RF TEST REPORT

Report No.: 17070432-FCC-R

Supersede Report No.: N/A

Applicant	SHENZHEN HANGSHENG ELECTRONICS CO.,LTD			
Product Name	E-Canter Navigation			
Model No.	HS-N1196			
Serial No.	N/A			
Test Standard	FCC Part 1	5.247: 2016, ANSI C63.10: 2	013	
Test Date	June 10 to	July 05, 2017		
Issue Date	July 11, 20 ⁻	July 11, 2017		
Test Result	Pass	Fail		
Equipment compl	ied with the s	specification		
Equipment did no	t comply with	the specification		
Loven Luo David Huang				
Loren Luo		David Huang		
Test Engineer		Checked By		
This test report may be reproduced in full only				
Test result presented in this test report is applicable to the tested sample only				
Issued by:				

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108 Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

 Test Report
 17070432-FCC-R

 Page
 2 of 63

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Accreditations for Conformity Assessment

Test Report	17070432-FCC-R
Page	3 of 63

This page has been left blank intentionally.

 Test Report
 17070432-FCC-R

 Page
 4 of 63

CONTENTS

1.	REPORT REVISION HISTORY
2.	CUSTOMER INFORMATION
3.	TEST SITE INFORMATION
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION
5.	TEST SUMMARY
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS9
6.1	ANTENNA REQUIREMENT9
6.2	CHANNEL SEPARATION
6.3 2	20DB BANDWIDTH14
6.4	PEAK OUTPUT POWER18
6.5	NUMBER OF HOPPING CHANNEL
6.6 ⁻	TIME OF OCCUPANCY (DWELL TIME)24
6.7	BAND EDGE & RESTRICTED BAND
6.8	AC POWER LINE CONDUCTED EMISSIONS
6.9	RADIATED EMISSIONS & RESTRICTED BAND
ANN	IEX A. TEST INSTRUMENT45
ANN	IEX B. EUT AND TEST SETUP PHOTOGRAPHS46
ANN	IEX C. TEST SETUP AND SUPPORTING EQUIPMENT
	IEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST62
ANN	IEX E. DECLARATION OF SIMILARITY63

Test Report	17070432-FCC-R
Page	5 of 63

1. Report Revision History

Report No.	Report Version	Description	Issue Date
17070432-FCC-R	NONE	Original	July 06, 2017
17070432-FCC-R	V1	Updated the test summary	July 11, 2017

2. Customer information

Applicant Name	SHENZHEN HANGSHENG ELECTRONICS CO.,LTD
Applicant Add	Hangsheng Industrial Park, Fuyuan Yi Road,Heping Village, Fuyong Town,Baoan
	District,Shenzhen ,China
Manufacturer	SHENZHEN HANGSHENG ELECTRONICS CO.,LTD
Manufacturer Add	Hangsheng Industrial Park, Fuyuan Yi Road,Heping Village, Fuyong Town,Baoan
	District,Shenzhen ,China

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES		
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park		
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China		
	518108		
FCC Test Site No.	718246		
IC Test Site No.	4842E-1		
Test Software of			
Radiated Emission	Radiated Emission Program-To Shenzhen v2.0		
Test Software of			
Conducted Emission	EZ-EMC(ver.lcp-03A1)		

 Test Report
 17070432-FCC-R

 Page
 6 of 63

4. Equipment under Test (EUT) Information

Description of EUT:	E-Canter Navigation
Main Model:	HS-N1196
Serial Model:	N/A
Date EUT received:	June 09, 2017
Test Date(s):	June 10 to July 05, 2017
Equipment Category :	DSS
Antenna Gain:	Bluetooth: 3dBi GPS: 18dBi
Antenna Type:	BT: Chip antenna GPS: Patch antenna
Type of Modulation:	Bluetooth: GFSK, π /4DQPSK, 8DPSK GPS:BPSK
RF Operating Frequency (ies):	Bluetooth: 2402-2480 MHz GPS: 1575.42 MHz
Max. Output Power:	4.519dBm
Number of Channels:	Bluetooth: 79CH GPS:1CH
Port:	The radio antenna Connector, GPS antenna Connector, Power supply and sound signal Connector (Note: USB Connector, HDMI data Connector, 3g/CAM Connector and TPMS/astern rear view are not used)
Input Power:	DC Input:12V 10A USB Output:5V 500mA

 Test Report
 17070432-FCC-R

 Page
 7 of 63

Trade Name :

FCC ID:

Y9TN1196

Test Report	17070432-FCC-R
Page	8 of 63

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247(a)(1)	Channel Separation	Compliance
§15.247(a)(1)	20 dB Bandwidth	Compliance
§15.247(b)(1)	Peak Output Power	Compliance
§15.247(a)(1)(iii)	Number of Hopping Channel	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(d)	Band Edge& Restricted Band	Compliance
§15.207(a)	AC Line Conducted Emissions	N/A
§15.205, §15.209, §15.247(d)	Radiated Emissions& Restricted Band	Compliance

Measurement Uncertainty

Emissions			
Test Item	Description	Uncertainty	
Band Edge& Restricted Band and Radiated Emissions& Restricted Band	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB	
-	-	-	

 Test Report
 17070432-FCC-R

 Page
 9 of 63

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 2 antennas:

A permanently attached Chip antenna for Bluetooth, the gain is 3dBi for Bluetooth.

A permanently attached Patch antenna for GPS, the gain is 18dBi for GPS.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

Test Report	17070432-FCC-R
Page	10 of 63

6.2 Channel Separation

Temperature	25 °C
Relative Humidity	55%
Atmospheric Pressure	1017mbar
Test date :	June 23, 2017
Tested By :	Loren Luo

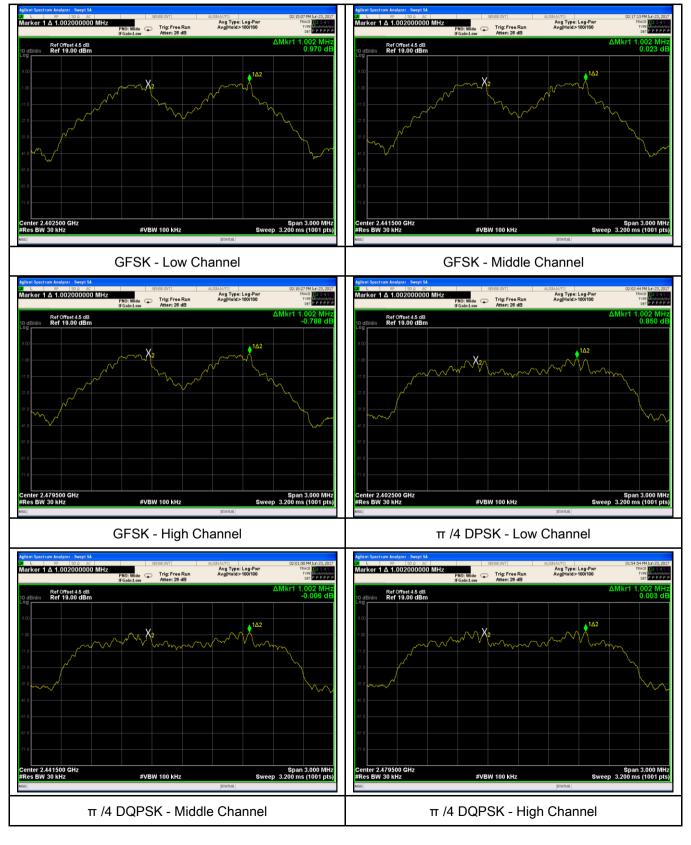
Spec	Item	Requirement	Applicable			
		Channel Separation < 20dB BW and 20dB BW <				
S 15 047(a)(1)	a)	25KHz; Channel Separation Limit=25KHz	V			
§ 15.247(a)(1)		Chanel Separation < 20dB BW and 20dB BW >				
		25kHz; Channel Separation Limit=2/3 20dB BW				
Test Setup		Spectrum Analyzer EUT				
	The te	est follows FCC Public Notice DA 00-705 Measurement	Guidelines.			
	Use the following spectrum analyzer settings:					
	-	The EUT must have its hopping function enabled				
	- Span = wide enough to capture the peaks of two adjacent					
	channels					
	 Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span 					
Test Procedure	 Video (or Average) Bandwidth (VBW) ≥ RBW 					
	- Sweep = auto					
	- Detector function = peak					
	- Trace = max hold					
	- Allow the trace to stabilize. Use the marker-delta function to					
	determine the separation between the peaks of the adjacent					
		channels. The limit is specified in one of the subparagra	aphs of this			
		Section. Submit this plot.				

