TEST REPORT

For RF

Report No::	CHTEW23040084	Report Verification:
Report No	CH EW 23040084	Report Verificatio

Project No..... SHT2304014107EW

FCC ID.....:: YAHTFX-3TX

Applicant's name: **Venture Global Limited**

Room 808, 8/F., Hilder Centre, 2 Sung Ping Street, Kowloon Address....:

Test item description Wireless Telephone Signaler

Trade Mark:

Model/Type reference..... TFX-303

Listed Model(s)

FCC CFR Title 47 Part 15 Subpart C § 15.249 Standard:

Date of receipt of test sample...... Apr.12, 2023

Date of testing.....: Apr.12, 2023- Apr.23, 2023

Date of issue..... Apr.24, 2023

PASS Result....:

Compiled by

Jang Mir Zhu File administrators Fanghui Zhu (position+printedname+signature)...:

Supervised by

(position+printedname+signature)....: Project Engineer Xiaodong Zhao

Approved by

(Position+Printed name+Signature): RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Address....:

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW23040084 Page: 2 of 31 Issued: 2023-04-24

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
1.2.	Report Version	3
<u>2.</u>	TEST DESCRIPTION	4
		
<u>3.</u>	SUMMARY	<u>5</u>
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	5
3.4.	Testing Laboratory Information	5
<u>4.</u>	TEST CONFIGURATION	6
	1201 00N 100NATION	0
4.1.	Test frequency list	6
4.2.	Test mode	6
4.3.	Descriptions of Test mode	6
4.4.	Test sample information	7
4.5.	Support unit used in test configuration and system	7
4.6.	Testing environmental condition	7
4.7.	Statement of the measurement uncertainty	8
4.8.	Equipment Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
<u>J.</u>	TEGT CONDITIONS AND RECOLD	<u> </u>
5.1.	Antenna Requirement	11
5.2.	AC Conducted Emission	12
5.3.	20dB bandwidth	13
5.4.	99% Occupied Bandwidth	15
5.5.	Duty Cycle	17
5.6.	Radiated field strength of the fundamental signal	19
5.7.	Radiated Band edge Emission	21
5.8.	Radiated Spurious Emission	23
6	TEST SETUP PHOTOS	28
<u>6.</u>	1EST SETSF FINOTOS	20
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS	29
7.1.	External Photos	29
7.2.	Internal Photos	31

Report No.: CHTEW23040084 Page: 3 of 31 Issued: 2023-04-24

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- FCC CFR Title 47 Part 15 Subpart C § 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz
- ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

1.2. Report version

Revision No.	Date of issue	Description
N/A	2023-04-24	Original

Report No.: CHTEW23040084 Page: 4 of 31 Issued: 2023-04-24

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result	Test Engineer
5.1	Antenna Requirement	15.203	PASS	Xiaoqin Li
5.2	AC Conducted Emission	15.207	N/A	-
5.3	20dB Bandwidth	15.215/15.249	PASS	Xiaoqin Li
5.4	99% Occupied Bandwidth	-	PASS ^{*1}	Xiaoqin Li
5.5	Duty cycle	-	PASS ^{*1}	Xiaoqin Li
5.6	Field strength of the Fundamental signal	15.249(a)	PASS	Haoxin Luo
5.7	Radiated Band Edge Emission	15.249(a)15.205/15.209	PASS	Haoxin Luo
5.8	Radiated Spurious Emission	15.249(d)15.205/15.209	PASS	Yifan Wang

Note:

- The measurement uncertainty is not included in the test result.
- *1: No requirement on standard, only report the test data.

