

FCC Radio Test Report

FCC ID: YA7-AS300

Report No. Equipment Model Name Brand Name Applicant Address	 BTL-FCCP-1-2406T082 Compact Asset Tracker AS300 ATrack ATrack Technology Inc. 8F., No. 13 Ln. 120, Sec. 1, Neihu Rd., Neihu Dist., Taipei City 11493, Taiwan
Radio Function	: Bluetooth Low Energy
FCC Rule Part(s) Measurement Procedure(s)	: FCC CFR Title 47, Part 15, Subpart C (15.247) : ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2024/6/26 : 2024/7/3 ~ 2024/8/1 : 2024/9/12

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

: <u>Eddie Lee, Engineer</u>

Prepared by

Jerry Chuang, Supervisor

Approved by

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVIS	SION HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	7
1.4	DUTY CYCLE	8
2	GENERAL INFORMATION	9
2.1	DESCRIPTION OF EUT	9
2.2	TEST MODES	11
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.4	SUPPORT UNITS	13
3	AC POWER LINE CONDUCTED EMISSIONS TEST	14
3.1	LIMIT	14
3.2	TEST PROCEDURE	14
3.3	DEVIATION FROM TEST STANDARD	15
3.4	TEST SETUP	15
3.5	TEST RESULT	15
4	RADIATED EMISSIONS TEST	16
4.1	LIMIT	16
4.2	TEST PROCEDURE	17
4.3	DEVIATION FROM TEST STANDARD	17
4.4	TEST SETUP	18
4.5	EUT OPERATING CONDITIONS	19
4.6	TEST RESULT – 9KHZ TO 30 MHZ	19
4.7	TEST RESULT – 30 MHZ TO 1 GHZ	19
4.8	TEST RESULT – ABOVE 1 GHZ	19
5	BANDWIDTH TEST	20
5.1	APPLIED PROCEDURES / LIMIT	20
5.2	TEST PROCEDURE	20
5.3	DEVIATION FROM STANDARD	20
5.4	TEST SETUP	20
5.5	EUT OPERATION CONDITIONS	20
5.6	TEST RESULTS	20
6	OUTPUT POWER TEST	21
6.1	APPLIED PROCEDURES / LIMIT	21
6.2	TEST PROCEDURE	21
6.3	DEVIATION FROM STANDARD	21
6.4	TEST SETUP	21
6.5	EUT OPERATION CONDITIONS	21
6.6 7		21
7 7 1		22
7.1 7.2	APPLIED PROCEDURES / LIMIT TEST PROCEDURE	22 22
7.2 7.3	DEVIATION FROM STANDARD	22 22
7.3 7.4	TEST SETUP	22
7.4 7.5	EUT OPERATION CONDITIONS	22
7.5 7.6	TEST RESULTS	22
1.0	TEST RESULTS	22

8	ANTENN	A CONDUCTED SPURIOUS EMISSION	23
8.1	APPL	IED PROCEDURES / LIMIT	23
8.2	TEST	PROCEDURE	23
8.3	DEVIA	ATION FROM STANDARD	23
8.4	TEST	SETUP	23
8.5	EUT (OPERATION CONDITIONS	23
8.6	TEST	RESULTS	23
9	LIST OF	MEASURING EQUIPMENTS	24
10	EUT TES	ST PHOTO	26
11	EUT PH	OTOS	26
APPENI	DIX A	AC POWER LINE CONDUCTED EMISSIONS	27
APPENI	DIX B	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	32
APPENI	DIX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	37
APPENI	DIX D	RADIATED EMISSIONS - ABOVE 1 GHZ	40
APPENI	DIX E	BANDWIDTH	51
APPENI	DIX F	OUTPUT POWER	53
APPENI	DIX G	POWER SPECTRAL DENSITY TEST	55
APPENI	DIX H	ANTENNA CONDUCTED SPURIOUS EMISSION	57

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2406T082	R00	Original Report.	2024/9/12	Valid

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass	
15.247(a)(2)	Bandwidth	APPENDIX E	Pass	
15.247(b)(3)	Output Power	APPENDIX F	Pass	
15.247(e)	Power Spectral Density	APPENDIX G	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX H	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

SR11

1.1 TEST FACILITY

 The test locations stated below are under the TAF Accreditation Number 0659.

 The test location(s) used to collect the test data in this report are:

 No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

 (FCC DN: TW0659)

 ☑
 C05
 □
 CB11
 □
 SR10
 ☑

 No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan
 (FCC DN: TW0659)

 \Box C06 $\overset{\prime}{\square}$ CB21 \Box CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95 %.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

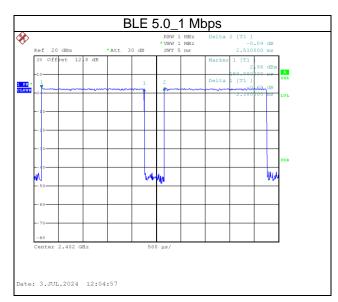
C. Conducted test :

Test Item	U (dB)
Occupied Bandwidth	0.5334
Output power	0.3669
Power Spectral Density	0.6591
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS


Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	21 °C, 45 %	AC 120V	Tim Lian
Radiated emissions below 1 GHz	Refer to data	DC 5V	Sean Huang
Radiated emissions above 1 GHz	Refer to data	DC 5V	Sean Huang
Bandwidth	28.1 °C, 52 %	DC 5V	Ken Lan
Output Power	23.5 °C, 45 %	DC 5V	Ken Lan
Power Spectral Density	23.5 °C, 45 %	DC 5V	Ken Lan
Antenna conducted Spurious Emission	28.1 °C, 52 %	DC 5V	Ken Lan

1.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Wode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BLE (1 Mbps)	2.100	1	2.100	2.510	83.67%	0.77

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Compact Asset Tracker			
Model Name	AS300			
Brand Name	ATrack			
Model Difference	The motherboard includes two types: with pogo pin and without pogo pin.			
Power Source	 Supplied from USB Port. Battery supplied. 			
Power Rating	1. 5Vdc 450mA 2. 3.7Vdc 920mAh			
Products Covered	1 * USB(Type A) 4pin to USB(Type C) cable			
Operation Band	2400 MHz ~ 2483.5 MHz			
Operation Frequency	2402 MHz ~ 2480 MHz			
Modulation Technology	GFSK			
Transfer Rate	1 Mbps			
Output Power Max.	6.82 dBm (0.0048 W)			
Test Software Version	EspRFTestTool v2.8			
Test Model	AS300			
Sample Status	Engineering Sample			
EUT Modification(s)	N/A			