 Test Report
 17070432-FCC-R

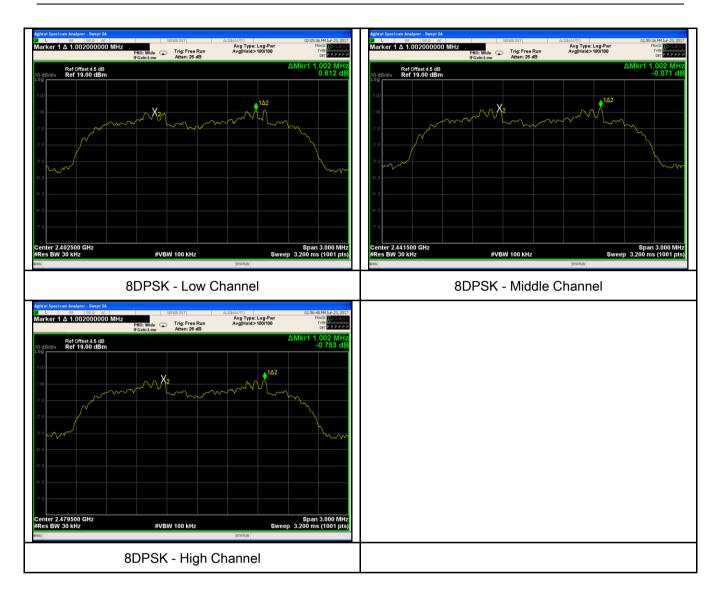
 Page
 11 of 63

Rema	rk				
Resu	lt	Pass	Fail		
Test Data	✓ Yes		□ _{N/A}		
Test Plot	✓Yes	s (See below)	□ _{N/A}		

Channel Separation measurement result


Type/ Modulation	СН	CH Frequency (MHz)	CH Separation (MHz)	Limit (MHz)	Result
	Low Channel	2402	1.002	0.630	Pass
	Adjacency Channel	2403	1.002	0.030	F 855
CH Separation	Mid Channel	2440	1.002	0.630	Pass
GFSK	Adjacency Channel	2441	1.002	0.030	F 855
	High Channel	2480	1.002	0.637	Deee
	Adjacency Channel	2479	1.002	0.037	Pass
	Low Channel	2402	1.002	0.874	Pass
	Adjacency Channel	2403	1.002	0.874	Pass
CH Separation	Mid Channel	2440	4 000	0.867	Deee
π /4 DQPSK	Adjacency Channel	2441	1.002		Pass
	High Channel	2480	4.000		
	Adjacency Channel	2479	1.002	0.877	Pass
	Low Channel	2402	4 000	0.000	Dese
	Adjacency Channel	2403	1.002	0.866	Pass
CH Separation	Mid Channel	2440	1.000	0.004	Deee
8DPSK	Adjacency Channel	2441	1.002	0.861	Pass
	High Channel	2480	1.000	0.004	Dess
	Adjacency Channel	2479	1.002	0.861	Pass

Test Report	17070432-FCC-R
Page	12 of 63


Test Plots

Channel Separation measurement result

Test Report	17070432-FCC-R
Page	13 of 63

Test Report	17070432-FCC-R
Page	14 of 63

6.3 20dB Bandwidth

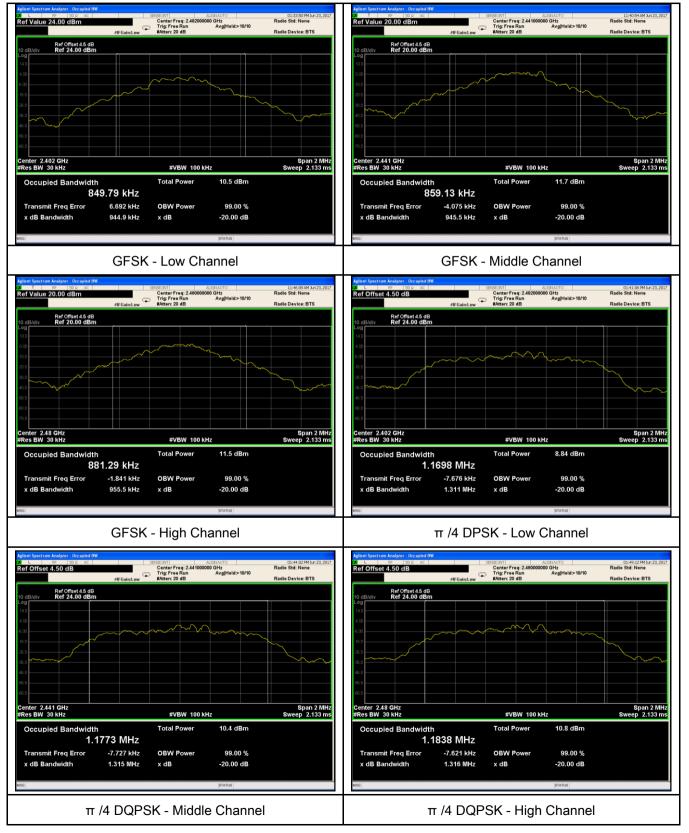
Temperature	25 °C
Relative Humidity	55%
Atmospheric Pressure	1017mbar
Test date :	June 23, 2017
Tested By :	Loren Luo

Spec	Item	Requirement	Applicable		
§15.247(a) (1)	a)	v			
Test Setup		Spectrum Analyzer EUT			
Test Procedure		st follows FCC Public Notice DA 00-705 Measurement Gu <u>e following spectrum analyzer settings:</u> Span = approximately 2 to 3 times the 20 dB bandwidth, a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold. The EUT should be transmitting at its maximum data rate trace to stabilize. Use the marker-to-peak function to set for to the peak of the emission. Use the marker-delta function measure 20 dB down one side of the emission. Reset the	e. Allow the the marker n to		
	delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the referen				

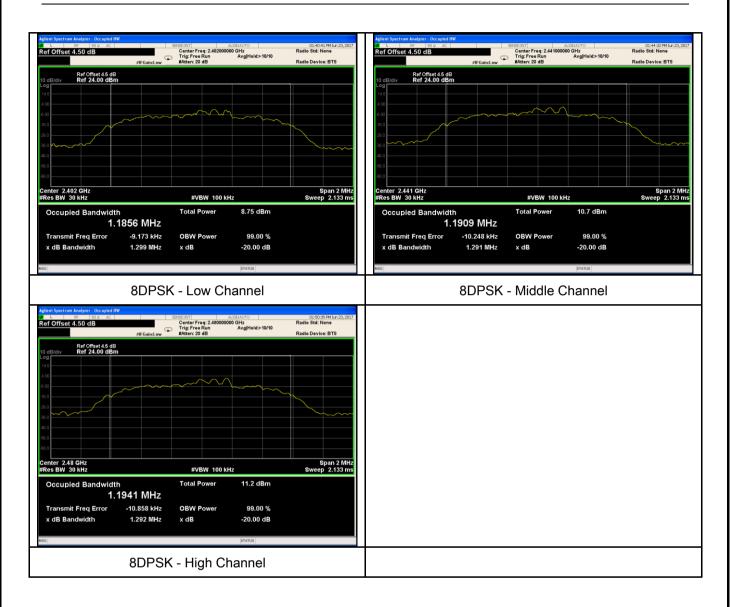
1				
SIF	MIC	Test Report	17070432-FCC-R	
	as Group Company	Page	15 of 63	
	bandwidth of operation (e. each variatio	the emission. g., data rate, r	delta reading at this point is the 20 dB If this value varies with different modes of modulation format, etc.), repeat this test for specified in one of the subparagraphs of ot(s).	
Remark				
Result	Pass	Fail		
Test Data Yes				

Measurement result

Test Plot Yes (See below)


Modulation	СН	CH Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	Low	2402	0.9449	0.8498
GFSK	Mid	2441	0.9455	0.8591
	High	2480	0.9555	0.8813
π /4 DQPSK	Low	2402	1.311	1.1698
	Mid	2441	1.301	1.1692
	High	2480	1.316	1.1838
	Low	2402	1.299	1.1856
8-DPSK	Mid	2441	1.291	1.1909
	High	2480	1.292	1.1941

