMMUNITION TEST SET	HP	8920A	3813A10206	Nov.11, 2017	Nov.11, 2018
>	Oscilloscope	Tektronix	TDS3032B	B013680	Sep.18, 2017	Sep.17, 2018
V	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	Jan. 08, 2016	Jan. 07, 2018
~	DC Source	KIKUSUI	PWR400L	LK003024	NA	NA
>	Temp & Humidity chamber	Votisch	VT4002	58566133290020	Jun. 19, 2017	Jun. 18, 2018

5. TEST CONDITIONS AND RESULTS

5.1. Maximum Transmitter Power

Applicants for licenses must request and use no more power than the actual power necessary for satisfactory operation.

LIMIT

Please refer to FCC 47 CFR 74.461 for specification details.

Transmitter under test Power attenuator Spectrum Analyzer or Receiver

TEST PROCEDURE

Measurements shall be made to establish the radio frequency power delivered by the transmitter the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted bellow:

If the power output is adjustable, measurements shall be made for the highest and lowest power levels. Connect the equipment as illustrated.

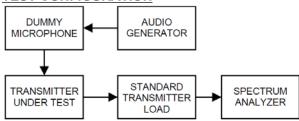
TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to the below test data:

	FCC Part 74								
Operation Mode	Test Channel	Measured power (dBm)	Measured power (W)	Limit (W)					
	CH _{L1}	47.1	51.29						
TV4	CH _{M1}	47.2	52.48						
TX1	CH _{M2}	47.2	52.48	-					
	CH _{H1}	47.1	51.29						
	CH _{L1}	37.0	5.01						
TX2	CH _{M1}	36.9	4.90						
17/2	CH _{M2}	36.9	4.90	_					
	CH _{H1}	37.0	5.01						
	CH _{L1}	46.88	48.75						
TX3	CH _{M1}	46.94	49.43						
173	CH _{M2}	46.94	49.43	_					
	CH _{H1}	46.84	48.31						
	CH _{L1}	36.74	4.72						
TX4	СН _{м1}	36.63	4.60						
174	CH _{M2}	36.63	4.60						
	CH _{H1}	36.71	4.69						
	CH _{L1}	46.88	48.75						
TVE	CH _{M1}	46.94	49.43						
TX5	CH _{M2}	46.94	49.43						
	CH _{H1}	46.83	48.19						
	CH _L 1	36.72	4.70						
TVG	CH _{M1}	36.65	4.62						
TX6	СНм2	36.65	4.62	_					
	СН _{н1}	36.73	4.71						


5.2. Occupied Bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits.

LIMIT

Please refer to FCC 47 CFR 2.1049, 74.462 for specification details.