Report No.: CHTEW23040084 Page: 5 of 31 Issued: 2023-04-24

3. **SUMMARY**

3.1. Client Information

Applicant:	Venture Global Limited	
Address:	Room 808, 8/F., Hilder Centre, 2 Sung Ping Street, Kowloon	
Manufacturer:	Venture Global Limited	
Address:	Room 808, 8/F., Hilder Centre, 2 Sung Ping Street, Kowloon	

3.2. Product Description

Main unit information:		
Product Name:	Wireless Telephone Signaler	
Trade Mark:	-	
Model No.:	TFX-303	
Listed Model(s):	-	
Power supply:	DV 3.0 from lithium battery	
Hardware version:	1.0	
Software version:	1.0	

3.3. Radio Specification Description

Modulation:	FSK
Operation frequency:	914.8MHz
Channel number:	1
Antenna type:	Internal spring
Antenna gain:	0dBi

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Contact information:	Phone: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn		
Qualifications	Type Accreditation Number		
FCC 762235		762235	

Report No.: CHTEW23040084 Page: 6 of 31 Issued: 2023-04-24

4. TEST CONFIGURATION

4.1. Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

Channel	Frequency (MHz)
CH-M	914.8

4.2. Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

4.3. Descriptions of Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

Report No.: CHTEW23040084 Page: 7 of 31 Issued: 2023-04-24

4.4. Test sample information

Test item	HTW sample no.
RF Conducted test items	YPHT23040141003
RF Radiated test items	YPHT23040141002
EMI sample test items	-

Note:

RF Conducted test items: 20dB Bandwidth ,99% Occupied Bandwidth, Duty cycle

RF Radiated test items: Radiated Band Edge Emission, Radiated Spurious Emission, Radiated field strength

of the fundamental signal

EMI test items: AC Conducted Emission

4.5. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?					
✓	No				
Item	Equipement	Trade Name	Model No.	FCC ID	Power cord
1					
2					

4.6. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

Report No.: CHTEW23040084 Page: 8 of 31 Issued: 2023-04-24

4.7. Statement of the measurement uncertainty

No.	Test Items	Measurement Uncertainty
1	AC Conducted Emission	3.21dB
2	20dB Bandwidth	0.002%
3	99% Occupied Bandwidth	0.002%
4	Duty cycle	-
5	Radiated field strength of the fundamental signal	4.54dB for 30MHz-1GHz
3	Radiated field strength of the fundamental signal	5.10dB for above 1GHz
6	Radiated Band Edge Emission	4.54dB for 30MHz-1GHz
	Radiated Band Edge Emission	5.10dB for above 1GHz
7	Radiated Spurious Emission	4.54dB for 30MHz-1GHz
,	Tradiated Spurious Effilssion	5.10dB for above 1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW23040084 Page: 9 of 31 Issued: 2023-04-24

4.8. Equipment Used during the Test

•	RF Conducted	test item					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	HTWE0242	FSV40	100048	2022/08/25	2023/08/24
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2022/08/25	2023/08/24
•	Vector signal generator	R&S	HTWE0244	SMBV100A	260790	2022/05/25	2023/05/24
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A

•	Radiated emi	ssion- Below 1G	Hz				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2023/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2022/08/30	2023/08/29
•	Loop Antenna	R&S	HTWE0546	HFH2-Z2E	101073	2021/05/25	2024/05/24
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0547	VULB9163	945	2022/05/23	2025/05/22
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2022/11/04	2023/11/03
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2023/02/24	2024/02/23
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2023/02/24	2024/02/23
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated em	ission- Above 10	GHz				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2018/09/27	2023/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2022/08/25	2023/08/24
•	Horn Antenna	ETS	HTWE0548	3117	240120	2022/05/20	2025/05/19
•	Horn Antenna	STEATITE	HTWE0549	QMS-00880	25661	2022/05/20	2025/05/19
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2022/11/04	2023/11/03
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2023/02/27	2024/02/26
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2023/02/24	2024/02/23
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2023/02/24	2024/02/23
•	RF Connection Cable	HUBER+SUHNER	HTWE0119-05	6m 3GHz RG Serisa	N/A	2023/02/24	2024/02/23
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2023/02/24	2024/02/23
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A

Report No.: CHTEW23040084 Page: 10 of 31 Issued: 2023-04-24

•	Auxiliary Equi	pment					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	High pass filter	Wainwright	HTWE0297	WHKX3.0/18G-10SS	38	2022/05/16	2023/05/15
•	Band Stop filter	-	HTWE0039	N/A	N/A	2023/01/26	2024/01/25