Test Report	17070432-FCC-R
Page	16 of 63


Test Plots

20dB Bandwidth measurement result

Test Report	17070432-FCC-R
Page	17 of 63

Test Report	17070432-FCC-R
Page	18 of 63

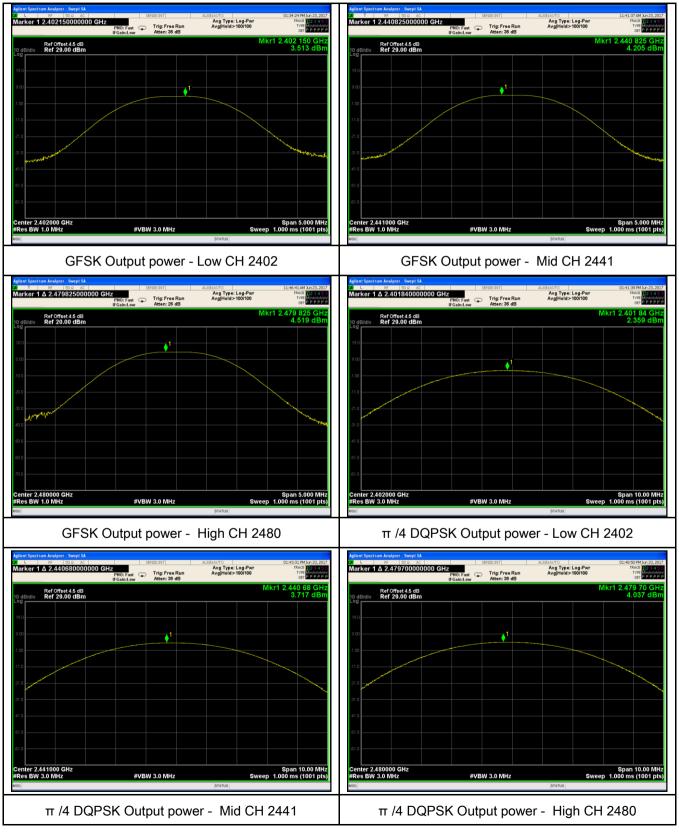
6.4 Peak Output Power

Temperature	25 °C
Relative Humidity	55%
Atmospheric Pressure	1017mbar
Test date :	June 23, 2017
Tested By :	Loren Luo

Spec	Item	Requirement	Applicable		
	a)	FHSS in 2400-2483.5MHz with \geq 75 channels: \leq 1 Watt	K		
	b)	FHSS in 5725-5850MHz: ≤ 1 Watt			
§15.247(b)	c)	For all other FHSS in the 2400-2483.5MHz band: \leq 0.125 Watt.	R		
(3)	d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt			
	e)	FHSS in 902-928MHz with \geq 25 & <50 channels: \leq 0.25 Watt			
	f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt			
Test Setup	Spectrum Analyzer EUT				
Test Procedure		st follows FCC Public Notice DA 00-705 Measurement Gu le following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, center hopping channel RBW > the 20 dB bandwidth of the emission being measure VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.	ered on a		

		roup Company	Test Report Page	17070432-FCC-R 19 of 63
		emission. above reg specified	The indicated legarding external a in one of the sub	nction to set the marker to the peak of the vel is the peak output power (see the note attenuation and cable loss). The limit is paragraphs of this Section. Submit this ower meter may be used instead of a
Remark				
Result		Pass	Fail	
Test Data	▼ Y	′es	N/A	
Test Plot	Υ	es (See below)	□ _{N/A}	

Peak Output Power measurement result


Туре	Modulation	СН	Frequenc y (MHz)	Conducted Power (dBm)	Limit (mW)	Result
		Low	2402	3.513	1000	Pass
	GFSK	Mid	2441	4.205	1000	Pass
		High	2480	4.519	1000	Pass
Output		Low	2402	2.359	125	Pass
Output	π /4 DQPSK	Mid	2441	3.717	125	Pass
power		High	2480	4.037	125	Pass
		Low	2402	2.603	125	Pass
	8-DPSK	Mid	2441	3.833	125	Pass
		High	2480	4.182	125	Pass

Test Report	17070432-FCC-R
Page	20 of 63

Test Plots

Output Power measurement result

Test Report	17070432-FCC-R
Page	21 of 63

rker 1 Δ 2.401840000000 GHz	NO: Fast Atten: 36 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>100/100	01:42:08 PMJun 23, 2017 TRACE 2 3 4 5 6 TYPE MUSEUM	Agilent Spectrum Analyzer - Swept SA Un L RF 50 p. AC Marker 1 & 2,440770000000 GHz PR0 IF6ai	: Fast Trig: Free Run hin:Low Atten: 36 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>100/100	01:42:52 PM Jun 23, 2 TRACE 2 3 4 TYPE MUMOR DET P P P P
Ref Offset 4.5 dB B/div Ref 29.00 dBm		MI	kr1 2.401 84 GHz 2.603 dBm	Ref Offset 4.5 dB 10 dB/div Ref 29.00 dBm			Mkr1 2.440 77 GH 3.833 dB
				9.00	1		
				-1.00			
				-21.0			
				-41.0			
				-51.0			
nter 2.402000 GHz es BW 3.0 MHz	#VBW 3.0 MHz	Swaan	Span 10.00 MHz 1.000 ms (1001 pts)	Center 2.441000 GHz #Res BW 3.0 MHz	#VB₩ 3.0 MHz		Span 10.00 M weep 1.000 ms (1001 p
		STATUS				STATUS	
				mona			
	utput power -	Low CH 240)2	8DPSK Ou	utput power -	Mid CH 2	2441
nt Spectrum Analyzer - Swept SA L RF 50.2 AC rker 1 Δ 2.479860000000 GHz IFi	NOF Fast Trig: Free Run Atten: 36 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>100/100	01:51:02 PMJun 23, 2017 TRACE 2 2 3 4 5 0 TYPE MY DET P P P P P P	8DPSK Ou	utput power -	• Mid CH 2	2441
nt Spectrum Analyzer - Swept SA ■ 55 50 46	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>100/100	01-51-02 EM km 23, 2017	8DPSK Ou	utput power -	Mid CH 2	2441
nt Spectrum Analyzer - Swept SA L RF 50.2 AC rker 1 Δ 2.479860000000 GHz IFi	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>100/100	01:51:02 PMJun 23, 2017 TRACE 2 2 3 4 5 0 TYPE MY DET P P P P P P	8DPSK Ou	utput power -	• Mid CH 2	2441
nt Spectrum Analyzer - Swept SA L RF 50.2 AC rker 1 Δ 2.479860000000 GHz IFi	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>100/100	01:51:02 PMJun 23, 2017 TRACE 2 2 3 4 5 0 TYPE MY DET P P P P P P	8DPSK Ou	utput power -	• Mid CH 2	2441
nt Spectrum Analyzer - Swept SA L RF 50.2 AC rker 1 Δ 2.479860000000 GHz IFi	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>100/100	01:51:02 PMJun 23, 2017 TRACE 2 2 3 4 5 0 TYPE MY DET P P P P P P	8DPSK Ou	utput power -	• Mid CH 2	2441
nt Spectrum Analyzer - Swept SA L RF 50.2 AC rker 1 Δ 2.479860000000 GHz IFi	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>100/100	01:51:02 PMJun 23, 2017 TRACE 2 2 3 4 5 0 TYPE MY DET P P P P P P	8DPSK Ou	utput power -	• Mid CH 2	2441
nt Spectrum Analyzer - Swept SA L RF 50.2 AC rker 1 Δ 2.479860000000 GHz IFi	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>100/100	01:51:02 PMJun 23, 2017 TRACE 2 2 3 4 5 0 TYPE MY DET P P P P P P	8DPSK Ou	utput power -	• Mid CH 2	2441
nt Spectrum Analyzer - Swept SA L RF 50 2 AC rker 1 Δ 2.479860000000 GHz IFi	SENSE:INT	AUSTANTO	01510744/hr23.007 Track 1920487 1970 1990 1990 1970 1990 1990 1990 1970 1970 1990 1990 1970	8DPSK Ou	utput power -	• Mid CH 2	2441
nt Spectrum Analyzer - Swept SA L RF 50 2 AC rker 1 Δ 2.479860000000 GHz IFi	SENSE:INT	AUSTANTO	01:51:02 PMJun 23, 2017 TRACE 2 2 3 4 5 0 TYPE MY DET P P P P P P	8DPSK Ou	utput power -	• Mid CH 2	2441

Test Report	17070432-FCC-R
Page	22 of 63

6.5 Number of Hopping Channel

Temperature	25 °C
Relative Humidity	55%
Atmospheric Pressure	1017mbar
Test date :	June 23, 2017
Tested By :	Loren Luo