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

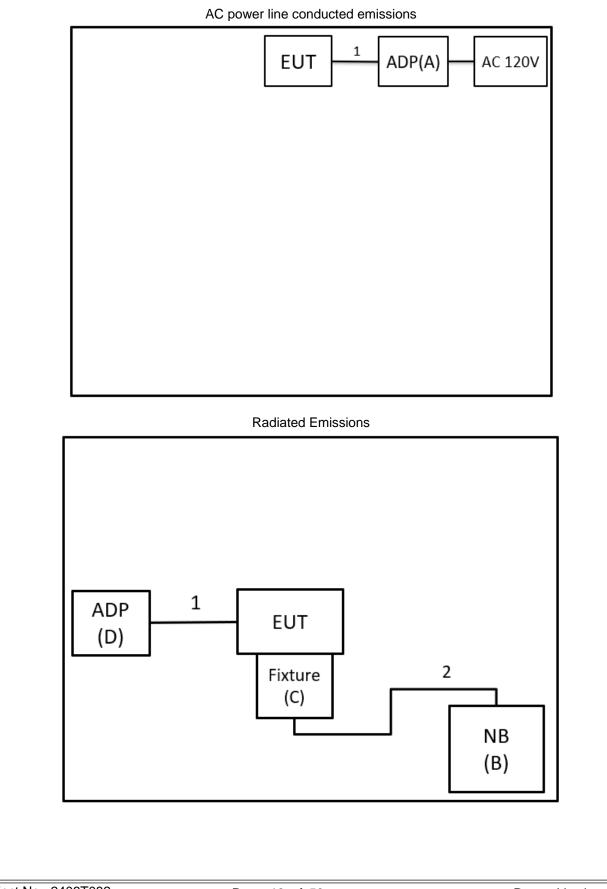
(3) -) Table for Filed Antenna:								
	Ant.	Brand	Part Number	Туре	Connector	Gain (dBi)			
	1.	Unictron Technologies Corp.	H2U34W1H1Z0700	Chip Antenna	N/A	1.8			

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	BLE 5.0 / 1 Mbps	39	-
Transmitter Radiated Emissions	BLE 5.0 / 1 Mbps	00/39	Bandedge
(above 1GHz)	BLE 5.0 / 1 Mbps	00/19/39	Harmonic
Transmitter Radiated Emissions (above 18GHz)	BLE 5.0 / 1 Mbps	39	-
Bandwidth	BLE 5.0 / 1 Mbps	00/19/39	-
Output Power	BLE 5.0 / 1 Mbps	00/19/39	-
Power Spectral Density	BLE 5.0 / 1 Mbps	00/19/39	-
Antenna conducted Spurious Emission	BLE 5.0 / 1 Mbps	00/19/39	-

NOTE:


(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.

(2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.
(3) The EUT supports both BLE 4.0 and 5.0, we will pick BLE 5.0 for testing.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	Samsung	EP-TA 20 JWS	N/A	Furnished by test lab.
В	NB	Dynabook	Portege-X40 G	N/A	Furnished by test lab.
С	Fixture	Taiwaniot	CP2102	N/A	Furnished by test lab.
D	ADP	Xiaomi	AD652G	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	No	No	0.6m	USB(Type A) 4pin to USB(Type C)	Supplied by test requester.
2	No	No	1m	USB extension Cable	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)
 - Margin Level = Measurement Value Limit Value

Calculation example:

Reading Level (dBµV)		Correct Factor (dB)		Measurement Value (dBµV)
38.22	+	3.45	Ш	41.67

Measurement Value		Limit Value		Margin Level
(dBµV)		(dBµV)		(dB)
41.67	1	60	=	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

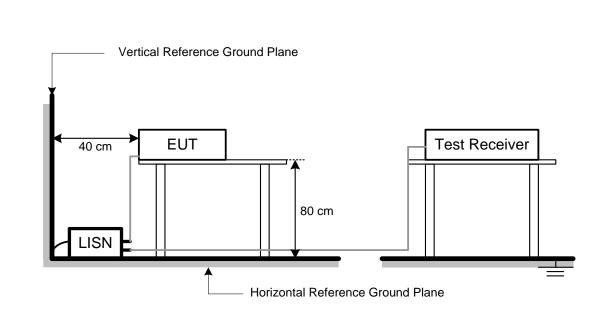
3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 All other support equipment were powered from an additional LISN(s).

The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated ((dBu	Measurement Distance	
(IVIHZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value		
(dBµV)		(dB/m)		(dBµV/m)		
41.91	+	-8.36	Ι	33.55		

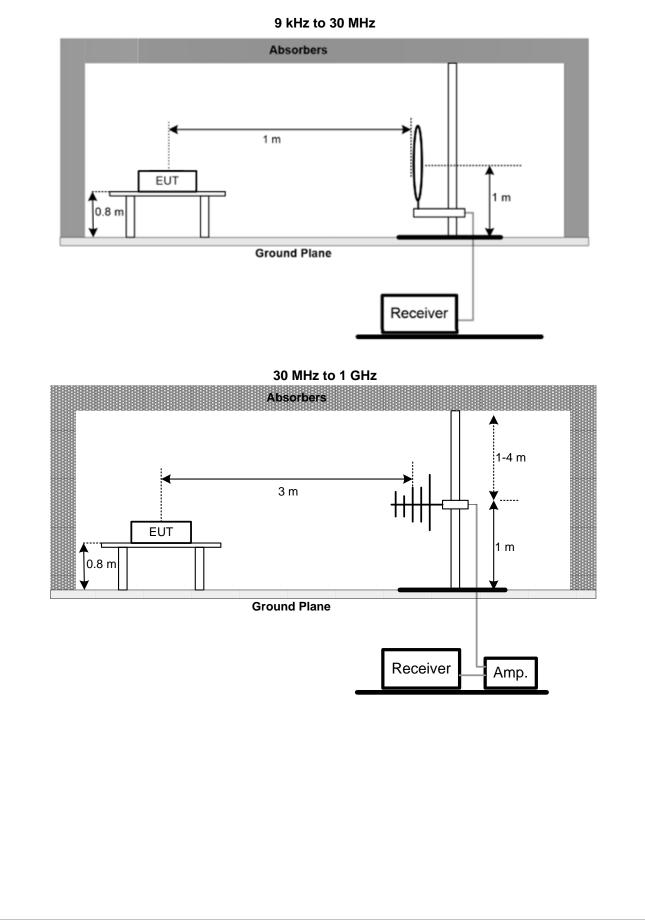
Measurement Value		Limit Value		Margin Level
(dBµV/m)		(dBµV/m)		(dB)
33.55	-	43.50	=	-9.95

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Mode	VBW(Hz)	
BLE (1M)	481.93	

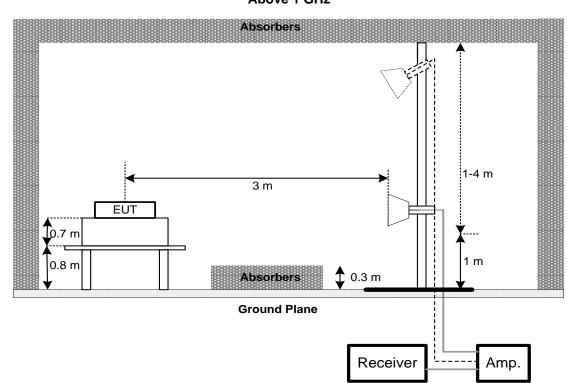
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

4.2 TEST PROCEDURE


- a. The measuring distance of 1 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 30MHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- c. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- d. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- f. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- g. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- h. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- j. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

No deviation.



4.4 TEST SETUP

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT – 9kHz TO 30 MHz

Please refer to the APPENDIX B.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX C.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX D.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

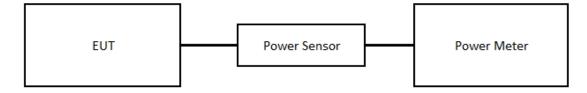
5.6 TEST RESULTS

Please refer to the APPENDIX E.