Report No.: CHTEW23040084 Page: 11 of 31 Issued: 2023-04-24

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

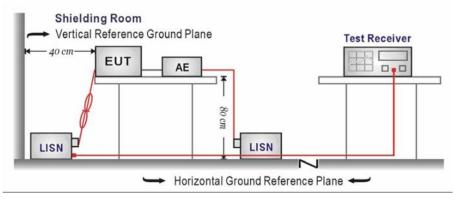
TEST RESULT

\square	Passed		Not	Δn	plical	hle
\triangle	rasseu	ш	MOL	Αþ	piicai	DIE

The antenna type is a Internal spring antenna, the directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

Report No.: CHTEW23040084 Page: 12 of 31 Issued: 2023-04-24

5.2. AC Conducted Emission


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguesov range (MILIT)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

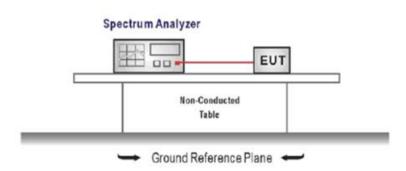
TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT


 Report No.: CHTEW23040084 Page: 13 of 31 Issued: 2023-04-24

5.3. 20dB bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency = channel center frequency

Span= approximately 2 to 3 times the 20 dB bandwidth

RBW = 100 kHz, VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

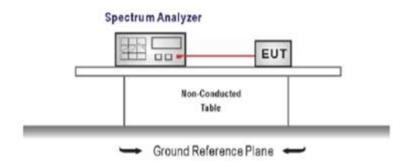
Please refer to the clause 4.2

TEST RESULT

TEST DATA

Report No.: CHTEW23040084 Page: 14 of 31 Issued: 2023-04-24

ulation type	Frequen	cy (MHz)	20 dB Band	width (kHz)	Limit (kHz)	Resu			
FSK	91	4.8	88.	13	-	Pas			
Spectri Ref Ler Att 1Pk Ma -30 dBm -40 dBm -60 dBm -70 dBm -90 dBm -100 dB -110 dB	D1 -51.980	SWT 632.1 μs	RBW 3 kHz VBW 10 kHz M	ode Auto FFT M1[1] M2[1]	-52.12 c 914.7600601 -31.98 c 914.7678701	MHz IBm			
CF 914	.8 MHz	'	691 pts	'	Span 300.0 k	Hz			
	Marker Type Ref Trc X-value Y-value Function Function Result								
Type M1	Ref Trc 1	X-value 914.76006 MHz		Function	Function Result				
D1	M1 1	88.13 kHz	0.45 dB						
M2	1	914.76787 MHz	-31.98 dBm						
				Meas	suring 🚺 🚻 🚧	li,			
Date: 17.A	PR.2023 11:45:17	•							


Report No.: CHTEW23040084 Page: 15 of 31 Issued: 2023-04-24

5.4. 99% Occupied Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Configure the spectrum analyzer as shown below (enter all losses between the transmitter output andthe spectrum analyzer).

Center Frequency =channel center frequency

Span≥1.5 x OBW

RBW = 1%~5%OBW

VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

TEST MODE:

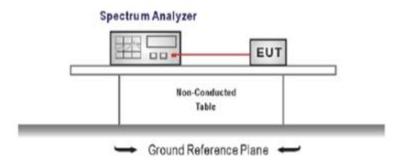
Please refer to the clause 4.2

TEST RESULT

TEST DATA

Report No.: CHTEW23040084 Page: 16 of 31 Issued: 2023-04-24

Spectrum	dulation type	Frequency (MHz)	99% Band	width (kHz)	Limit (kHz)	Resu				
Ref Level -20.00 dBm	FSK	914.8	167.15		-	Pas				
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 914.83734 MHz -33.80 dBm T1 1 914.717077 MHz -65.75 dBm Occ Bw 167.149059334 kHz	Ref Lev. Att 1Pk Ma -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -90 dBm -90 dBm -100 dBr	rel -20.00 dBm 0 dB SWT 632.1 µs х		M1[1]	-33.80 dB 914.837340 MF 167.149059334 kF	m Hz				
Type Ref Trc X-value Y-value Function Function Result M1 1 914.83734 MHz -33.80 dBm T1 1 914.717077 MHz -65.75 dBm Occ Bw 167.149059334 kHz		8 MHz	691 pts		Span 300.0 kH:	z				
M1 1 914.83734 MHz -33.80 dBm T1 1 914.717077 MHz -65.75 dBm Occ Bw 167.149059334 kHz		Ref Trc X-value	Y-value	Function	Function Result					
	M1	M1 1 914.83734 MHz -33.80 dBm								
1 311001220 11112 00101 40111										
Measuring										


