

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC164520

1 of 49 Page:

FCC Radio Test Report FCC ID: Y9E-IAD18005

Original Grant

Report No. TB-FCC164520

Applicant IAdea Corporation

Equipment Under Test (EUT)

EUT Name Smart Signboard

XDS-1588 Model No.

XDS-1588-A,XDS-1588-H,XDS-158X-Y(Note: X is "0~9", and Series Model No.

Y is "A~Z", represents the appearance color or customer models)

Brand Name IAdea

2019-03-01 **Receipt Date**

Test Date 2019-03-01 to 2019-04-30

Issue Date 2019-05-06

FCC Part 15, Subpart C (15.247:2018) **Standards**

Test Method ANSI C63.10: 2013

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness

Engineer

Engineer Supervisor

WAN Styla. **Engineer Manager**

Jason Xu

Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

TB-RF-074-1.0

Tel: +86 75526509301

Fax: +86 75526509195

Page: 2 of 49

the report.

Contents

COL	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Data	
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	
	6.5 Test Data	19
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	20
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21

Page: 3 of 49

	8.1 Test Standard and Limit	21
	8.2 Test Setup	
	8.3 Test Procedure	21
	8.4 EUT Operating Condition	
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	22
	9.1 Test Standard and Limit	22
	9.2 Test Setup	22
	9.3 Test Procedure	22
	9.4 EUT Operating Condition	22
	9.5 Test Data	22
10.	ANTENNA REQUIREMENT	23
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
	ACHMENT C BANDWIDTH TEST DATA	
	ACHMENT D PEAK OUTPUT POWER TEST DATA	
	ACHMENT E POWER SPECTRAL DENSITY TEST DATA	

Page: 4 of 49

Revision History

Report No.	Version	Description	Issued Date
TB-FCC164520	Rev.01	Initial issue of report	2019-05-06
a Division			
3 10		TOWN THE PARTY OF	113)
TOD3			MODE
MIN'S			6023
The state of the s			THE PROPERTY OF
			WILLIAM WILLIAM
The state of the s			The state of the s
	1		100

Page: 5 of 49

1. General Information about EUT

1.1 Client Information

Applicant : IAdea Corporation		IAdea Corporation
Address : 3F, No. 21 Lane 168, Xingshan Road, Neihu Dist., Taipei, Taiwan		3F, No. 21 Lane 168, Xingshan Road, Neihu Dist., Taipei, Taiwan
Manufacturer		IAdea Corporation
·		3F, No. 21 Lane 168, Xingshan Road, Neihu Dist., Taipei, Taiwan

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Smart Signboard			
Models No.		XDS-1588, XDS-1588-A, XDS-1588-H, XDS-158X-Y(Note: X is "0~9", and Y is "A~Z", represents the appearance color or customer models)			
Model Difference	:		All these models are the same PCB, layout and electrical circuit, the only different is appearance color or customer models.		
	,	Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz		
	d	Number of Channel:	802.11b/g/n(HT20):11 channels see note(3)		
المالية المالية			802.11b: 16.56dBm		
Product		RF Output Power:	802.11g: 15.65dBm		
Description	Ś		802.11n (HT20): 15.74dBm		
	2		802.11b: DSSS(CCK, DQPSK, DBPSK)		
		Modulation Type:	802.11g/n: OFDM(BPSK,QPSK,16QAM,		
Maria			64QAM)		
6411		Antenna Gain:	1.14dBi FPC Antenna		
		AC Adapter(FJ-SW1202000N):			
Power Supply	ŀ		t: AC 100-240V, 50/60Hz, 0.6A		
		Output: DC 12V, 2.0A			
Software Version	C	N/A			
Hardware Version	:	R35			
Connecting I/O Port(S)		Please refer to the User's Manual			

Page: 6 of 49

Note:

(1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v05.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2412	05	2432	09	2452	
02	2417	06	2437	10	2457	
03	2422	07	2442	11	2462	
04	2427	08	2447			
Note: CH 01~CH 11 for 802.11b/g/n(HT20)						

⁽⁴⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Normal Working+ TX Mode

Ada	apter	EUT		

1.4 Description of Support Units

Equipment Information					
Name	Model	FCC ID/VOC	Manufacturer	Used "√"	
ADAPTER	FJ-SW1202000N			V	