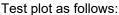
TEST CONFIGURATION

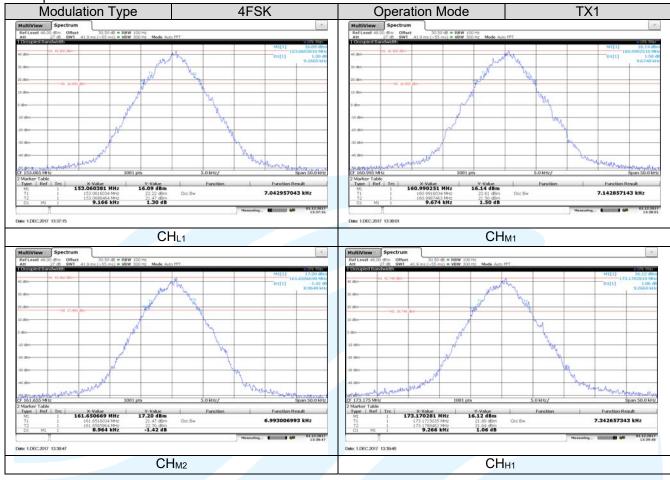
TEST PROCEDURE

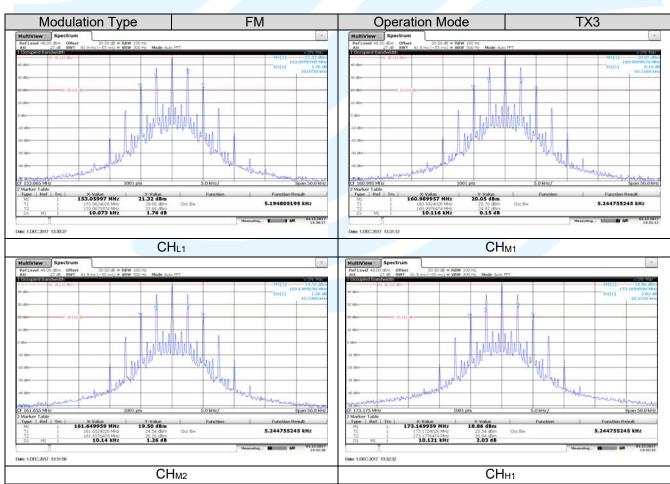
- The EUT was modulated by 2.5kHz sine wave audio signal; the level of the audio signal employed is 16dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz for 12.5kHz channel spacing).
- 2 Spectrum set as follow: Centre frequency = fundamental frequency, span=50kHz for 12.5kHz channel spacing, RBW=100Hz, VBW=300Hz, Sweep = auto, Detector function = peak, Trace = max hold
- 3 Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth
- 4 Measure and record the results in the test report.

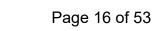
TEST MODE:

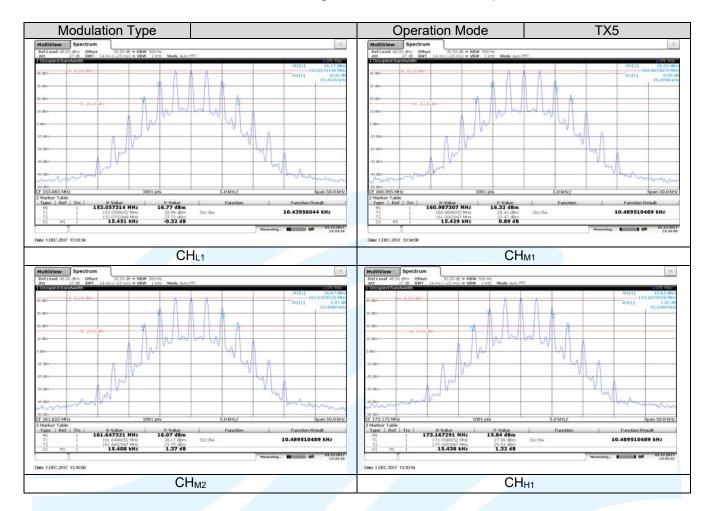
Please reference to the section 3.4


TEST RESULTS

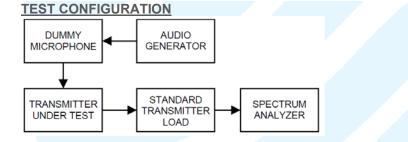

Note: Have pre-tested TX1 to TX6 mode, record the worst case mode TX1, TX3 and TX5 on the report.




FCC Part 74									
Operation	Tack Observati	Occupied Ban	dwidth (kHz)	1:::(-	Decul				
Mode	Test Channel	99%	26dB	Limit(kHz)	Result				
	CH _{L1}	7.043	9.166						
TV4	CH _{M1}	7.143	9.674	≤11.25	Pass				
TX1	СНм2	6.993	8.964	≪11.25					
	СН _{н1}	7.343	9.266						
	CH _{L1}	5.195	10.073						
TX3	СНм1	5.245	10.116	≤11.25					
173	СНм2	5.245	10.140	≪11.25					
	СН _{н1}	5.245	10.121		Pass				
	CH _{L1}	10.440	15.451		F455				
TVE	CH _{M1}	10.490	15.429	≤20					
TX5	CH _{M2}	10.490	15.408	≷ 20					
	CH _{H1}	10.490	15.438						



5.3. Emission Mask


Transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section.

LIMIT

Please refer to FCC 47 CFR 2.1049, 74.462(C) for specification details.

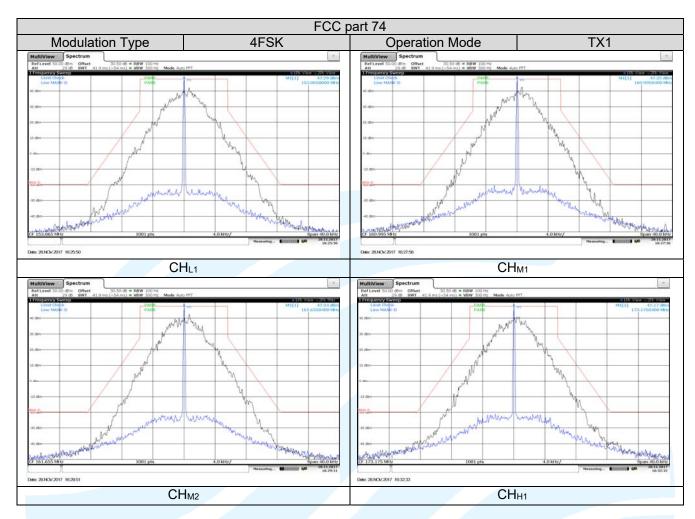
FCC Rules	Emission Mask
§ 74.462(c)§90.210(b)	В
§ 74.462(c)§90.210(d)	D