Spec	Item	Requirement	Applicable		
§15.247(a) (1)(iii)	a)	FHSS in 2400-2483.5MHz \geq 15 channels	2		
Test Setup		Spectrum Analyzer EUT			
	The tes	st follows FCC Public Notice DA 00-705 Measurement Gu	idelines.		
	Use the	e following spectrum analyzer settings:			
	The EL	JT must have its hopping function enabled.			
	- Span = the frequency band of operation				
	 RBW ≥ 1% of the span 				
Tast	-	VBW ≥ RBW			
Test	-	- Sweep = auto			
Procedure	-	- Detector function = peak			
	- Trace = max hold				
	- Allow trace to fully stabilize.				
	- It may prove necessary to break the span up to sections, in order to				
		clearly show all of the hopping frequencies. The limit is sp	ecified in		
		one of the subparagraphs of this Section. Submit this plot	(s).		
Remark					
Result	Pas	s Fail			
Test Data	Yes	N/A			
Test Plot	Yes (See	below)			

 Test Report
 17070432-FCC-R

 Page
 23 of 63

Number of Hopping Channel measurement result

Туре	Modulation	Frequency Range	Number of Hopping Channel	Limit
Number of	GFSK	2400-2483.5	79	15
Number of	π /4 DQPSK	2400-2483.5	79	15
Hopping Channel	8-DPSK	2400-2483.5	79	15

Test Plots

Number of Hopping Channels measurement result

Agenet Spectrum Andyzer Swept SA C22111371 Un 20.000 Marker 1 & 78.1570000000 MHz 9000.581 AU2701070 C22111371 Un 20.000 Marker 1 & 78.1570000000 MHz Trig: Free Run IFGaint.cov Ave Trig: 109-Pov Argiptiols-100100 Trig: Free Run Argiptiols-100100 C2111371 Un 20.000 100 Ref Offset 4.5 dB AMkr 178.167 OU0000 MHz 1.376 dB 100 Auge Argin Andron	Applied Synchrone Analyzer Sengel SA Sengel SA Sengel SA Marker 1 Δ 78.1677000000 MHz PR00 [Past] Aug Type: Leg-Perr Pr00 [Past] Pr00 [Past]
Start 2.40000 GHz Stop 2.48350 GHz #Res BW 100 kHz #VBW 300 kHz #Sweep 10.00 ms (1001 pts) MSO [STATUS]	Start 2.40000 GHz Stop 2.48350 GHz #Res BW 100 KHz #VBW 300 kHz #Sweep 10.00 ms (1001 pts) #ISG Startus
GFSK	π /4DQPSK
Agend System Address System Address System Control of the system <thcontrol of="" system<="" th="" the=""> <thcontrol of="" syst<="" th="" the=""><th></th></thcontrol></thcontrol>	
8DPSK	

Test Report	17070432-FCC-R
Page	24 of 63

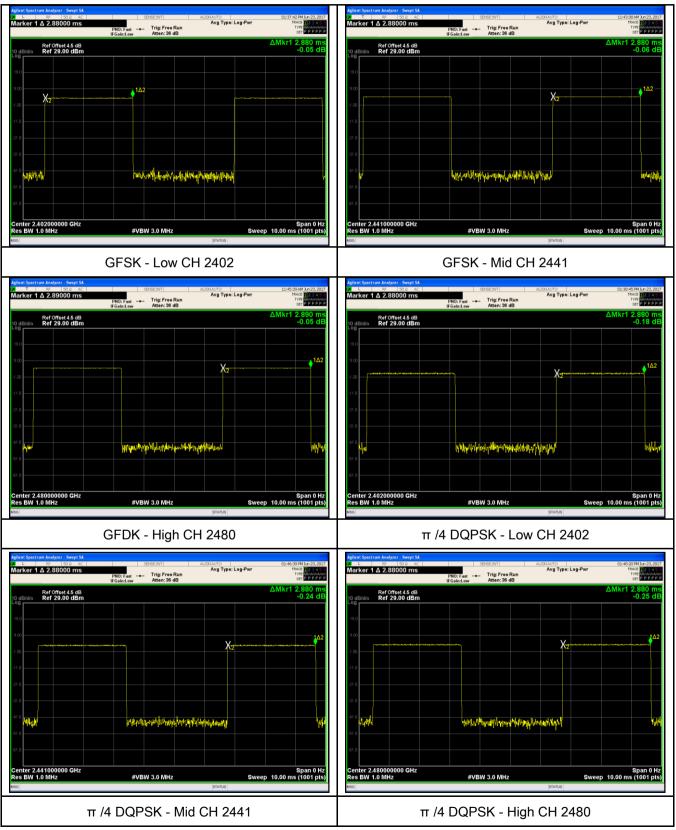
6.6 Time of Occupancy (Dwell Time)

Temperature	25 °C
Relative Humidity	55%
Atmospheric Pressure	1017mbar
Test date :	June 23, 2017
Tested By :	Loren Luo

Spec	Item	Requirement	Applicable		
§15.247(a) (1)(iii)	a)	Dwell Time < 0.4s	2		
Test Setup		Spectrum Analyzer EUT			
		The test follows FCC Public Notice DA 00-705 Measurement Guidelines.			
	Use th	e following spectrum analyzer			
	-	Span = zero span, centered on a hopping channel			
	-	- RBW = 1 MHz			
Test	- VBW ≥ RBW				
Procedure	- Sweep = as necessary to capture the entire dwell time per hopping				
	channel				
	 Detector function = peak Trace = max hold 				
	- use the marker-delta function to determine the dwell time				
Remark					
Result	Pas	s Fail			
Test Data	Yes	□ _{N/A}			
Test Plot	∕es (See	below)			

Test Report	17070432-FCC-R
Page	25 of 63

Dwell Time measurement result


Туре	Modulation	СН	Pulse Width (ms)	Dwell Time (ms)	Limit (ms)	Result
		Low	2.880	307.200	400	Pass
	GFSK	Mid	2.880	307.200	400	Pass
		High	2.890	308.267	400	Pass
		Low	2.880	307.200	400	Pass
Dwell Time	π /4 DQPSK 8-DPSK	Mid	2.880	307.200	400	Pass
		High	2.880	307.200	400	Pass
		Low	2.890	308.267	400	Pass
		Mid	2.890	308.267	400	Pass
		High	2.890	308.267	400	Pass
Note: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6						

Test Report	17070432-FCC-R
Page	26 of 63

Test Plots

Dwell Time measurement result

Test Report	17070432-FCC-R
Page	27 of 63

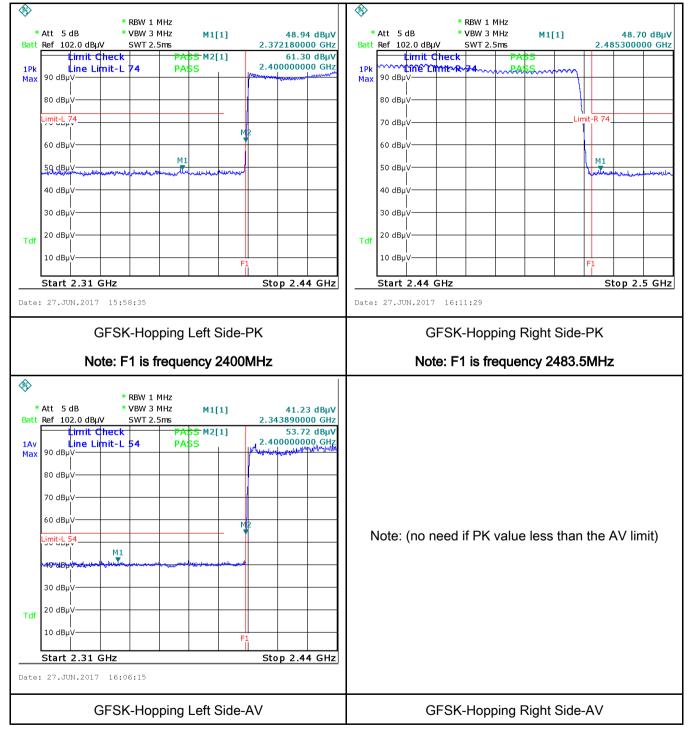
Test Report	17070432-FCC-R
Page	28 of 63

6.7 Band Edge & Restricted Band

Temperature	25 °C
Relative Humidity	57%
Atmospheric Pressure	1023mbar
Test date :	June 27, 2017
Tested By :	Loren Luo