Report No.: CHTEW23040084 Page: 17 of 31 Issued: 2023-04-24

5.5. Duty Cycle

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span=zero span, Frequency=centered channel, RBW= 1 MHz, VBW ≥ RBW
 - Sweep=as necessary to capture the entire dwell time,
 - Detector function = peak, Trigger mode
- 4. Measure and record the duty cycle data

TEST MODE:

Please refer to the clause 4.2

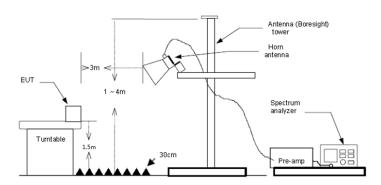
TEST RESULT

TEST DATA

Report No.: CHTEW23040084 Page: 18 of 31 Issued: 2023-04-24

Test Frequency (MHz)	Ton time for burst (i		Tperiod (ms)	Duty	cycle	1/Ton time (kHz)			
914.8	40.2	8	276.09	9	14.	59%	0.025			
	Spectrum Ref Level -20.00 dBn Att 0 dB SGL TRG: VID)1Pk Clrw	n 3 SWT 500 ms	RBW 100 kHz VBW 300 kHz	M1[1]		-35.23	(H)			
	80 dBm D1 40 dBm TRG -37.00	uBm 14 ms 10 dB 10 ms								
	-\$0 dBm									
- -	-70 dBm									
	-90 dBm									
	CF 914.8 MHz 691 pts 50.0 ms/									
	Marker Type Ref Trc X-value Y-value Function Function Result									
Da	ite: 17.APR.2023 11:46:3	35			Ready (IIII)		Mi.			

Report No.: CHTEW23040084 Page: 19 of 31 Issued: 2023-04-24


5.6. Radiated field strength of the fundamental signal

LIMIT

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)
2400-2483.5 MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)
5725-5875 MHz	50 (94dBuV/m @3m)	500 (54dBuV/m @3m)
24.0-24.25 GHz	250 (108dBuV/m @3m)	2500 (68dBuV/m @3m)

Frequencies above 1000 MHz, the field strength limits are based on average limits

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
 - a) Span shall wide enough to fully capture the emission being measured
 - b) Set RBW=100kHz for <1GHz, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
 - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.5 duty cycle.

TEST MODE:

Please refer to the clause 4.2

TEST RESULTS

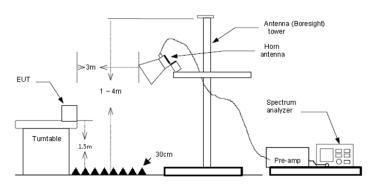
 Report No.: CHTEW23040084 Page: 20 of 31 Issued: 2023-04-24

Frequency (MHz)	Reading (dBµV/m)	Antenna (dB)	Cable (dB)	Preamp (dB)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector	Polarity
914.8	86.79	22.93	5.03	29.89	84.86	94.00	-9.14	Peak	Horizontal
914.8	75.55	22.93	5.03	29.89	73.62	94.00	-20.38	Peak	Vertical

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit

Report No.: CHTEW23040084 Page: 21 of 31 Issued: 2023-04-24


5.7. Radiated Band edge Emission

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.249 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
 - a) Span shall wide enough to fully capture the emission being measured
 - b) Set RBW=100kHz for <1GHz, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
 - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

Note:

- 3) Level= Reading + Factor; Factor = Antenna Factor + Cable Loss- Preamp Factor
- 4) Over Limit = Level Limit