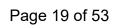
- (b) Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:
- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.
- (d) Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
- (1) On any frequency from the center of the authorized bandwidth f₀ to 5.625 kHz removed from f₀: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd-2.88 kHz) dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

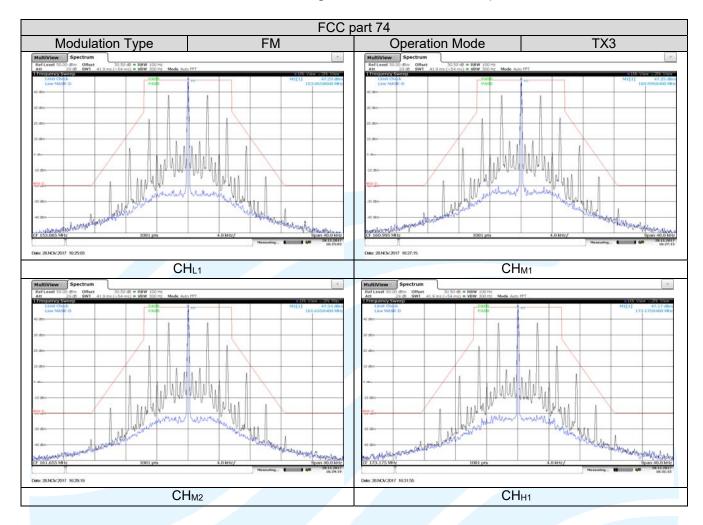
TEST PROCEDURE

- 1 Connect the equipment as illustrated.
- 2 Spectrum set as follow: Centre frequency = fundamental frequency, span=120kHz for 12.5kHz and 25kHz channel spacing, RBW=100Hz, VBW=1000Hz for 12.5kHz, RBW=300Hz, VBW=1000Hz for 25kHz,Sweep = auto, Detector function = peak, Trace = max hold
- 3 Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
- 4 Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation(Rated system deviation is 2.5 kHz for 12.5kHz channel spacing). The input level shall be established at the frequency of maximum response of the audio modulating circuit. Transmitters employing digital modulation techniques that bypass the limiter and the audio low-pass filter shall be modulated as specified by the manufacturer
- 5 Measure and record the results in the test report.

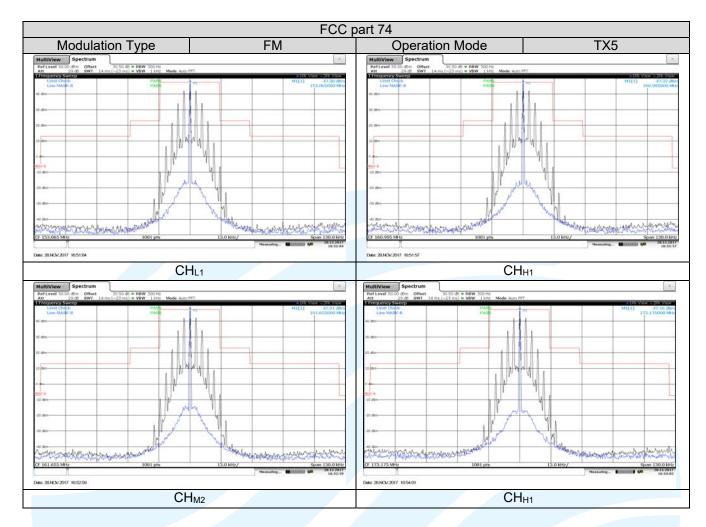
TEST MODE:


Please reference to the section 3.4

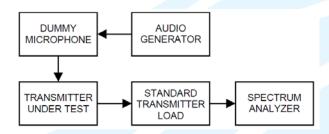

TEST RESULTS



Note: Have pre-tested TX1 to TX6 mode, record the worst case mode TX1, TX3 and TX5 on the report.



5.4. Modulation Limit


Modulation limiting is the transmitter circuit's ability to limit the transmitter from producing deviations in excess of a rated system deviation.