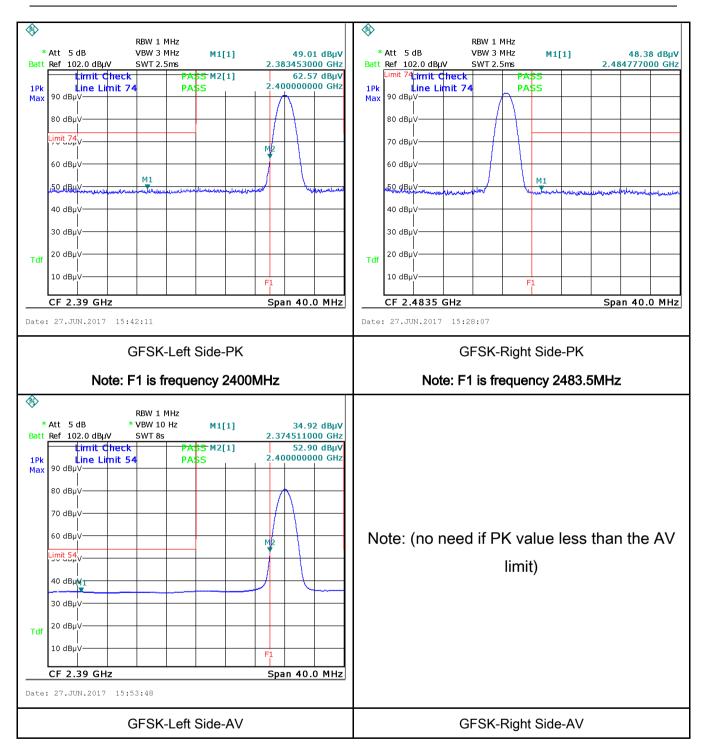
Spec	Item	Requirement	Applicable		
§15.247(a) (1)(iii)	a)	 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. 			
Test Setup	Ant. Tower LUT& Support Units 0.8/1.5m Ground Plane Test Receiver Construction				
Test Procedure	 The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Radiated Method Only 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, 				

3					
SİT	MIC	Test Report	17070432-FCC-R		
A Bureau Veritas G	Group Company	Page	29 of 63		
	and make sure	the instrument is	s operated in its linear range		
	and make sure the instrument is operated in its linear range.				
		 Sirst, set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, check the emission of EUT, if pass then set Spectrum Analyzer as below: a. The resolution bandwidth and video bandwidth of test receiver/spectrum 			
			Peak detection at frequency below 1GHz.		
	-	-	test receiver/spectrum analyzer is 1MHz and		
			Peak detection for Peak measurement at		
	frequency abov				
			est receiver/spectrum analyzer is 1MHz and the		
			eak detection for Average Measurement as		
		ncy above 1GH	-		
		•	- de appearing on spectral display and set it as a		
			with marking the highest point and edge		
	frequency.	0			
		e procedures un	til all measured frequencies were complete.		
			· · ·		
Remark					
Result	Pass	Fail			
Test Data	res 🔽	N/A			
Test Plot	/es (See below)	N/A			