6 OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm 2400-2483.5		PASS


6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

9 LIST OF MEASURING EQUIPMENTS

AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2023/9/13	2024/9/12
2	Test Cable	EMCI	EMCCFD300-BM -BMR-5000	220331	2024/3/30	2025/3/29
3	EMI Test Receiver	R&S	ESR 7	101433	2023/11/10	2024/11/9
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

	Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC330N	980850	2023/9/6	2024/9/5			
2	Preamplifier	EMCI	EMC118A45SE	980819	2024/3/6	2025/3/5			
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2023/9/21	2024/9/20			
4	Preamplifier	EMCI	EMC001340	980579	2023/9/6	2024/9/5			
5	Test Cable	EMCI	EMC104-SM-100 0	180809	2024/3/8	2025/3/7			
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2024/3/8	2025/3/7			
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2024/3/8	2025/3/7			
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2024/2/23	2025/2/22			
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2023/9/12	2024/9/11			
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2024/5/9	2025/5/8			
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2024/5/17	2025/5/16			
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2024/6/14	2025/6/13			
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2024/6/14	2025/6/13			
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2024/3/13	2025/3/12			
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2024/3/13	2025/3/12			
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

Bandwidth						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	101139	2024/3/8	2025/3/7

Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2024/5/11	2025/5/10
2	Power Sensor	Anritsu	MA2411B	1126001	2024/5/11	2025/5/10

Power Spectral Density						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	101139	2024/3/8	2025/3/7

Antenna conducted Spurious Emission						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	101139	2024/3/8	2025/3/7

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

10 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2406T082-FCCP-1 (APPENDIX-TEST PHOTOS).

11 EUT PHOTOS

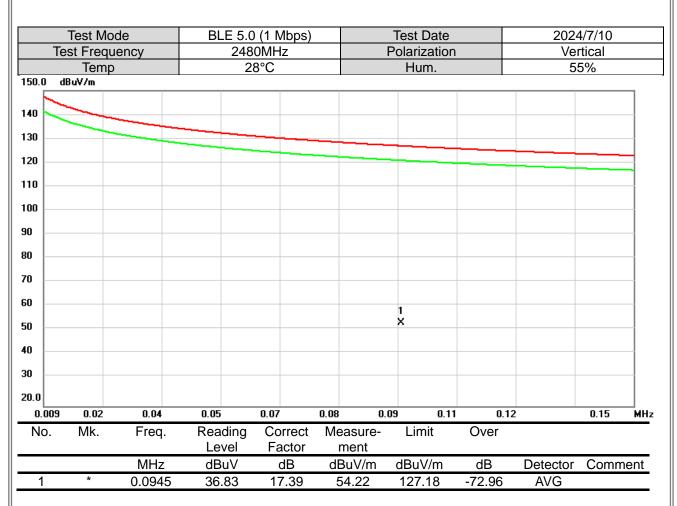
Please refer to document Appendix No.: EP-2406T082-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

st Mo	de l	Norma	I					T	ested Date	2	2024/7/4
st Fre	quency							Р	hase	L	ine
80.0	dBu¥										
70											
60											
50	1		3								
40	×		X	5 X	7						
30	2 ×		4		×	9 X				11 X 12	
20	^		×	6 ×	8	10 X				x	
10					×						
0.0 0.	150		().5		(MHz)		5			30.000
lo. Mł	. Freq.	Read		Correct Factor	Measure- ment	Limit	Margin				
	MHz	dBu		dB	dBuV	dBuV	dB	Detector	Comment		
1	0.2647	36.	15	9.65	45.80	61.28	-15.48	QP			
2	0.2647	16.	18	9.65	25.83	51.28	-25.45	AVG			
3 *	0.4245	36.	08	9.61	45.69	57.36	-11.67	QP			
4	0.4245	15.4	49	9.61	25.10	47.36	-22.26	AVG			
5	0.6607	29.	60	9.60	39.20	56.00	-16.80	QP			
6	0.6607	11.	06	9.60	20.66	46.00	-25.34	AVG			
7	0.9915	25.	48	9.60	35.08	56.00	-20.92	QP			
8	0.9915	4.	72	9.60	14.32	46.00	-31.68	AVG			
9	1.9793	22.	63	9.60	32.23	56.00	-23.77	QP			
10	1.9793	6.	48	9.60	16.08	46.00	-29.92	AVG			
11	13.8998	22.	19	9.72	31.91	60.00	-28.09	QP			
12	13.8998	14.	42	9.72	24.14	50.00	-25.86	AVG			

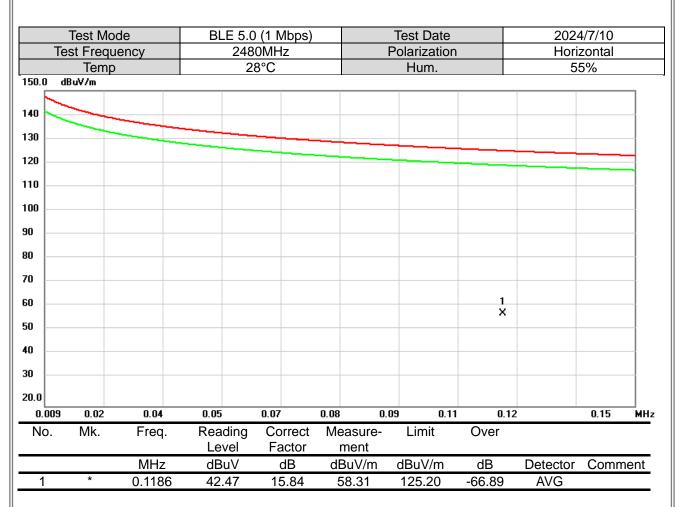
st Mo	de	Norr	mal						Т	ested Date		2024/7/4
st Fre	quency	-							Ρ	hase		Neutral
80.0	dBu∀											
70												
70												
60												
				-								
50		1 X	3	-								
40			×									
					5 X	7					11	
30		2	4			×					X 12	
20		×	×		<u> </u>			9 X			X	
					6 X	8		10				
10						×		×				
0.0												
0.	150			0.5			(MHz)		5			30.000
lo. Mł	k. Freq		eading ∟evel		orrect Factor	Measure- ment	Limit	Margin				
	MHz		dBuV		dB	dBuV	dBuV	dB	Detector	Comment		
1	0.2647	7 3	35.34		9.64	44.98	61.28	-16.30	QP			
2	0.2647		14.62		9.64	24.26	51.28	-27.02	AVG			
3 *	0.4245		33.81		9.60	43.41	57.36	-13.95	QP			
4	0.4245		12.66		9.60	22.26	47.36	-25.10	AVG			
5	0.6585		24.17 5.88		9.59 9.59	33.76 15.47	56.00 46.00	-22.24 -30.53	QP AVG			
6 7	1.1332		5.00 20.54		9.59	30.13	46.00 56.00	-25.87	QP			
8	1.1332		1.81		9.59	11.40	46.00	-34.60	AVG			
9	3.0300		12.41		9.70	22.11	56.00	-33.89	QP			
10	3.0300		2.21		9.70	11.91	46.00	-34.09	AVG			
11	13.9043	3	19.62		9.77	29.39	60.00	-30.61	QP			
12	13.9043	} `	12.50		9.77	22.27	50.00	-27.73	AVG			