LIMIT

Please refer to FCC 47 CFR 2.1047 (b), 74.463 for specification details.

2.5kHz for 12.5 KHz Channel Spacing System 5kHz for 25 KHz Channel Spacing System

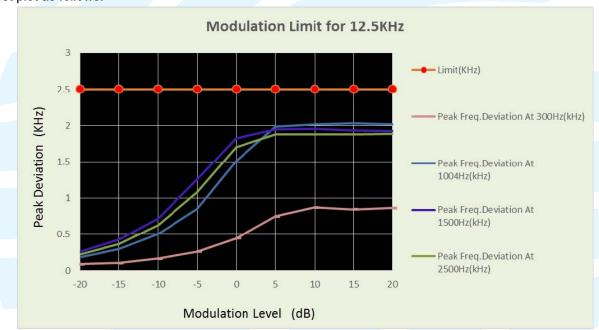
TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- 2) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 3) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for \leq 0.25 Hz to \geq 15,000 Hz. Turn the de-emphasis function off.
- 4) Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, this level is as a reference (0dB) and vary the input level from –20 to +20dB.
- 5) Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level
- 6) Repeat step 4-5 with input frequency changing to 300Hz, 1004Hz, 1500Hz and 2500Hz in sequence.

TEST MODE:

Please reference to the section 3.4


TEST RESULTS

Note: Have pre-tested TX3 to TX6 mode, record the worst case mode TX3 and TX5 on the report.

FCC Part 74									
TX3: CH _{H1}									
Modulation Level		Peak frequenc		1 (111.)	Dogult				
(dB)	300Hz	1004Hz	1500Hz	2500Hz	Limit (kHz)	Result			
-20	0.091	0.180	0.256	0.224					
-15	0.104	0.297	0.428	0.370					
-10	0.167	0.502	0.722	0.625					
-5	0.262	0.849	1.253	1.078					
0	0.445	1.512	1.822	1.703	2.5	Pass			
5	0.749	1.987	1.945	1.879					
10	0.872	2.013	1.952	1.880					
15	0.845	2.034	1.929	1.879					
20	0.862	2.019	1.923	1.883					

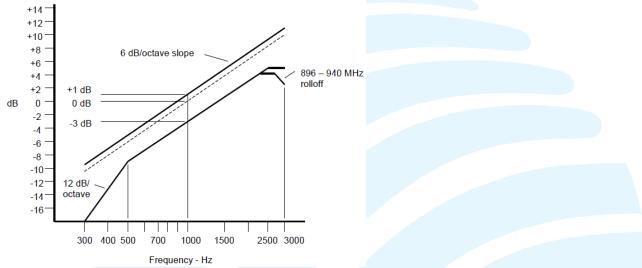
Test plot as follows:

Page 23 of 53

Report No.:180201001RFC-

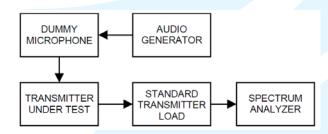
FCC Part 74									
TX5: CH _{H1}									
Modulation Level		Peak frequenc			.				
(dB)	300Hz	1004Hz	1500Hz	2500 Hz	Limit (kHz)	Result			
-20	0.123	0.328	0.473	0.413					
-15	0.179	0.560	0.822	0.701					
-10	0.299	0.958	1.423	1.229					
-5	0.491	1.682	2.500	2.152					
0	0.838	2.979	3.601	3.403	5	Pass			
5	1.463	3.956	3.853	3.691					
10	1.573	4.004	3.878	3.707					
15	1.766	4.022	3.882	3.705					
20	1.718	4.034	3.876	3.698					

Test plot as follows:


5.5. Audio Frequency Response

The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic.

LIMIT


Please refer to FCC 47 CFR 2.1047(a) for specification details.

2.1047(a): Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Configure the EUT as shown in figure .
- 2) Adjust the audio input for 20% of rated system deviation at 1kHz using this level as a reference.
- 3) Vary the Audio frequency from 300Hz to 3 kHz and record the frequency deviation.
- 4) Audio Frequency Response =20log₁₀ (V_{FREQ}/V_{REF}).

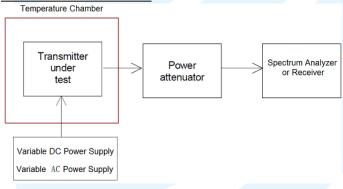
TEST MODE:

Please reference to the section 3.4

TEST RESULTS

5.6. Frequency Stability Test

The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency. **LIMIT**


Please refer to FCC 47 CFR 2.1055, 74.464 for specification details.