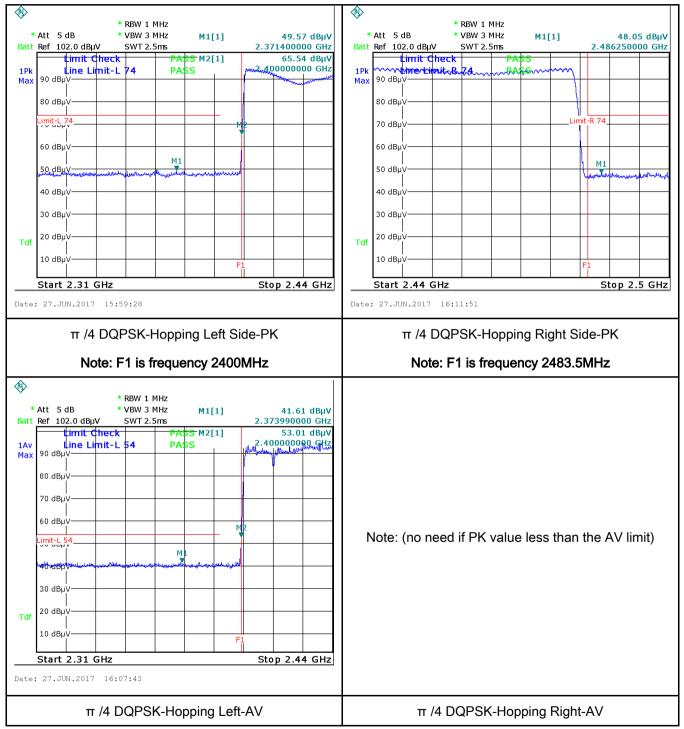


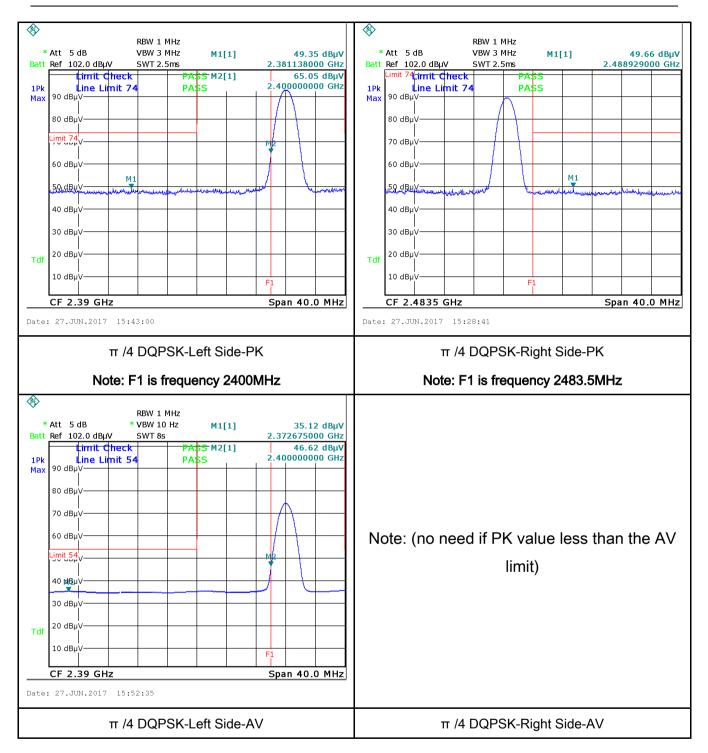
 Test Report
 17070432-FCC-R

 Page
 30 of 63

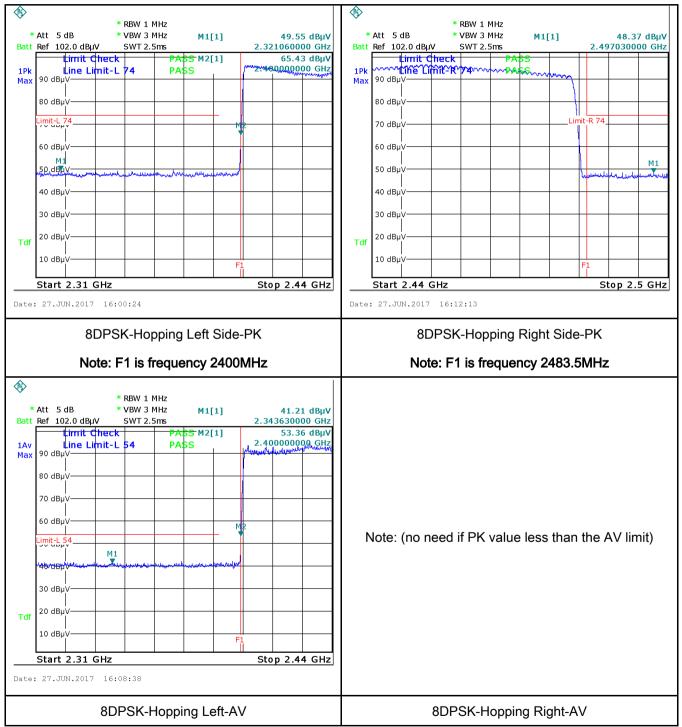

Test Plots

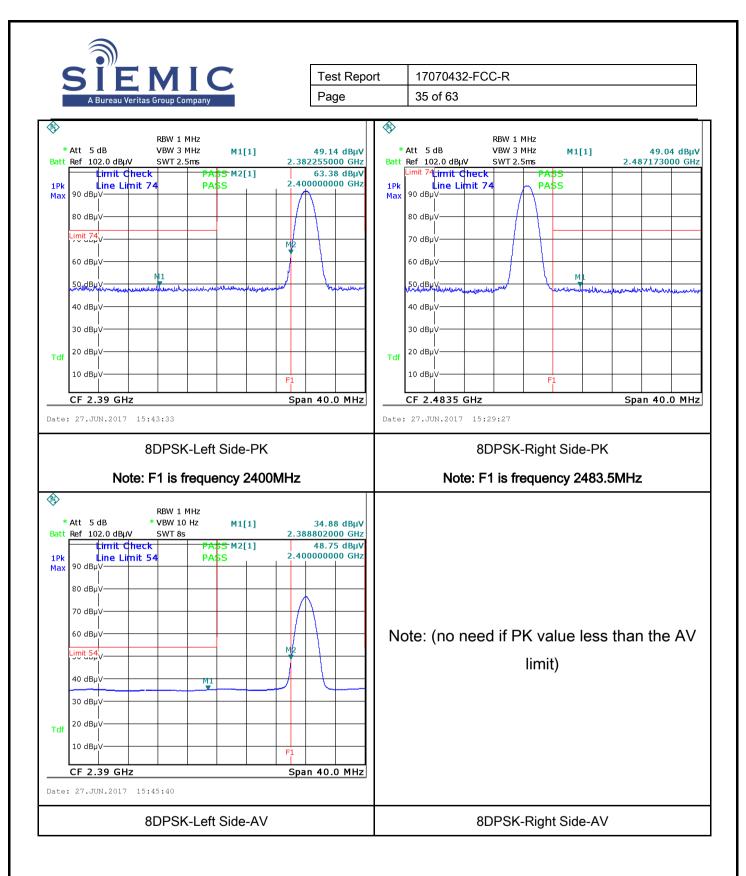
GFSK Mode:


Test Report	17070432-FCC-R
Page	31 of 63


Test Report	17070432-FCC-R	
Page	32 of 63	

π /4 DQPSK Mode:


Test Report	17070432-FCC-R
Page	33 of 63



Test Report	17070432-FCC-R	
Page	34 of 63	

8-DPSK Mode:

 Test Report
 17070432-FCC-R

 Page
 36 of 63

6.8 AC Power Line Conducted Emissions

Temperature	23 °C
Relative Humidity	55%
Atmospheric Pressure	1022mbar
Test date :	
Tested By :	

Spec	Item	Requirement			Applicable
47CFR§15. 207, RSS210 (A8.1)	a)	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu]H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.Frequency rangesLimit (dBµV)(MHz)QPAverage0.15 ~ 0.566 - 5656 - 460.5 ~ 55646			
Test Setup	5 ~ 30 60 50 Vertical Ground Reference Plane UT Horizontal Ground Reference Plane Horizontal Ground Reference Plane Horizontal Ground Reference Plane Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.				
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss 				

3			
GİT	MIC	Test Report	17070432-FCC-R
A Bureau Verita	as Group Company	Page	37 of 63
	coaxial cable.		
			oowered separately from another main supply. d to warm up to its normal operating condition.
	6. A scan was made on	the NEUTRAL li	ne (for AC mains) or Earth line (for DC power)
	-		ng an EMI test receiver. he EMI test receiver was then tuned to the
			ary measurements made with a receiver bandwidth
	setting of 10 kHz.		
	8. Step 7 was then repe	eated for the LIVE	E line (for AC mains) or DC line (for DC power).
Remark			
Result	Pass D F	ail	✓ N/A
Test Data	res	N/A N/A	

6.9 Radiated Emissions & Restricted Band

Temperature	25 °C
Relative Humidity	57%
Atmospheric Pressure	1014mbar
Test date :	June 20, 2017
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable	
47CFR§15.		Except higher limit as specified else emissions from the low-power radio exceed the field strength levels spe the level of any unwanted emission the fundamental emission. The tight edges		
205,		Frequency range (MHz)	Field Strength (µV/m)	_
§15.209,	a)	0.009~0.490	2400/F(KHz)	•
§15.247(d)		0.490~1.705	24000/F(KHz)	
3.0.2(0)		1.705~30.0	30	
		30 – 88	100	
		88 - 216	150	
		216 960	200	
		Above 960		
Test Setup			3 meter	

Test Report	17070432-FCC-R
Page	39 of 63

	Ant. Tower L-4m Variable 0.8/1.5m Ground Plane Test Receiver
	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was seried out at the selected formula provide a feature formula
Procedure	 The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. 3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is
	 The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak measurement at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz with Peak detection for Average Measurement as below at frequency above 1GHz. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.
Remark	
Result	Pass Fail
Test Data	Yes N/A

Test Report	17070432-FCC-R
Page	40 of 63

Test Plot

Yes (See below)

Test Result:

Test Mode:

Transmitting Mode

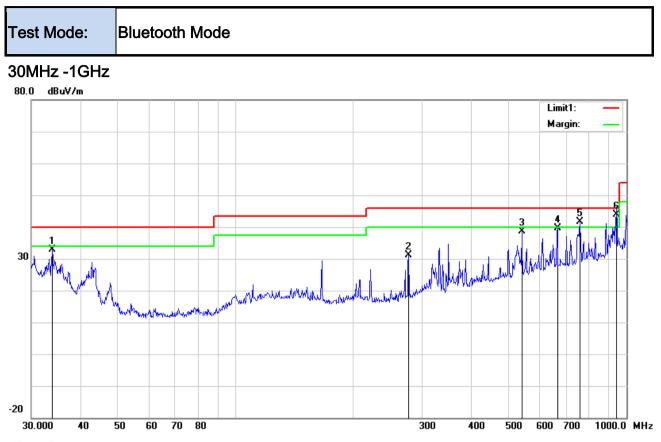
Frequency range: 9KHz - 30MHz

Freq.	Detection	Factor	Reading	Result	Limit@3m	Margin
(MHz)	value	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
						>20
						>20

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

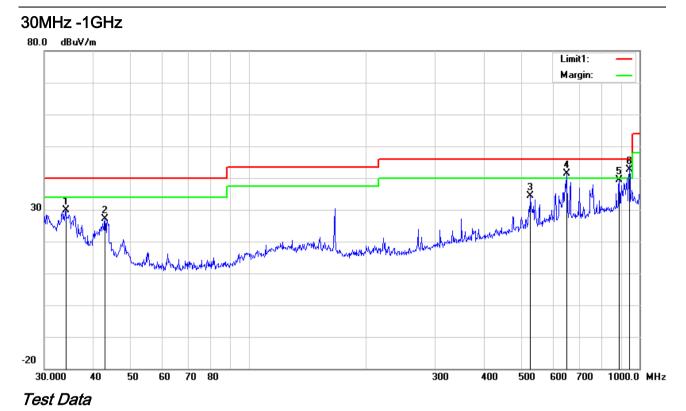

N/A

Limit line = specific limits(dBuv) + distance extrapolation factor.

 Test Report
 17070432-FCC-R

 Page
 41 of 63

Test Data


Horizontal Polarity Plot @3m

No.	P/L	Frequency	Reading	Detect	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr
	P/L			or								ee
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	Н	33.9174	35.96	peak	18.38	22.26	0.73	32.81	40.00	-7.19	100	294
2	Н	277.0935	39.19	peak	12.59	22.29	1.75	31.24	46.00	-14.76	100	156
3	Н	539.4775	39.67	peak	18.25	21.72	2.47	38.67	46.00	-7.33	100	128
4	Н	665.8035	38.63	QP	19.82	21.44	2.60	39.61	46.00	-6.39	100	119
5	Н	760.7036	38.96	QP	20.93	21.23	2.89	41.55	46.00	-4.45	100	137
6	Н	942.1305	38.94	QP	22.71	20.80	3.15	44.00	46.00	-2.00	100	151

 Test Report
 17070432-FCC-R

 Page
 42 of 63

Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Detect	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr
				or								ee
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	V	34.0365	33.16	peak	18.29	22.26	0.73	29.92	40.00	-10.08	100	53
2	V	42.8998	36.68	peak	11.99	22.29	0.77	27.15	40.00	-12.85	200	217
3	V	526.3967	35.52	peak	18.07	21.75	2.45	34.29	46.00	-11.71	100	242
4	V	651.9417	40.65	QP	19.67	21.47	2.63	41.48	46.00	-4.52	100	145
5	V	887.6099	34.99	peak	22.36	20.91	3.02	39.46	46.00	-6.54	100	299
6	V	942.1305	37.59	QP	22.71	20.80	3.15	42.65	46.00	-3.35	100	154

 Test Report
 17070432-FCC-R

 Page
 43 of 63

Above 1GHz

Test Mode:

Transmitting Mode

Low Channel: GFSK Mode (Worst Case) (2402 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4804	39.68	AV	V	33.67	6.86	32.66	47.55	54	-6.45
4804	38.74	AV	Н	33.67	6.86	32.66	46.61	54	-7.39
4804	48.56	PK	V	33.67	6.86	32.66	56.43	74	-17.57
4804	46.23	PK	Н	33.67	6.86	32.66	54.1	74	-19.9
17803	24.59	AV	V	45.03	11.21	32.38	48.45	54	-5.55
17803	23.17	AV	н	45.03	11.21	32.38	47.03	54	-6.97
17803	41.67	PK	V	45.03	11.21	32.38	65.53	74	-8.47
17803	39.52	PK	Н	45.03	11.21	32.38	63.38	74	-10.62

Middle Channel: GFSK Mode (Worst Case) (2441 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4882	38.79	AV	V	33.71	6.95	32.74	46.71	54	-7.29
4882	37.61	AV	Н	33.71	6.95	32.74	45.53	54	-8.47
4882	50.23	PK	V	33.71	6.95	32.74	58.15	74	-15.85
4882	48.91	PK	Н	33.71	6.95	32.74	56.83	74	-17.17
17819	25.16	AV	V	45.15	11.18	32.41	49.08	54	-4.92
17819	23.58	AV	Н	45.15	11.18	32.41	47.5	54	-6.5
17819	41.59	PK	V	45.15	11.18	32.41	65.51	74	-8.49
17819	40.27	PK	Н	45.15	11.18	32.41	64.19	74	-9.81

Test Report	17070432-FCC-R
Page	44 of 63

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4960	39.44	AV	V	33.9	6.76	32.74	47.36	54	-6.64
4960	36.29	AV	Н	33.9	6.76	32.74	44.21	54	-9.79
4960	49.61	PK	V	33.9	6.76	32.74	57.53	74	-16.47
4960	45.27	PK	Н	33.9	6.76	32.74	53.19	74	-20.81
17824	24.15	AV	V	45.22	11.35	32.38	48.34	54	-5.66
17824	23.17	AV	Н	45.22	11.35	32.38	47.36	54	-6.64
17824	42.51	PK	V	45.22	11.35	32.38	66.7	74	-7.3
17824	40.29	PK	Н	45.22	11.35	32.38	64.48	74	-9.52

High Channel: GFSK Mode (Worst Case) (2480 MHz)

Note:

1, The testing has been conformed to 10*2480MHz=24,800MHz

2, All other emissions more than 30 dB below the limit 3, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

 Test Report
 17070432-FCC-R

 Page
 45 of 63

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/16/2016	09/15/2017	•
Line Impedance	LI-125A	191106	09/24/2016	09/23/2017	V
Line Impedance	LI-125A	191107	09/24/2016	09/23/2017	K
ISN	ISN T800	34373	09/24/2016	09/23/2017	
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/23/2016	09/22/2017	N
Transient Limiter	LIT-153	531118	08/31/2016	08/30/2017	
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/16/2016	09/15/2017	K
Power Splitter	1#	1#	08/31/2016	08/30/2017	K
DC Power Supply	E3640A	MY40004013	09/16/2016	09/15/2017	•
Radiated Emissions					
EMI test receiver	ESL6	100262	09/16/2016	09/15/2017	•
Positioning Controller	UC3000	MF780208282	11/18/2016	11/17/2017	•
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	08/31/2016	08/30/2017	L
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/23/2017	03/22/2018	R
Active Antenna (9kHz-30MHz)	AL-130	121031	10/13/2016	10/12/2017	K
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/20/2016	09/19/2017	K
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/23/2016	09/22/2017	K
Universal Radio Communication Tester	CMU200	121393	09/24/2016	09/23/2017	V

 Test Report
 17070432-FCC-R

 Page
 46 of 63

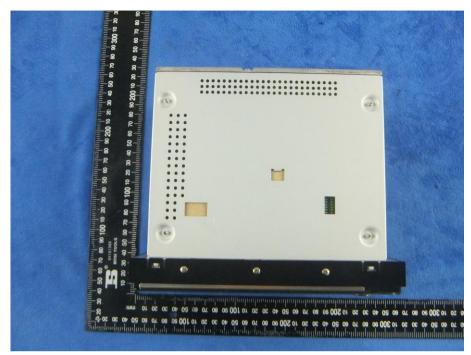
Annex B. EUT And Test Setup Photographs

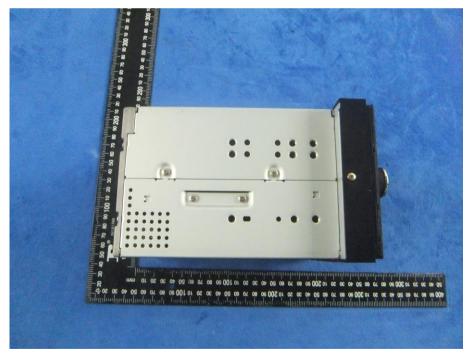
Annex B.i. Photograph: EUT External Photo

Package Front View

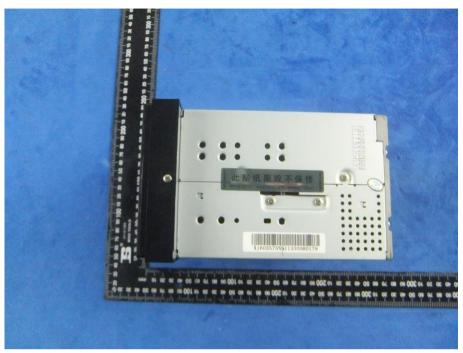
EUT - Front View

Test Report	17070432-FCC-R
Page	47 of 63


EUT - Rear View


EUT - Top View

Test Report	17070432-FCC-R
Page	48 of 63


EUT - Bottom View

EUT - Left View

Test Report	17070432-FCC-R
Page	49 of 63

EUT - Left View

Test Report	17070432-FCC-R
Page	50 of 63

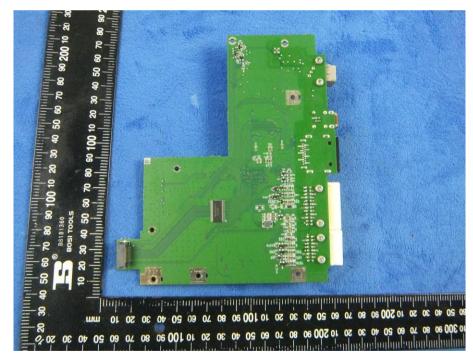
Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View 1

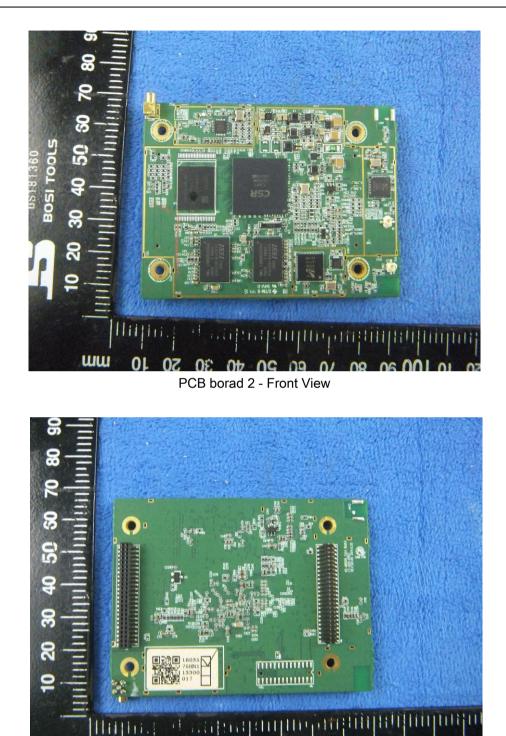


Cover Off - Top View 2

Test Report	17070432-FCC-R
Page	51 of 63


Mainborad - Rear View

Test Report	17070432-FCC-R
Page	52 of 63

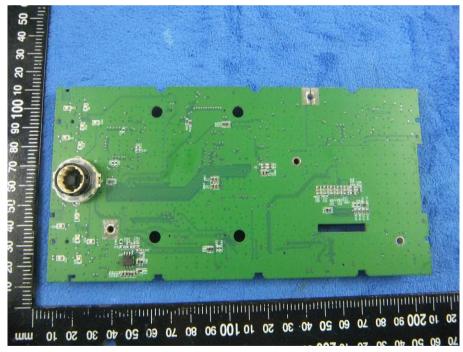

PCB borad 1 - Front View

PCB borad 1 - Rear View

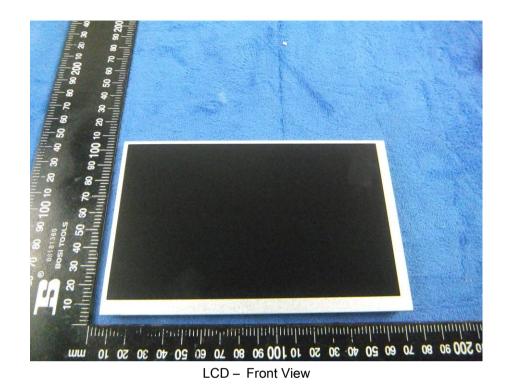
Test Report	17070432-FCC-R
Page	53 of 63