st Mo	de	Idle							Т	ested Date		2024/7/4
st Fre	quency	-							F	Phase		Line
80.0	dBuV											
00.0	UBU¥											
70												
60												
50		1 X	- 3 X -									
40				5 X		7						
						×	9 X				11 X	
30		2 X	4 ×				Ŷ				12	
20			^	6 X			10				x	
				Ŷ		8 ×	10 X					
10												
0.0												
0.	150			0.5			(MHz)		5			30.000
lo. Mł	. Freq		ading evel	Corr Fac		Measure- ment	Limit	Margin				
	MHz	d	BuV	dB	6	dBuV	dBuV	dB	Detector	Comment		
1	0.2647	36	5.07	9.6	65	45.72	61.28	-15.56	QP			
2	0.2647		5.17	9.6		25.82	51.28	-25.46	AVG			
3 *	0.4245		6.00	9.6		45.61	57.36	-11.75	QP			
4	0.4245		5.29	9.6		24.90	47.36	-22.46	AVG			
5	0.6585		3.77 0.17	9.6		38.37	56.00	-17.63	QP			
6 7	0.6585		9.17 5.72	9.6		18.77 35.32	46.00 56.00	-27.23 -20.68	AVG QP			
8	1.1872		5.59	9.6		15.19	46.00	-30.81	AVG			
9	2.1120		1.80	9.6		31.41	56.00	-24.59	QP			
10	2.1120		5.80	9.6		15.41	46.00	-30.59	AVG			
11	14.2305	5 2´	1.99	9.7	73	31.72	60.00	-28.28	QP			
12	14.2305		1.86	9.7	70	24.59	50.00	-25.41	AVG			