FCC Part 74.464:

For operations on frequencies above 25 MHz using authorized bandwidths up to 30 kHz, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in compliance with the frequency tolerance requirements of §90.213 of this chapter. For all other operations, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in accordance with the following:

	Tolerance (percent)			
Frequency range	Base station	Mobile station		
25 to 30 MHz:				
3 W or less	.002	.005		
Over 3 W	.002	.002		
30 to 300 MHz:				
3 W or less	.0005	.005		
Over 3 W	.0005	.0005		
300 to 500 MHz, all powers	.00025	.0005		

TEST CONFIGURATION

Page 26 of 53

Report No.:180201001RFC-1

TEST PROCEDURE

- According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to +50°C.
- According to FCC Part 2 Section 2.1055 (d) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- Vary primary supply voltage from 85% to 115% of the nominal value.
- The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to Spectrum Analyzer, The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each

stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded.
TEST MODE:
Please reference to the section 3.4
TEST RESULTS
Note: Have pre-tested TX1 to TX6 mode, record the worst case mode TX1, TX3 and TX5 on the report.

	FCC Part 74										
	TX1										
Test co	nditions		Frequency	error (%)							
Voltage(V)	Temp(°C)	CH _{L1}	СНм1	CH _{M2}	CH _{H1}	Limit (%)	Result				
	-30	0.000022	0.000025	0.000027	0.000028						
	-20	0.000023	0.000029	0.000020	0.000019						
	-10	0.000023	0.000025	0.000023	0.000022						
	0	0.000025	0.000027	0.000022	0.000021						
13.6	10	0.000020	0.000023	0.000022	0.000022						
	20	0.000029	0.000024	0.000020	0.000193	±0.0005	Pass				
	30	0.000020	0.000022	0.000024	0.000022						
	40	0.000023	0.000029	0.000029	0.000024						
	50	0.000020	0.000021	0.000025	0.000027						
15.64	20	0.000022	0.000029	0.000026	0.000021						
11.56	20	0.000023	0.000019	0.000020	0.000025						

	FCC Part 74										
	TX3										
Test co	nditions		Frequency	error (%)			Result				
Voltage(V)	Temp(℃)	CH _{L1}	СНм1	СНм2	СНн1	Limit (%)					
	-30	0.000051	0.000050	0.000051	0.000055						
	-20	0.000051	0.000049	0.000050	0.000050	±0.0005					
	-10	0.000055	0.000056	0.000050	0.000050						
	0	0.000056	0.000052	0.000053	0.000055						
13.6	10	0.000049	0.000051	0.000055	0.000053						
	20	0.000056	0.000051	0.000053	0.000051		Pass				
	30	0.000055	0.000050	0.000054	0.000053						
	40	0.000054	0.000055	0.000056	0.000052						
	50	0.000054	0.000055	0.000052	0.000051						
15.64	20	0.000051	0.000053	0.000054	0.000056						
11.56	20	0.000053	0.000054	0.000052	0.000052						

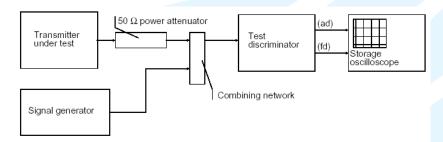
Page 28 of 53

			FCC Par	t 74			
			TX5				
Test co	nditions		Frequency	error (%)			
Voltage(V)	Temp(℃)	CH _{L1}	CH _{M1}	CH _{M2}	CH _{H1}	Limit (%)	Result
	-30	0.000058	0.000055	0.000056	0.000056		
	-20	0.000060	0.000056	0.000053	0.000053		
	-10	0.000059	0.000057	0.000061	0.000060		
	0	0.000053	0.000058	0.000056	0.000058		
13.6	10	0.000054	0.000061	0.000058	0.000060		
	20	0.000053	0.000055	0.000056	0.000055	±0.0005	Pass
	30	0.000055	0.000056	0.000057	0.000055		
	40	0.000056	0.000054	0.000055	0.000058		
	50	0.000060	0.000054	0.000060	0.000054		
15.64	20	0.000055	0.000054	0.000060	0.000060		
11.56	20	0.000060	0.000055	0.000059	0.000059		

5.7. Transmitter Frequency Behaviour

LIMIT

Please refer to FCC 47 CFR 74.462(c),90.214 for specification details.


Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

	Maximum	All equipment	
	frequency		
Time intervals ¹²	difference ³	150 to 174 MHz	421 to 512 MHz
Transient F	requency Behavior for Ed	uipment Designed to Operat	e on 25 kHz Channels
t ₁ 4	±25.0 kHz	5.0 ms	10.0 ms
t ₂	±12.5 kHz	20.0 ms	25.0 ms
t ₃ 4	±25.0 kHz	5.0 ms	10.0 ms
Transient Fr	equency Behavior for Eq	uipment Designed to Operate	on 12.5 kHz Channels
t ₁ 4	±12.5 kHz	5.0 ms	10.0 ms
t ₂	±6.25 kHz	20.0 ms	25.0 ms
t ₃ 4	±12.5 kHz	5.0 ms	10.0 ms
Transient Fr	equency Behavior for Eq	uipment Designed to Operate	on 6.25 kHz Channels
t ₁ 4	±6.25 kHz	5.0 ms	10.0 ms
t ₂	±3.125 kHz	20.0 ms	25.0 ms
t ₃ 4	±6.25 kHz	5.0 ms	10.0 ms

Note:

- 1. On is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.
- 1) t₁ is the time period immediately following ton.
- 2) t₂ is the time period immediately following t₁.
- 3) t₃ is the time period from the instant when the transmitter is turned off until toff.
- 4) t_{off} is the instant when the 1 kHz test signal starts to rise.
- 2. During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in § 90.213.
- Difference between the actual transmitter frequency and the assigned transmitter frequency.
- 4. If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

TEST CONFIGURATION

Page 30 of 53

Report No.:180201001RFC-1

TEST PROCEDURE

According to TIA/EIA-603 2.2.19 requirement, as for the product different from PTT, we use test steps as follows:

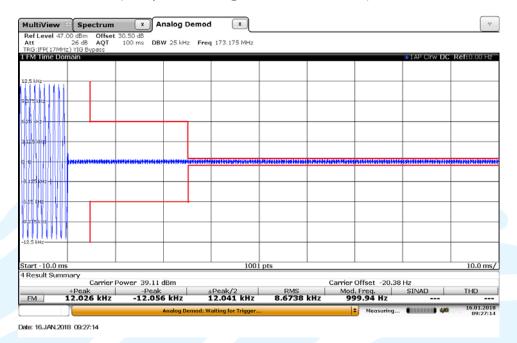
- 1. Connect DUT into Test discriminator and Storage Oscilloscope and keep DUT stats ON;
- 2. Input 1kHz signal into DUT;
- 3. Set the modulation domain analyzer to trigger on the rising edge of the waveform in order to capture a single-shot turn-on of the transmitter signals;
- 4. Keep DUT in OFF state and Key the PTT;
- 5. Observe the stored oscilloscope of modulation domain analyzer. The signal trace shall be maintained within the allowable limits during the periods t₁ and t₂, and shall also remain within limits following t₂;
- 6. Adjust the modulation domain analyzer to trigger on the falling edge of the transmitter waveform in order to capture a single-shot turn-off transmitter of the transmitter signal.
- 7. Keep the digital portable radio in ON state and unkey the PTT;
- 8. Observe the stored oscilloscope of modulation domain analyzer, The signal trace shall be maintained within the allowable limits during the period t₃.
- 9. Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ±12.5 kHz deviation and set its output level to -100dBm.
- 10. Turn on the transmitter.
- 11. Supply sufficient attenuation via the RF attenuator to provide an input level to the stored oscilloscope
- 12. that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the stored oscilloscope as P₀.
- 13. Turn off the transmitter.
- 14. Adjust the RF level of the signal generator to provide RF power equal to P₀. This signal generator RF level shall be maintained throughout the rest of the measurement.
- 15. Remove the attenuation, so the input power to the stored oscilloscope is increased by 30 dB when the transmitter is turned on.
- 16. Adjust the vertical amplitude control of the stored oscilloscope to display the 1000 Hz at ±4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- 17. Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer.