Page: 7 of 49

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1	Normal Working+ TX Mode			

For Radiated Test						
Final Test Mode	Description					
Mode 2	TX Mode B Mode Channel 01/06/11					
Mode 3	TX Mode G Mode Channel 01/06/11					
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 49

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	0.000	RFTestTool.exe	
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	55	55	55
IEEE 802.11g OFDM	30	30	30
IEEE 802.11n (HT20)	30	30	30

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dedicted Emission	Level Accuracy:	. 4 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Dedicted Emission	Level Accuracy:	. 4.40 dD
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Dadiated Emission	Level Accuracy:	. 4 20 dD
Radiated Emission	Above 1000MHz	±4.20 dB

Page: 9 of 49

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 49

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2							
Standa	rd Section	Test Item	ludament	Remark			
FCC IC		rest item	Judgment	Remain			
15.203	1	Antenna Requirement	PASS	N/A			
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A			
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A			
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A			
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A			
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A			
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A			
15.247(d)& 15.209	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A			

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 11 of 49

3. Test Equipment

Conducted Emiss	ion Test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019	
RF Switching Unit	Compliance F Switching Unit Direction Systems Inc		34403	Jul. 18, 2018	Jul. 17, 2019	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019	
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019	
Radiation Emission	n Test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019	
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019	
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020	
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020	
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020	
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019	
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020	
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020	
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020	
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A	
Antenna Conducto	ed Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019	
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019	
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019	
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019	
Analog Signal Generator	Analog Signal Agilent		MY50141953	Sep. 15, 2018	Sep. 14, 2019	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 15, 2018	Sep. 14, 2019	
DE DUTING	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 15, 2018	Sep. 14, 2019	
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 15, 2018	Sep. 14, 2019	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 15, 2018	Sep. 14, 2019	

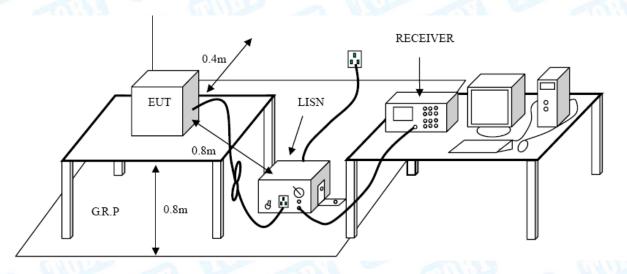
Page: 12 of 49

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

Tues and the second	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 49

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 49

5. Radiated Emission Test

5.1 Test Standard and Limit

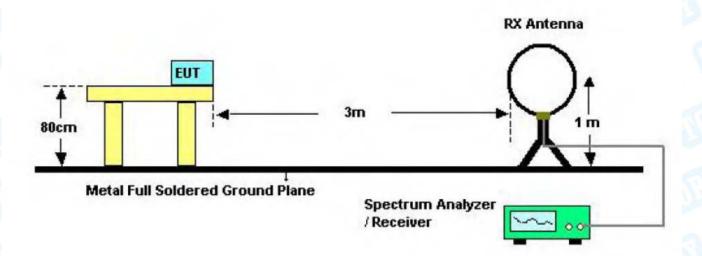
5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

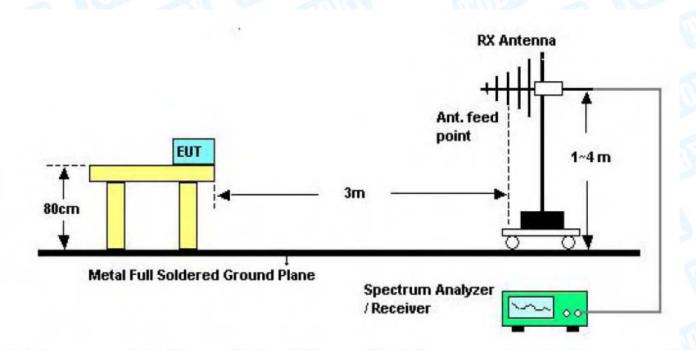
Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

