5. RF EXPOSURE EVALUATION

5.1 MAXIMUM PERMISSIBLE EXPOSURE (MPE)

5.1.1 Applicable Standard

According to 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Report No.: CR21100111-00A

Limits for Maximum Permissible Exposure (MPE)

Limits for Occupational/Controlled Exposure								
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)				
0.3-3.0	614	1.63	(100)*	6				
3.0 - 30	1842/f	4.89/f	$(900/f^2)*$	6				
30-300	61.4	0.163	1.0	6				
300-1500	/	/	f/300	6				
1500-100,000	/	/	5	6				

f = frequency in MHz;

5.1.2 MPE Calculation

Prediction of power density at the distance of the applicable MPE limit

$$S = PG/4\pi R^2$$

Where: S = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

5.1.3 Calculated Result

Frequency (MHz)	Maximum Allowable Antenna Gain (dBi)	Cable Loss (dB)	Maximum output power including Tune-up Tolerance (dBm)	Operation Duty Cycle (%)	Evaluation Distance (cm)	Power Density (mW/cm²)	Power Density Limit (mW/cm²)
400-470	10	1	44.77	50	86	1.285	1.333

Result: Device meet MPE requirement at 86 cm distance away from Antenna.

***** END OF REPORT *****

^{* =} Plane-wave equivalent power density;