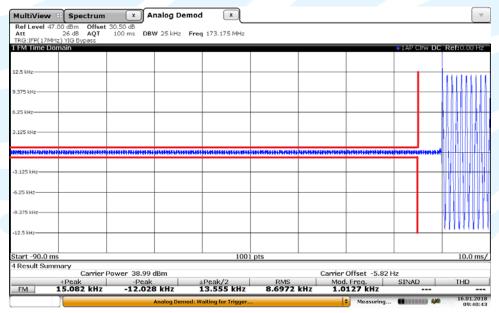
 Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be ton. The trace should be maintained within the allowed divisions during the period t₁ and t₂.
- 18. Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum
- 19. Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

TEST MODE:

Please reference to the section 3.4

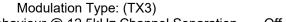
TEST RESULTS

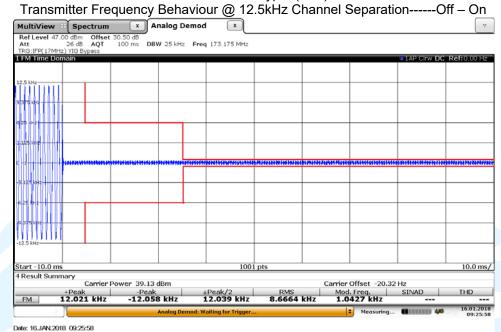

Note: Have pre-tested TX1 to TX6 mode, record the worst case mode TX1,TX3 and TX5 on the report.


FCC Part 74:

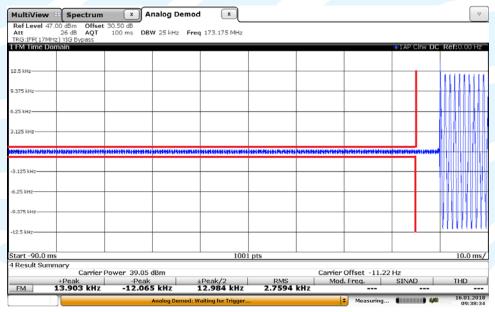
Modulation Type: 4FSK(TX1)

Transmitter Frequency Behaviour @ 12.5kHz Channel Separation-----Off – On


Transmitter Frequency Behaviour @ 12.5kHz Channel Separation-----On - Off

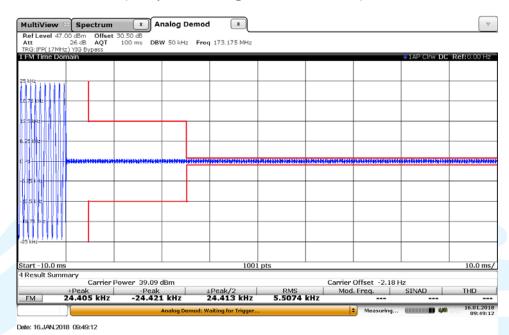


Date: 16.JAN.2018 09:40:43

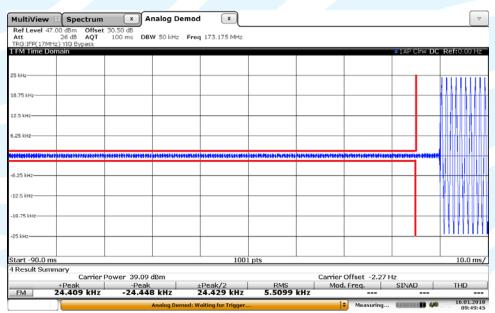


FCC Part 74:

Transmitter Frequency Behaviour @ 12.5kHz Channel Separation-----On - Off



Date: 16.JAN.2018 09:38:34



FCC Part 74:

Modulation Type: FM(TX5) Transmitter Frequency Behaviour @ 25kHz Channel Separation-----Off – On

Transmitter Frequency Behaviour @ 25kHz Channel Separation-----On - Off

Date: 16.JAN.2018 09:49:45

5.8. Spurious Emission on Antenna Port

Conducted spurious emissions are emissions at the antenna terminals on a frequency or frequencies that are outside a band sufficient to ensure transmission of information of required quality for the class of communication desired

LIMIT

Please refer to FCC 47 CFR 2.1051, 2.1057, 74.462(c) for specification details.

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC Rules	Attenuation Limit (dBc)
§ 74.462(c)§90.210(b)(3)	At least 43 +10log10 (mean power in watts) dB
§ 74.462(c)§90.210(d)(3)	At least 50 +10log10 (mean power in watts) dB

50 +10 log (Pwatts)

Note: In general, the worse case attenuation requirement shown above was applied.

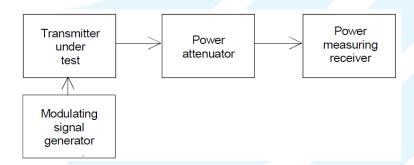
Calculation: Limit (dBm) =EL-50-10log10 (TP)

EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is P(dBm)

Limit (dBm) = $P(dBm)-50-10 \log (Pwatts) = -20dBm$

43 + 10 log (Pwatts)


Calculation: Limit (dBm) =EL-43-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is P(dBm).