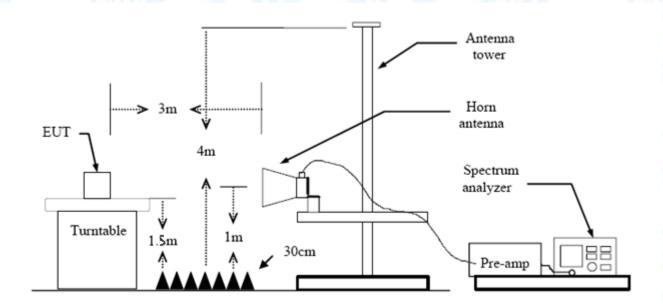

Frequency	Distance of 3	Bm (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)



Page: 15 of 49

5.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 49

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 17 of 49

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

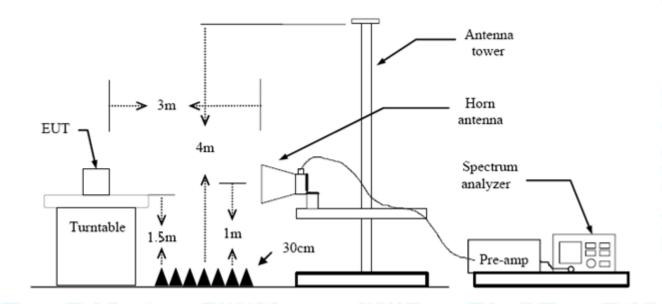
Page: 18 of 49

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)


FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)				
Band (MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency below 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Page: 19 of 49

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

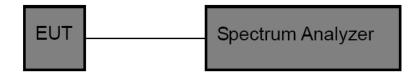
The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment B.

Page: 20 of 49

7. Bandwidth Test


7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210							
Test Item	Test Item Limit Frequency Range(MHz)						
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5					

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

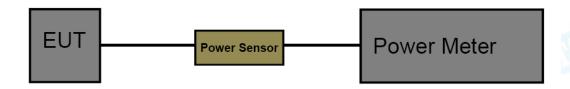
The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment C.

Page: 21 of 49

8. Peak Output Power Test


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210							
Test Item Limit Frequency Range(MH							
Peak Output Power	1 Watt or 30 dBm	2400~2483.5					

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v05. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

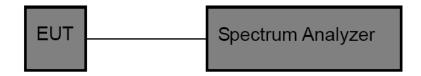
The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment D.

Page: 22 of 49

9. Power Spectral Density Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)						
Test Item Limit Frequency Range(MHz)						
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5				

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment E.

Page: 23 of 49

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

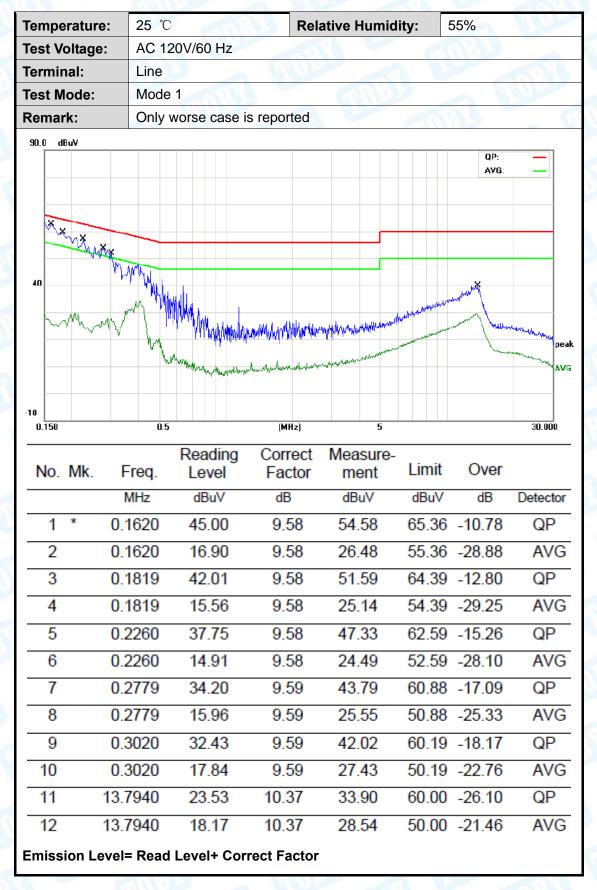
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