Report No.: CHTEW23040084 Page: 22 of 31 Issued: 2023-04-24

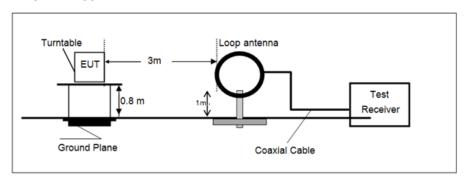
Test channel		CH _M			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	902.00	33.38	22.90	5.00	29.95	31.33	64.83	-33.50	Peak
2	914.81	86.76	22.93	5.03	29.89	84.83	64.83	20.00	Peak
3	928.00	34.38	22.96	5.06	29.83	32.57	64.83	-32.26	Peak
Test channel		CH _M			Polarit	у		Vertical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	902.00	34.21	22.90	5.00	29.95	32.16	53.58	-21.42	Peak
2	914.76	75.51	22.93	5.03	29.89	73.58	53.58	20.00	Peak
3	928.00	33.74	22.96	5.06	29.83	31.93	53.58	-21.65	Peak

Report No.: CHTEW23040084 Page: 23 of 31 Issued: 2023-04-24

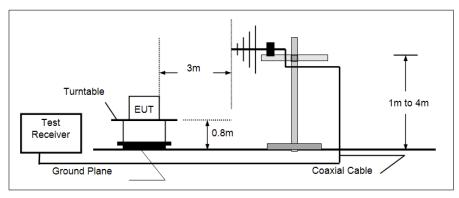
5.8. Radiated Spurious Emission

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

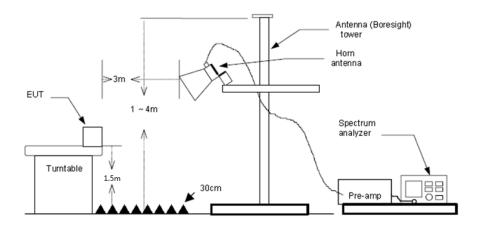

Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80, Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above IGHZ	74.00	Peak

TEST CONFIGURATION

→ 9 kHz ~ 30 MHz



30 MHz ~ 1 GHz

Above 1 GHz

Report No.: CHTEW23040084 Page: 24 of 31 Issued: 2023-04-24

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

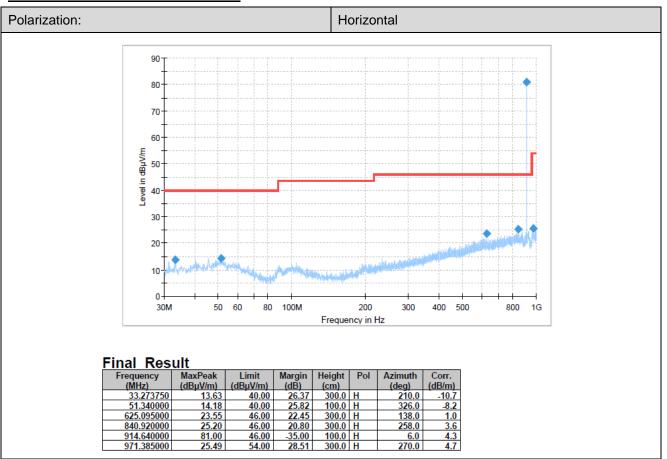
TEST MODE:

Please refer to the clause 4.2

TEST RESULT

Note:

- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- 3) Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.


Report No.: CHTEW23040084 Page: 25 of 31 Issued: 2023-04-24

TEST DATA FOR 9 kHz ~ 30 MHz

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

26 of 31 Report No.: CHTEW23040084 Page: Issued: 2023-04-24

TEST DATA FOR 30 MHz ~ 1000 MHz

Polarization: Vertical 80 70 60 evel in dBµV/m 50 40 30 20 10 0-200 800 30M 60 80 100M 400 500 Frequency in Hz Final Result Margin (dB) Azimuth Frequency (MHz) Limit Corr. (dB/m) MaxPeak Height Pol (dBµV/m) (dBµV/m) (cm) (deg) 15.61 17.50 22.71 23.77 71.00 24.39 22.50 31.940000 40.00 100.0 V 160.0 -11.0 100.0 V 100.0 V 10.3 1.3 2.9 35.092500 40.00 160.0 23.29 22.23 -25.00 46.00 356.0 696.390000 787.570000 46.00 100.0 V 346.0