$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	st Mod	e	Idle							Т	ested Date	2024/7/4
70 1 3 1 1 1 1 1 1 1 80 1 3 1 3 1 <t< th=""><th>1 3 7 1 2 4 5 7 1 2 4 5 7 1 2 4 5 7 1 1 5 7 1 1 2 4 5 7 1 1 5 7 1 1 2 4 5 7 10 1 1 5 7 10 1 1 1 5 7 10 1 1 1 5 7 10 1 1 1 5 8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>st Fred</th><th>quency</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th>F</th><th>Phase</th><th>Neutral</th></t<>	1 3 7 1 2 4 5 7 1 2 4 5 7 1 2 4 5 7 1 1 5 7 1 1 2 4 5 7 1 1 5 7 1 1 2 4 5 7 10 1 1 5 7 10 1 1 1 5 7 10 1 1 1 5 7 10 1 1 1 5 8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	st Fred	quency	-							F	Phase	Neutral
70 1 3 1 1 1 1 1 1 1 80 1 3 1 3 1 <t< th=""><th>1 3 7 1 2 4 5 7 1 2 4 5 7 1 2 4 5 7 1 1 5 7 1 1 2 4 5 7 1 1 5 7 1 1 2 4 5 7 10 1 1 5 7 10 1 1 1 5 7 10 1 1 1 5 7 10 1 1 1 5 8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	1 3 7 1 2 4 5 7 1 2 4 5 7 1 2 4 5 7 1 1 5 7 1 1 2 4 5 7 1 1 5 7 1 1 2 4 5 7 10 1 1 5 7 10 1 1 1 5 7 10 1 1 1 5 7 10 1 1 1 5 8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
60 1 2 4	Image: Non-Section of the section of the sectin of the section of	80.0 	dBuV							ĺ			
a0 x	Image: Non-Section of the section of the sectin of the section of	70											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 3 3 7 1 1 2 $\frac{1}{x}$ $\frac{3}{x}$ $\frac{5}{x}$ $\frac{7}{x}$ $\frac{1}{x}$ $\frac{11}{x}$ 2 $\frac{4}{x}$ $\frac{5}{x}$ $\frac{7}{x}$ $\frac{9}{x}$ $\frac{1}{x}$ $\frac{11}{x}$ 2 $\frac{4}{x}$ $\frac{5}{x}$ $\frac{7}{x}$ $\frac{9}{x}$ $\frac{1}{x}$ $\frac{11}{x}$ 0.150 0.5 $\frac{6}{x}$ $\frac{8}{x}$ $\frac{10}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ 0.150 0.5 $\frac{6}{x}$ $\frac{8}{x}$ $\frac{10}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ 0.150 0.5 $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x$	/0											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 3 1	60											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 3 1												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Image: second secon	50			3-								
30	$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	40		`	×								
30 $\frac{2}{X}$ $\frac{4}{X}$ $\frac{3}{X}$ $\frac{12}{X}$ <	$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							7					11
20 x	Image: Normal Sector (Normal Sector (Normat Sector (Normal Sector (Normal Sector (Normal Secto	30						×					×
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Margin Detector Comment Comment Comment Comment Comment Comment Margin Comment	Number Note	20								9 X			
10 .	0.150 0.5 (MHz) 5 30.00 Mk. Freq. Reading Level Correct Factor Measure- ment Limit Margin MHz dBuV dB dBuV dB Detector Comment 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 2.8320 12.12 9.67 21.89 <t< td=""><td>20</td><td></td><td></td><td></td><td></td><td></td><td>8</td><td></td><td>10</td><td></td><td></td><td></td></t<>	20						8		10			
0.150 0.5 (MHz) 5 30 No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Margin Margin 1 1 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 2 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG 3 3 * 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 4 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 4VG	0.150 0.5 (MHz) 5 30.00 Wk. Freq. Reading Level Correct Factor Measure- ment Limit Margin MHz dBuV dB dBuV dB Detector Comment 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 2.8320 12.22 9.67 21.89 <t< td=""><td>10</td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td>×</td><td></td><td></td><td></td></t<>	10						×		×			
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Margin MHz dBuV dB dBuV dB Detector Comment 1 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 2 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG 3 * 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 4 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 5 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 6 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 7 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 8 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 9 2.8320	Mk. Freq. Reading Level Correct Factor Measure- ment Limit Margin MHz dBuV dB dBuV dBuV dB Detector Comment 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 2.8320	0.0											
No. Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dB Detector Comment 1 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 2 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG 3 * 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 4 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 5 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 6 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 7 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 8 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 9 2.8320 12.22 <td>Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB Detector Comment 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 2.8320 2.11 <</td> <td>0.1</td> <td>50</td> <td></td> <td>0</td> <td>.5</td> <td></td> <td></td> <td>(MHz)</td> <td></td> <td>5</td> <td></td> <td>30.0</td>	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB Detector Comment 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 2.8320 2.11 <	0.1	50		0	.5			(MHz)		5		30.0
MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 2 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG 3 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 4 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 5 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 6 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 7 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 8 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 9 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 10 2.8320 2.11 <td>MHz dBuV dB dBuV dBuV dB Detector Comment 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG * 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 2.8320 2.11 9.67 11.78 46.00 -34.22 AVG 14.6378</td> <td></td> <td>Freq</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Limit</td> <td>Margi</td> <td>n</td> <td></td> <td></td>	MHz dBuV dB dBuV dBuV dB Detector Comment 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG * 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 2.8320 2.11 9.67 11.78 46.00 -34.22 AVG 14.6378		Freq						Limit	Margi	n		
1 0.2670 35.51 9.64 45.15 61.21 -16.06 QP 2 0.2670 16.30 9.64 25.94 51.21 -25.27 AVG 3 * 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 4 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 5 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 6 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 7 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 8 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 9 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 10 2.8320 2.11 9.67 11.78 46.00 -34.22 AVG	0.267035.519.6445.1561.21-16.06QP0.267016.309.6425.9451.21-25.27AVG*0.424533.779.6043.3757.36-13.99QP0.424512.589.6022.1847.36-25.18AVG0.658524.339.5933.9256.00-22.08QP0.65856.149.5915.7346.00-30.27AVG1.131021.269.5930.8556.00-25.15QP1.13102.859.5912.4446.00-33.56AVG2.832012.229.6721.8956.00-34.11QP2.83202.119.6711.7846.00-34.22AVG14.637819.759.7829.5360.00-30.47QP	10. IVIK	•									Comment	
3 * 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 4 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 5 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 6 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 7 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 8 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 9 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 10 2.8320 2.11 9.67 11.78 46.00 -34.22 AVG	* 0.4245 33.77 9.60 43.37 57.36 -13.99 QP 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 2.8320 2.11 9.67 11.78 46.00 -34.22 AVG 14.6378 19.75 9.78 29.53 60.00 -30.47 QP	1											
4 0.4245 12.58 9.60 22.18 47.36 -25.18 AVG 5 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 6 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 7 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 8 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 9 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 10 2.8320 2.11 9.67 11.78 46.00 -34.22 AVG	0.424512.589.6022.1847.36-25.18AVG0.658524.339.5933.9256.00-22.08QP0.65856.149.5915.7346.00-30.27AVG1.131021.269.5930.8556.00-25.15QP1.13102.859.5912.4446.00-33.56AVG2.832012.229.6721.8956.00-34.11QP2.83202.119.6711.7846.00-34.22AVG14.637819.759.7829.5360.00-30.47QP	2	0.2670	16.3	30	9	.64	25.94	51.21	-25.27	AVG		
5 0.6585 24.33 9.59 33.92 56.00 -22.08 QP 6 0.6585 6.14 9.59 15.73 46.00 -30.27 AVG 7 1.1310 21.26 9.59 30.85 56.00 -25.15 QP 8 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 9 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 10 2.8320 2.11 9.67 11.78 46.00 -34.22 AVG	0.658524.339.5933.9256.00-22.08QP0.65856.149.5915.7346.00-30.27AVG1.131021.269.5930.8556.00-25.15QP1.13102.859.5912.4446.00-33.56AVG2.832012.229.6721.8956.00-34.11QP2.83202.119.6711.7846.00-34.22AVG14.637819.759.7829.5360.00-30.47QP	3 *	0.4245	33.	77	9	.60	43.37	57.36	-13.99	QP		
60.65856.149.5915.7346.00-30.27AVG71.131021.269.5930.8556.00-25.15QP81.13102.859.5912.4446.00-33.56AVG92.832012.229.6721.8956.00-34.11QP102.83202.119.6711.7846.00-34.22AVG	0.65856.149.5915.7346.00-30.27AVG1.131021.269.5930.8556.00-25.15QP1.13102.859.5912.4446.00-33.56AVG2.832012.229.6721.8956.00-34.11QP2.83202.119.6711.7846.00-34.22AVG14.637819.759.7829.5360.00-30.47QP	4	0.4245	12.	58	9	.60	22.18	47.36	-25.18	AVG		
71.131021.269.5930.8556.00-25.15QP81.13102.859.5912.4446.00-33.56AVG92.832012.229.6721.8956.00-34.11QP102.83202.119.6711.7846.00-34.22AVG	1.131021.269.5930.8556.00-25.15QP1.13102.859.5912.4446.00-33.56AVG2.832012.229.6721.8956.00-34.11QP2.83202.119.6711.7846.00-34.22AVG14.637819.759.7829.5360.00-30.47QP		0 6585	24.3	33	9	.59	33.92	56.00	-22.08	QP		
8 1.1310 2.85 9.59 12.44 46.00 -33.56 AVG 9 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 10 2.8320 2.11 9.67 11.78 46.00 -34.22 AVG	1.13102.859.5912.4446.00-33.56AVG2.832012.229.6721.8956.00-34.11QP2.83202.119.6711.7846.00-34.22AVG14.637819.759.7829.5360.00-30.47QP	5	0.0000			0	.59	15.73					
9 2.8320 12.22 9.67 21.89 56.00 -34.11 QP 10 2.8320 2.11 9.67 11.78 46.00 -34.22 AVG	2.832012.229.6721.8956.00-34.11QP2.83202.119.6711.7846.00-34.22AVG14.637819.759.7829.5360.00-30.47QP	6	0.6585								0.5		
10 2.8320 2.11 9.67 11.78 46.00 -34.22 AVG	2.83202.119.6711.7846.00-34.22AVG14.637819.759.7829.5360.00-30.47QP	6 7	0.6585 1.1310	21.2	26	9							
	14.6378 19.75 9.78 29.53 60.00 -30.47 QP	6 7 8	0.6585 1.1310 1.1310	21.: 2.:	26 85	9 9	.59	12.44	46.00	-33.56	AVG		
11 14.0370 19.75 9.78 29.53 60.00 -30.47 QP		6 7 8 9	0.6585 1.1310 1.1310 2.8320	21.2 2.3 12.2	26 85 22	9 9 9	.59 .67	12.44 21.89	46.00 56.00	-33.56 -34.11	AVG QP		
12 14.6378 13.07 9.78 22.85 50.00 -27.15 AVG	14.03/0 13.0/ 9./8 22.83 30.00 -27.13 AVG	6 7 8 9 10	0.6585 1.1310 1.1310 2.8320 2.8320	21.: 2.: 12.: 2.:	26 85 22 11	9 9 9 9	.59 .67 .67	12.44 21.89 11.78	46.00 56.00 46.00	-33.56 -34.11 -34.22	AVG QP AVG		

APPENDIX B RADIATED EMISSIONS - 9 KHZ TO 30 MHZ


(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

	Toot Mo.	do) (1 Mhaa)		Toot Doto		202	4/7/40		
Test Mode Test Frequency) (1 Mbps) 80MHz		Test Date Polarizatior	1		4/7/10 rtical		
Temp				8°C		Hum.		55%			
20.0 dE	3uV/m										
10											
00										_	
	1										
0 ×	x							6 X		_	
o 📃								5			
	3					4		x			
0	×					×				1	
0											
o											
o 📃											
0											
10.0											
0.150	3.14	6.12	9.10	12.09	15.08 1	B.06 21.	D4 24.0	03	30.00	 	
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over				
		•	Level	Factor	ment						
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	nent	
1		0.4733	65.28	5.61	70.89	113.18	-42.29	AVG			
2	*	1.8375	70.72	-1.32	69.40	88.62	-19.22	QP			
3		3.2015	53.74	-3.82	49.92	88.62	-38.70	QP			
4		20.7445	52.47	-3.74	48.73	88.62	-39.89	QP			
5		24.0707	57.46	-2.17	55.29	88.62	-33.33	QP			
6		25.6727	67.93	-1.40	66.53	88.62	-22.09	QP			