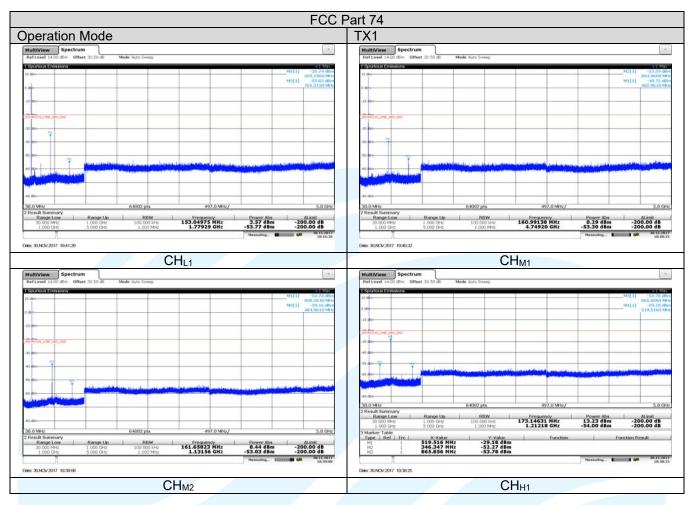
Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13 dBm

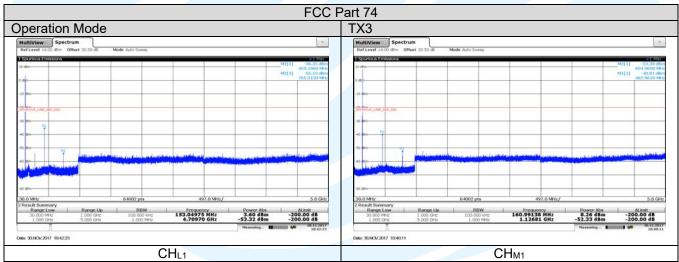
TEST CONFIGURATION

TEST PROCEDURE

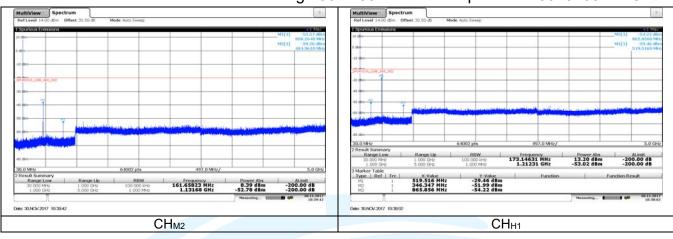
- 1. The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set to 100 kHz. Sufficient scans were taken to show any out of band emission up to 10th. Harmonic for the lower and the highest frequency range.
- 3. Set RBW 100 kHz, VBW 300 kHz in the frequency band 30MHz to 1GHz, while set RBW=1MHz.VBW=3MHz from the 1GHz to 10th Harmonic.
- 4. The audio input was set the unmodulated carrier, the resulting picture is print out for each channel separation.

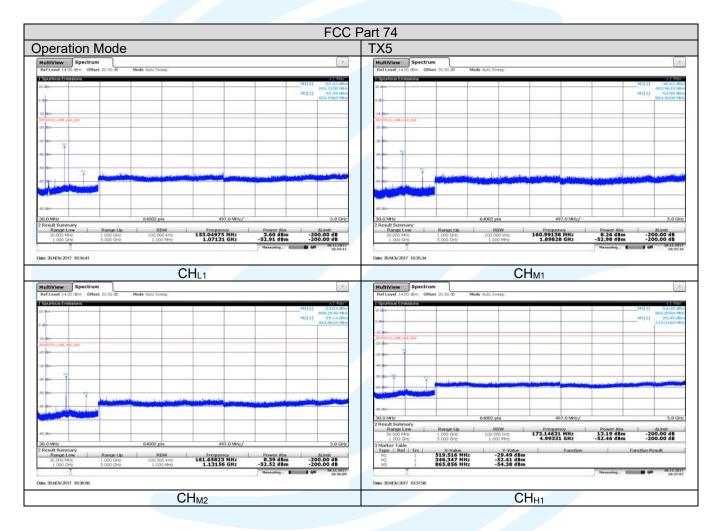
TEST MODE:


Please reference to the section 3.4


TEST RESULTS

- 1. The measurement frequency range from 30 MHz to 5 GHz.
- 2. We tested TX1 to TX6 recorded worst case TX1,TX3 and TX5.





Page 36 of 53