60.0

100.0

914.640000

965.080000

46.00

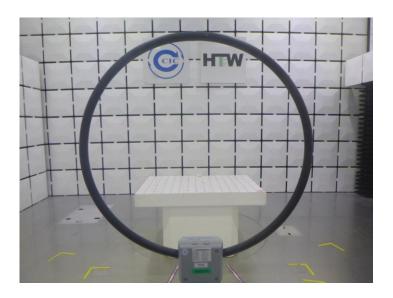
54.00

27.41

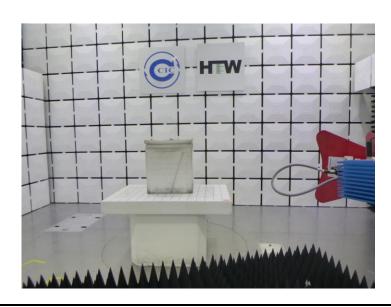
100.0 V

26.59

Report No.: CHTEW23040084 Page: 27 of 31 Issued: 2023-04-24

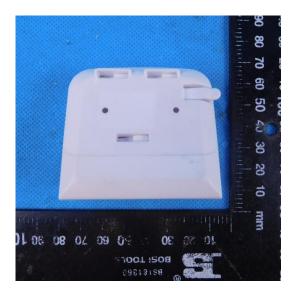

TEST DATA FOR 1 GHz ~ 10 GHz

Test channel	CH _M				Polarity			Horizontal		
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level	Limit dBuV/m	Over limit	Remark	
1	1273.57	45.07	28.40	2.91	42.70	33.68	74.00	-40.32	Peak	
2	2747.18	55.48	32.51	4.31	42.04	50.26	54.00	-3.74	Average	
3	2747.18	58.73	32.51	4.31	42.04	53.51	74.00	-20.49	Peak	
4	4570.77	43.71	34.10	5.47	41.17	42.11	74.00	-31.89	Peak	
5	8022.46	39.47	35.82	7.54	40.16	42.67	74.00	-31.33	Peak	
	CH _M				Polarity				Vertical	
Test channel		CH _M			Pola	rity		Vertic	cal	
Test channel Mark	Frequency MHz	Reading	Antenna dB	Cable dB	Preamp dB	Level	Limit dBuV/m	Over	Remark	
					Preamp	_	Limit dBuV/m 74.00	0ver		
Mark	MHz	Reading dBuV/m	dB	dB	Preamp dB	Level dBuV/m	dBuV/m	Over limit	Remark	
Mark 1	MHz 1413.67	Reading dBuV/m 45.30	dB 28.57	dB 3.09	Preamp dB 42.60	Level dBuV/m 34.36	dBuV/m 74.00	Over limit -39.64	Remark Peak	
Mark 1 2	MHz 1413.67 2747.18	Reading dBuV/m 45.30 55.98	dB 28.57 32.51	dB 3.09 4.31	Preamp dB 42.60 42.04	Level dBuV/m 34.36 50.76	dBuV/m 74.00 54.00	Over limit -39.64 -3.24	Remark Peak Average	


Report No.: CHTEW23040084 Page: 28 of 31 Issued: 2023-04-24

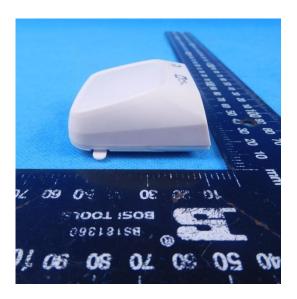
6. TEST SETUP PHOTOS

Radiated Emission

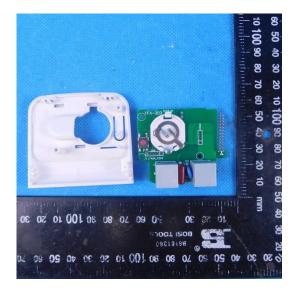


Report No.: CHTEW23040084 Page: 29 of 31 Issued: 2023-04-24

7. EXTERNAL AND INTERNAL PHOTOS


7.1. External Photos

Report No.: CHTEW23040084 Page: 30 of 31 Issued: 2023-04-24



Report No.: CHTEW23040084 Page: 31 of 31 Issued: 2023-04-24

7.2. Internal Photos

-----End of Report-----