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

	Test Mo			0 (1 Mbps)		Test Date			4/7/10		
	Test Frequency Temp 120.0 dBuV/m			<u>BOMHz</u>		Polarization	า	Horizontal 55%			
120.0			2	28°C		Hum.		5	5%		
120.0	00017111									7	
110										_	
100											
										1	
90										_	
80										_	
70											
	1 X 2 X										
60	×									_	
50										_	
40		3 X						5 X	6		
		×			4 X			Î	x		
30										-	
20										_	
10											
0											
-10.0											
0.1		6.12	9.10	12.09		8.06 21.		03	30.00	MHz	
No	. Mk.	Freq.	Reading	Correct	Measure-	Limit	Over				
			Level	Factor	ment			<u> </u>			
	*	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ient	
1		0.9550 2.7597	63.89 64.85	1.27	65.16 61.58	87.08 88.62	-21.92	QP QP			
2		6.2065	43.69	-3.27 -4.11	39.58	88.62	-27.04 -49.04	QP QP			
4		15.0830	37.98	-4.11	39.56	88.62	-49.04				
<u>4</u> 5		23.9771	42.93	-3.04	40.72	88.62	-47.90				
6		27.3294	38.96	-0.61	38.35	88.62	-50.27	QP			
		21.0204	00.00	0.01	00.00	00.02	00.21	3			

APPENDIX C RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

	Test Mo	de	BLE 5.0 (1 Mbps) 2480MHz						Test D)ate		2024/7/10		
Т	est Frequ						/		Polariz		ı		rtical	
	Temp			2	2°8				Hun	n.		5	5%	
80.0	dBuV/m													-
70														
60														
,0														1
-0														1
50														1
40 —			3			4 X	5 X				6 X			1
	1 2 V X		×			n x					Ŷ			
30	××													
20														-
10 -														-
D.O										700			4000.00	<u> </u>
30.00 No.	0 127.00 Mk.		321. Rog	uding	418	orrect	515. M	easure-	12.00 Lim	709 ;+	.00 806 Over		1000.00	мн
INU.	IVIK.	Freq.		vel		actor		ment	L1111	п	Over			
		MHz		BuV		dB		BuV/m	dBuV	′/m	dB	Detector	Comme	ent
1		72.2273		.94		4.96		30.98	40.0		-9.02	QP		
2		132.0115		.27		3.36		31.91	43.5		-11.59	peak		
3		274.4400	47	.46		2.28		35.18	46.0	0	-10.82	QP		
4	*	424.8222	45	.18	-8	3.19		36.99	46.0	0	-9.01	peak		
5		479.9830		.81	-(6.96		35.85	46.0	0	-10.15	peak		
6		778.6460	37	.83	- '	1.48		36.35	46.0	00	-9.65	peak		

	Test Mo	de	BLE 5	0 (1 Mbps)		Test Date		2024/7/10		
Tr	est Frequ			80MHz		Polarization	n		zontal	
	Temp			28°C		Hum.		5	5%	
80.0	dBuV/m									
70										
60										
50										
0										
40								6		
ŧU —	3	×						Ň		
	×		5							
30 1 X	2 X		x							
	Ŷ									
20										
10										
D.O										
30.000	0 127.00) 224.00	321.00	418.00	515.00 6	12.00 709	9.00 806	.00	1000.00 MH:	
No.	Mk.	Freq.	Reading		Measure-	Limit	Over			
			Level	Factor	ment					
4		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		Comment	
1		36.1756	40.29	-12.70	27.59	40.00	-12.41	QP		
2 3		72.1626	40.46 47.94	-14.94 -13.35	25.52 34.59	40.00 43.50	-14.48 -8.91	QP QP		
3 4		227.9446	<u>47.94</u> 51.48	-13.35	36.60	46.00	-8.91	QP QP		
-										
5		289.2810	40.21	-11.77	28.44	46.00	-17.56	QP		