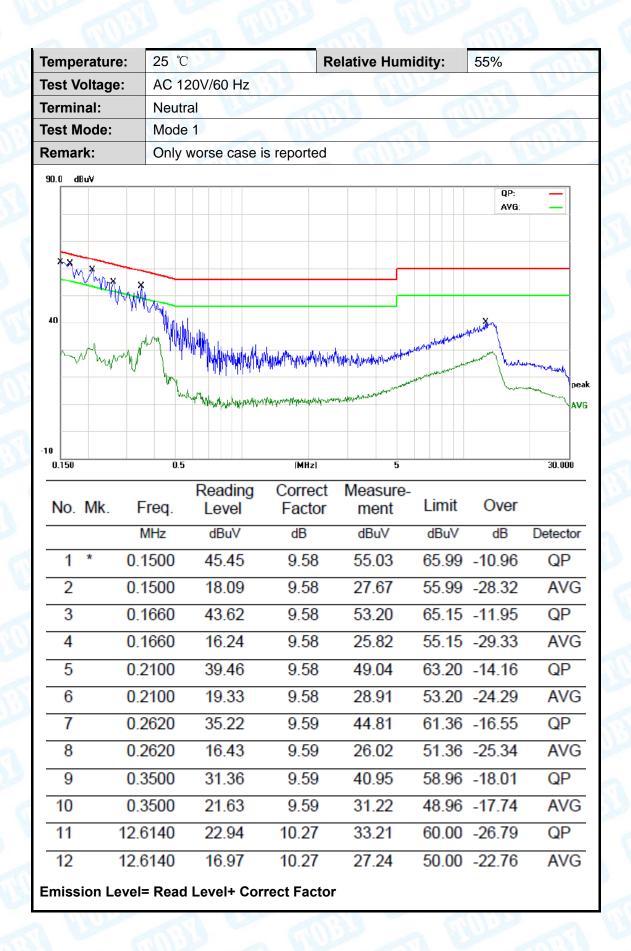
The gains of the antenna used for transmitting is 1.14dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

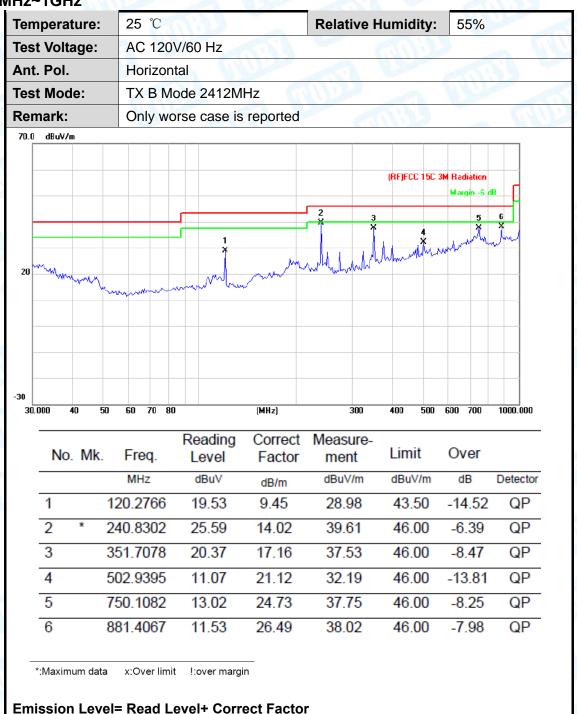

Antenna Type					
Dir.	Permanent attached antenna	(III)			
J Dur					
D	Professional installation antenna	MILE.			

Page: 24 of 49


Attachment A-- Conducted Emission Test Data

Page: 25 of 49

Page: 26 of 49


Attachment B-- Radiated Emission and Restricted Bands Requirement Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

Page: 27 of 49

Temperature:	25 ℃	Re	lative Humidit	y : 55	5%			
Test Voltage:	AC 120V/60 Hz							
Ant. Pol.	Vertical			GUI	133			
Test Mode:	TX B Mode 2412MHz							
Remark:	Only worse case	is reported	MILLER		a 113			
70.0 dBuV/m								
20		more	3 *		5C 3M Radiation Margin -6 5 X			
-30 30.000 40 50 No. Mk. Fre	Reading Level	(MHz) Correct Factor	Measure- ment L	400 50	00 600 700 Over	1000.00		
МН	z dBuV	dB/m	dBuV/m d	BuV/m	dB	Detecto		
1 46.99	947 20.22	9.55	29.77	10.00	-10.23	QP		
2 120.2	766 24.64	9.45		3.50	-9.41	QP		
3 240.8		14.02		6.00	-7.03	QP		
4 351.7		17.16		6.00	-11.20	QP		
5 528.2		21.88		6.00	-8.26	QP		
	067 12.88 x:Over limit !:over marg		39.37 4	16.00	-6.63	QP		