 $\mathbf{0}\mathbf{Z}$

n

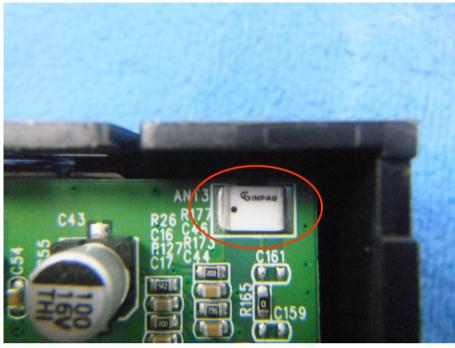

PCB borad 2 - Rear View

Test Report	17070432-FCC-R
Page	54 of 63


PCB borad 3 - Front View

PCB borad 3 - Rear View

Test Report	17070432-FCC-R
Page	55 of 63

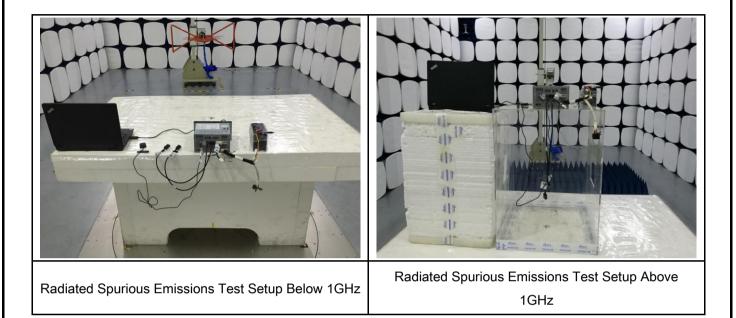


THE PARTY NEEDED 10 20 00 80 20 60 20 40 30 20 10100 80 20 60 20 40 30 20 10 mm 40 30 50 10 500 80 80 20 e0 20 40 30 50 10 100 80 20 e0 20 40 30

LCD - Rear View

Test Report	17070432-FCC-R
Page	56 of 63

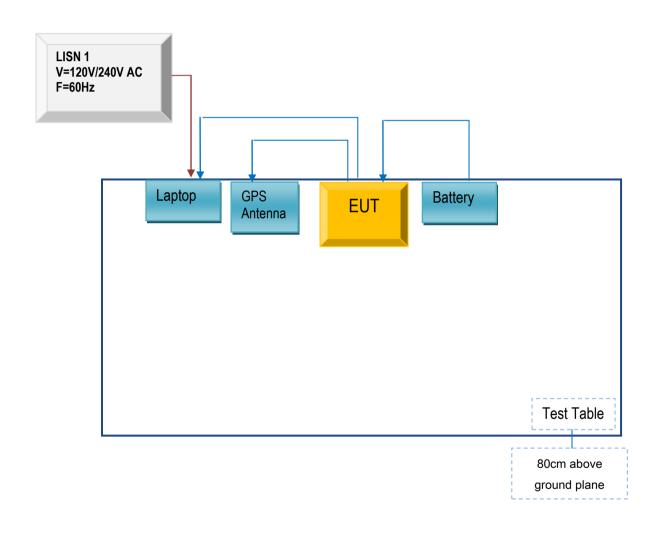
BT - Antenna View



GPS - Antenna View

Test Report	17070432-FCC-R
Page	57 of 63

Annex B.iii. Photograph: Test Setup Photo

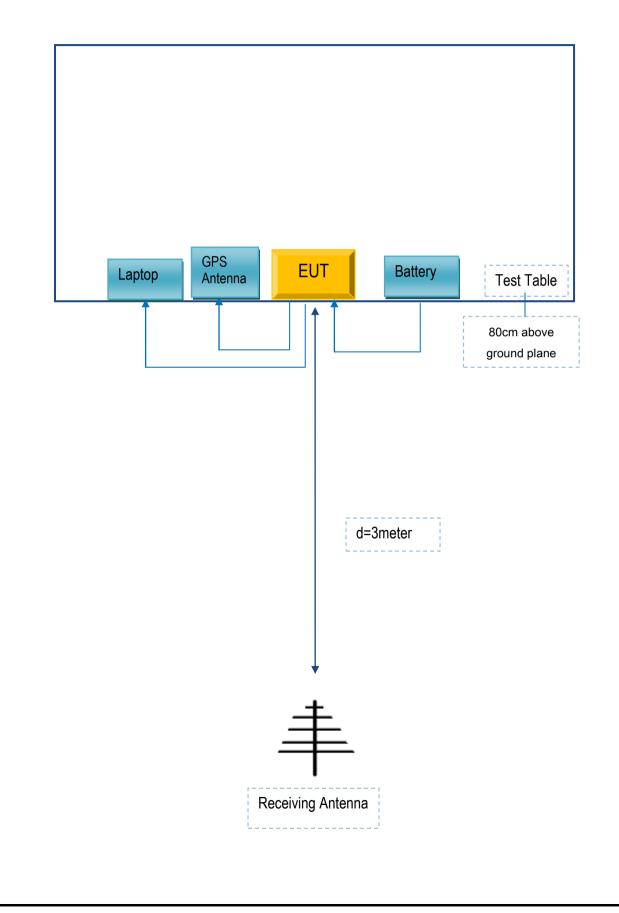

 Test Report
 17070432-FCC-R

 Page
 58 of 63

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

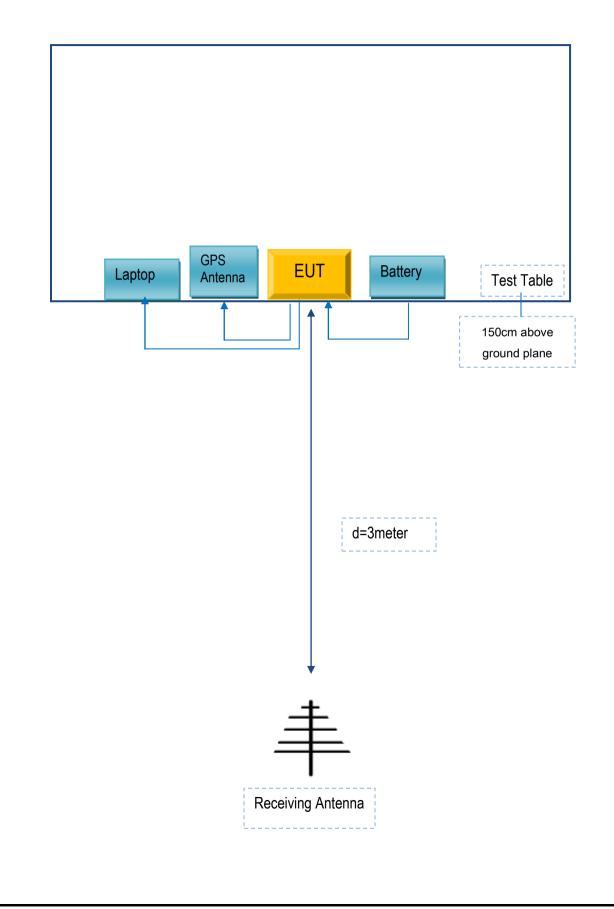
Block Configuration Diagram for AC Line Conducted Emissions



 Test Report
 17070432-FCC-R

 Page
 59 of 63

Block Configuration Diagram for Radiated Emissions (Below 1GHz).



 Test Report
 17070432-FCC-R

 Page
 60 of 63

Block Configuration Diagram for Radiated Emissions (Above 1GHz).

 Test Report
 17070432-FCC-R

 Page
 61 of 63

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Lenovo	Laptop	E40	LR-1EHRX
Gaoke Ant Co.,LTD	GPS Antenna	GT5	N/A

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.5m	N/A

 Test Report
 17070432-FCC-R

 Page
 62 of 63

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

 Test Report
 17070432-FCC-R

 Page
 63 of 63

Annex E. DECLARATION OF SIMILARITY

N/A