APPENDIX D RADIATED EMISSIONS - ABOVE 1 GHZ

	Test Mod	le	BLE 5 () (1 Mbps)		Test Date		2024/7/10		
-	Test Freque			2MHz		Polarizatio			zontal	
	Temp		2	8°C		Hum.		5	5%	
130.0	dBuV/m									
120 -										
110 -					5					
100 -										
90 –										
80 -					лж Х					
70 🗖										
60										
-				1		1.1			ê	
50 🙌	Marraymultudentalet	Nethermonetherm	al ballow have a farmer a	u haytanent Par Marahara 2		mulantin	phonological data	Manufananahan		
40 -				×					7 X	
30 –										
20										
20 10.0										
10.0	2.000 2322.00		2362.00	2382.00	2402.00		42.00 246	2.00	2502.00 MI	
10.0	2.000 2322.00 Mk.	0 2342.00 Freq.	2362.00 Reading Level	2382.00 Correct Factor	2402.00 2 Measure- ment		42.00 246 Over	2.00	2502.00 MI	
10.0 2302			Reading	Correct	Measure-		Over dB	2.00 Detector	2502.00 MH	
10.0 2302		Freq. MHz 2383.747	Reading Level dBuV 56.57	Correct Factor dB -5.01	Measure- ment dBuV/m 51.56	Limit dBuV/m 74.00	Over dB -22.44	Detector peak		
10.0 2302 No. 1 2	Mk.	Freq. MHz 2383.747 2383.747	Reading Level dBuV 56.57 45.58	Correct Factor dB -5.01 -5.01	Measure- ment dBuV/m 51.56 40.57	Limit dBuV/m 74.00 54.00	Over dB -22.44 -13.43	Detector peak AVG	Comment	
10.0 2302 No. 1 2 3	Mk.	Freq. MHz 2383.747 2383.747 2400.000	Reading Level dBuV 56.57 45.58 86.58	Correct Factor dB -5.01 -5.01 -4.99	Measure- ment dBuV/m 51.56 40.57 81.59	Limit dBuV/m 74.00 54.00 74.00	Over dB -22.44 -13.43 7.59	Detector peak AVG peak	Comment No Limit	
10.0 2302 No. 1 2 3 4	Mk. 	Freq. MHz 2383.747 2383.747 2400.000 2402.000	Reading Level dBuV 56.57 45.58 86.58 115.53	Correct Factor dB -5.01 -5.01 -4.99 -5.00	Measure- ment dBuV/m 51.56 40.57 81.59 110.53	Limit dBuV/m 74.00 54.00 74.00 74.00	Over dB -22.44 -13.43 7.59 36.53	Detector peak AVG peak peak	Comment No Limit No Limit	
10.0 2302 No. 1 2 3	Mk.	Freq. MHz 2383.747 2383.747 2400.000	Reading Level dBuV 56.57 45.58 86.58	Correct Factor dB -5.01 -5.01 -4.99	Measure- ment dBuV/m 51.56 40.57 81.59	Limit dBuV/m 74.00 54.00 74.00	Over dB -22.44 -13.43 7.59	Detector peak AVG peak	Comment No Limit	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Toot Ma	a d a		= 0 (1 Mhno)		Teat Data		2024/7/10		
	Test Mo Test Frequ			5.0 (1 Mbps) 480MHz		Test Date Polarization	า		zontal	
	Temp			28°C		Hum.	•		5%	
130.0	dBuV/m									
120										
110 -					3					
100 -										
90 -										
80 -										
70										
60 -					5					
	1									
50		umperson by the m	ndphabaanthaadmaqquan	phones was and		Water and the Antonio and the fact	undunna yora	h Manuar Manapana	hermonipalitation	
50 🗸	1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	underson by the the	ndplakessthaktmethick	y ^a rdustyingertyingistyiketsensek		nalitionalitic and a second states of the second states of the second states of the second states of the second	nada yanan yanan	hMhannandana	hananahalinasisanah	
~		upurtugensom hydriterion	rdph.pressteraturation	physics of the second		staledroverten normaniska det n	ronday waa yaan daa	hMmunina.Hanyina	hanyaalaalaanda	
40		an a	odphalandhaadmaddaa	yn ^h redderlydreddor y yr i'r yddynwedd		nteletronteletronteletro	- Landerman (1949)	hMhawathawakanapina	harrandialhasisanth	
40 30 20		upuntusenstensityetettiseten	adipting the second	physics, in start of the second	nd ^{ar} 6 ⁴ Yanyika			hMhuuntiineudeente	ha-yanagadhasi suurk	
40 30 20 10.0 238	2 X 30.000 2400.0	00 2420.00	2440.00	2460.00	2480.00 2	500.00 252	20.00 254	hMhuwthiauHunuha 0.00	честовций чизыей 2580.00 MH	
40 30 20 10.0	2 X 30.000 2400.0			2460.00	nd ^{ar} 6 ⁴ Yanyika					
40 30 20 10.0 238	2 X 30.000 2400.0	00 2420.00	2440.00 Readin	2460.00 g Correct	2480.00 2 Measure-	500.00 252	20.00 254			
40 30 20 10.0 238	2 X 30.000 2400.0	00 2420.00 Freq.	2440.00 Readin Level	2460.00 g Correct Factor	2480.00 2 Measure- ment	500.00 252 Limit	20.00 254 Over	0.00	2580.00 MH	
40 30 20 10.0 238	2 X 30.000 2400.0	00 2420.00 Freq. MHz	2440.00 Readin Level dBuV	2460.00 g Correct Factor dB	2480.00 2 Measure- ment dBuV/m	500.00 252 Limit dBuV/m	20.00 254 Over dB	0.00 Detector	2580.00 MH	
40 30 20 10.0 238 No	2 X 30.000 2400.0	00 2420.00 Freq. MHz 2387.913	2440.00 Readin Level dBuV 55.86	2460.00 g Correct Factor dB -5.01	2480.00 2 Measure- ment dBuV/m 50.85	500.00 252 Limit dBuV/m 74.00	0.00 254 Over dB -23.15	0.00 Detector peak	2580.00 MH	
40 30 20 10.0 238 No. 1 238	2 X 30.000 2400.0	00 2420.00 Freq. MHz 2387.913 2387.913	2440.00 Readin Level dBuV 55.86 44.34	2460.00 g Correct Factor dB -5.01 -5.01 -4.89	2480.00 2 Measure- ment dBuV/m 50.85 39.33	500.00 252 Limit dBuV/m 74.00 54.00	0.00 254 Over dB -23.15 -14.67	0.00 Detector peak AVG	2580.00 MH Comment	
40 30 20 10.0 238 No 1 2 3	2 X 30.000 2400.0 . Mk.	00 2420.00 Freq. MHz 2387.913 2387.913 2480.000	2440.00 Readin Level dBuV 55.86 44.34 114.01	2460.00 g Correct Factor dB -5.01 -5.01 -4.89	2480.00 2 Measure- ment dBuV/m 50.85 39.33 109.12	500.00 252 Limit dBuV/m 74.00 54.00 74.00	20.00 254 Over dB -23.15 -14.67 35.12	0.00 Detector peak AVG peak	2580.00 MH	

	Test Mo	ode	BL	E 5.0 (1	Mbps)			Test [Date		2024	1/7/26
Tes	st Frequ	uency		2402N				Polariz		ľ		rtical
	Temp)		21°	0			Hur	n.		5	6%
130.0 dB	uV/m											
120												
110												
100												
90												
80												
70												
60		3	2									
50		>	<u>د</u>									
40												
30												
20												
10.0												
	0 2700.0				800.00	9500.0		1200.00			500.00	18000.00 MHz
No.	Mk.	Freq.	Read Lev		Correct Factor		asure- nent	Lim	It	Over		
		MHz	dBu	ιV	dB	dB	uV/m	dBu∖	//m	dB	Detector	Comment
1		4804.000		37	0.88	55	5.75	74.0)0	-18.25	peak	
2	*	4804.000) 50.8	33	0.88	5	1.71	54.0	00	-2.29	AVG	

	Test Mode Test Frequency		BIE 5 () (1 Mbps)		Test Date		2024/7/26		
Te				2MHz		Polarization	n 🗌		zontal	
	Temp		2	1°C		Hum.		5	6%	
130.0	dBuV/m	i								
120										
110 -										
100										
90 -										
80										
70										
60		1								
50		1 2 X								
40										
30										
20										
10.0										
	000 2700.0			7800.00				00.00	18000.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4804.000		0.88	53.11	74.00	-20.89	peak		
2	*	4804.000	47.15	0.88	48.03	54.00	-5.97	AVG		

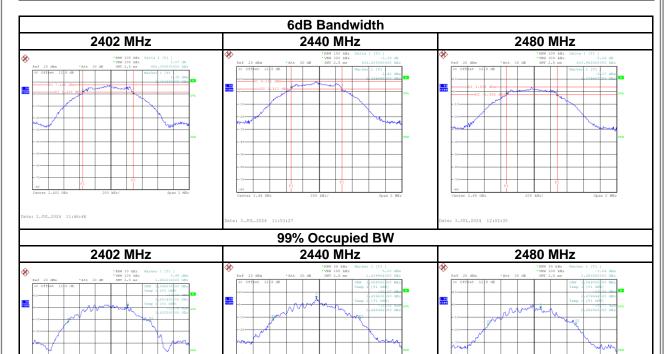
_	Test Mo) (1 Mbps)		Test Date			4/7/26
le	est Frequ			OMHz		Polarizatio	n		rtical
120.0	Temp IBuV/m		2	1°C		Hum.		5	6%
130.0 d	1Bu¥/m								
120									
10									
90									
30									
'o 📃									
50									
50		1 >							
10 -									
30									
20									
10.0									
	00 2700.0			7800.00				00.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000	54.49	1.03	55.52	74.00	-18.48	peak	
2	*	4880.000	49.53	1.03	50.56	54.00	-3.44	AVG	

	Test Mode Test Frequency		BIE 5 () (1 Mbps)		Test Date		2024	4/7/26
Te				0MHz		Polarization	n		zontal
	Temp		2	1°C		Hum.			6%
130.0	dBu¥/m								
120									
110 -									
100									
90 -									
80									
70									
60		1							
50		1 2 X							
40									
30 -									
20									
10.0									
	000 2700.0		6100.00	7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000		1.03	52.22	74.00	-21.78	peak	
2	*	4880.000	46.94	1.03	47.97	54.00	-6.03	AVG	

	Test Mo			0 (1 Mbps)		Test Date			4/7/26
Te	est Freq			30MHz		Polarization	า		rtical
	Tem	р	2	1°C		Hum.		50	6%
130.0	dBuV/m								
120									
110									
100									
90 -									
80									
70									
60			1						
50			×						
40									
30									
20									
10.0									
	000 2700.			7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	55.86	1.21	57.07	74.00	-16.93	peak	
2	*	4960.000	51.57	1.21	52.78	54.00	-1.22	AVG	

	Test M	lode		BLE 5.0) (1 Mbps)		Test Date		2024	1/7/26
	Test Free	quency		248	0MHz		Polarizatio	n		zontal
	Terr	ıp		2	1°C		Hum.		50	6%
130.0	dBu¥/m									
120										
110 -										
100 -										
90 -										
80										
70										
60			8							
50										
40										
30 -										
20										
10.0										
	.000 2700		0.00	6100.00	7800.00				00.00	18000.00 MHz
No.	Mk.	Free	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MH		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.		55.82	1.21	57.03	74.00	-16.97	peak	
2	*	4960.	000	52.67	1.21	53.88	54.00	-0.12	AVG	

	Test M	lode			BL	E 5.0) (1 N	/bps)				Test D	Date			2024	4/7/10	
	Test Fred	quen	су				0MH				F	Polariz	ation	า		Ve	rtical	
	Tem	пр				2	8°C					Hur	n.			5	5%	
130.0	dBuV/m																	_
120 -																		
110																		
100																		
90 -																		_
80 -																		
70																		
60																		
50				4														
40				1 X														_
30 -				2 X														
20																		
10.0																		
180	00.0001885	0.00	197	00.00	2055	i0.00	2140	00.00	222	50.00	23	100.00	239	950.00	2480	00.00	26500.0	IO MHz
No.	Mk.		Frec		Rea Le	ding vel		orrect actor		easui ment		Lim	it	Ov	er			
			MH	2	dB			dB		BuV/i		dBu∨	//m	dE	3	Detector	Comm	ent
1		1	9840	.00	48	.83	-6	6.26		42.57	,	74.0	00	-31.	43	peak		
2	*	1	9840	.00	38.	95	-6	6.26		32.69)	54.0	00	-21.	31	AVG		


	T (N /.	.1.		- - - -	(4. 8.41		T (Dete		000	4/7/40
	Test Mo Fest Frequ		BL		(1 Mbps) 0MHz		Test Polariz				4/7/10 zontal
I	Temp				B°C		Hu				2011ai 5%
130.0	dBuV/m			20			110				570
120 -											
110											
110											
100 -											
90											
80											
70											
60											
50											
40		1 X									
10		2 X									
30											
20											
10.0											
	0.000 18850.	00 19700.0	0 205	50.00	21400.00	22250.00	23100.00	23950.0	0 248	00.00	26500.00 MHz
No.	Mk.	Freq.	Rea	ding	Correct	Measure	e- Lin	nit (Over		
				vel	Factor	ment					
		MHz		ωV	dB	dBuV/m			dB	Detector	Comment
1		19840.00		.75	-6.26	43.49	74.		30.51	peak	
2	*	19840.00	0 40	.05	-6.26	33.79	54.	- 00	20.21	AVG	

APPENDIX E BANDWIDTH

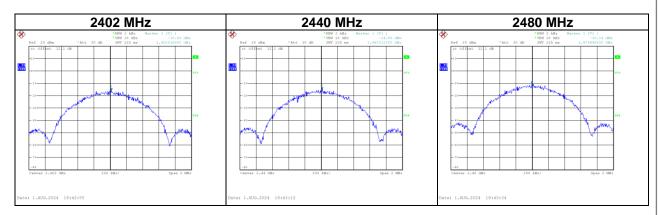
Test Mode: BLE 5.0_1 Mbps							
Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result			
2402	0.65	1.05	500	Pass			
2440	0.62	1.06	500	Pass			
2480	0.61	1.06	500	Pass			

te: 3.JUL.2024 11:46:11

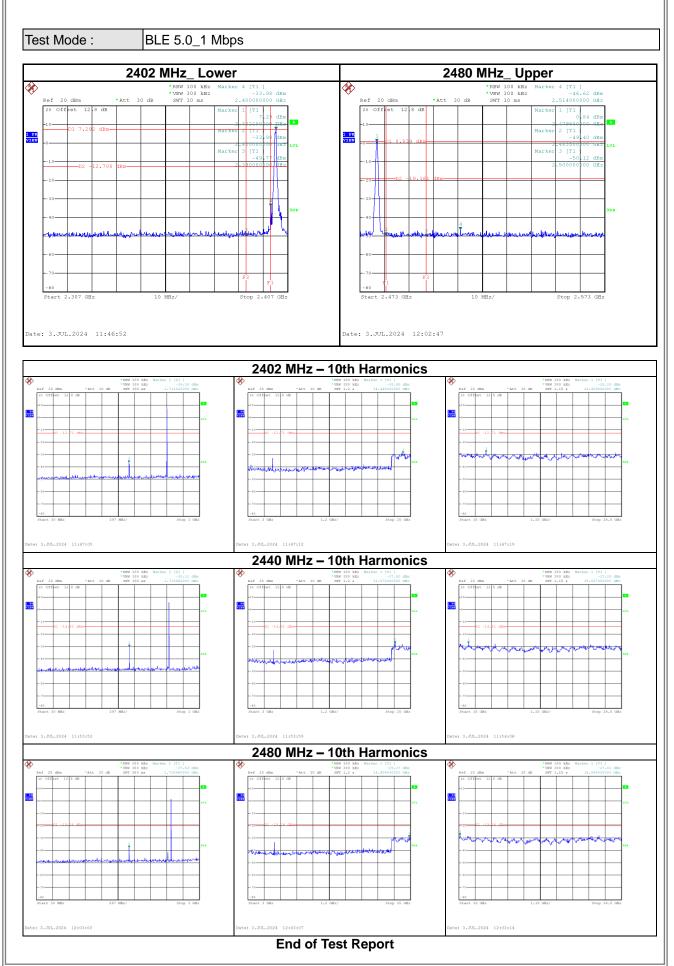
te: 3.JUL.2024 11:53:33

: 3.JUL.2024 12:02:40

APPENDIX F OUTPUT POWER


Test Mode :	BLE 5.0_1 Mb	BLE 5.0_1 Mbps			2024/8/1
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	2.53	0.0018	30.00	1.0000	Pass
2440	3.28	0.0021	30.00	1.0000	Pass
2480	6.82	0.0048	30.00	1.0000	Pass

APPENDIX G POWER SPECTRAL DENSITY TEST


Test Mode : BLE 5.0_1 Mbps							
Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result				
2402	-15.58	8	Pass				
2440	-14.85	8	Pass				
2480	-10.14	8	Pass				

APPENDIX H ANTENNA CONDUCTED SPURIOUS EMISSION

Project No.: 2406T082