Page: 28 of 49

Above 1GHz

Test Mode: IEEE 802.11b

Low channe	el: 241	2 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2390	Н	57.57	47.68	2.82	60.39	50.50	74	54	-13.61	-3.50
4824	Н	42.59	27.98	14.55	57.14	42.53	74	54	-16.86	-11.47
	Н	_E/1/								[
		1	Cil	1:33	-	Millian	1	1000		18
2390	٧	49.35	40.51	2.82	52.17	43.33	74	54	-21.83	-10.67
4824	V	28.62	42.10	14.55	43.17	56.66	74	54	-10.83	-17.34
	V					10.2				

Middle char	nnel: 2	437 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
4874	Н	42.10	28.65	14.86	56.95	43.52	74	54	-17.05	-10.48
	Н		11970	1	1111		1		2,6	
	Н	7-12					9	min		
C.	m_i		2 W	U.S.		630			1117	100
4874	V	42.41	28.37	14.87	57.28	43.24	74	54	-16.72	-10.76
50.27	V	1737		1 B				W#0		(I)
	V		()}}]	S []	3				3

High channe	el: 246	62 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2483.5	Н	53.39	43.13	3.41	56.80	46.54	74	54	-17.20	-7.46
4924	Н	42.31	28.70	15.17	57.48	43.87	74	54	-16.52	-10.13
	Н	77-	6	11 27		AMILE		1 70		(1) A
					1199		William.		1 1972	· Jane
2483.5	V	49.04	37.83	3.41	52.45	41.24	74	54	-21.55	-12.76
4924	V	41.94	28.65	15.17	57.11	43.83	74	54	-16.89	-10.17
	V				4 V	E			1122	322

- 1. Emission Level= Read Level+ Correct Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page: 29 of 49

Test Mode: IEEE 802.11g

Low channe	Low channel: 2412 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)	
2390	Н	61.87	41.99	2.82	64.69	51.81	74	54	-9.31	-2.19	
4824	Н	41.84	28.18	14.55	56.39	42.73	74	54	-17.61	-11.27	
	Н		No.		77-20		(277 I I I		3 //	-	
U.D		2 OFF	The second				1			×	
2390	V	49.51	39.77	2.82	52.33	42.59	74	54	-21.67	-11.41	
4824	V	41.27	28.02	14.56	55.83	42.58	74	54	-18.17	-11.42	
WJ	V	(1 PF)	2	2 7/1/							

Middle char	nnel: 2	437 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
4874	Н	41.84	28.08	14.85	56.69	42.93	74	54	-17.31	-11.07
	Н	1			77		mm.	333	[[1177
	Н		11277	\	11177	-			V V	
1111					1		2			
4874	V	28.35	42.17	14.85	43.20	57.03	74	54	-10.80	-16.97
- N	V	I	3//		13-2-		4		79.3	
16)	V			a\				A 44 3 3		[]

	High channe	el: 246	62 MHz								
١	Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Peak		Peak limit	AV limit	Peak	AV
	(MHz)	H/V		(dBuV)		(dBµV/m)	(ασμ ν/π)	(dBµV/m)	(dBµV/m)	Margin	Margin
			(dBµV)		(dB/m)					(dB)	(dB)
	2483.5	Н	57.69	45.44	3.41	61.10	48.85	74	54	-12.90	-5.15
	4924	Н	42.44	28.71	15.17	57.61	43.88	74	54	-16.39	-10.12
		Н		11 Trees	-	13.77			1075	19.0	
١			21 6		10 A 15 A		THE STATE OF		J HILL		901
	2483.5	V	48.51	37.87	3.41	51.92	41.28	74	54	-22.08	-12.72
	4924	V	40.79	28.55	15.17	55.95	43.72	74	54	-18.04	-10.28
	100	V	THE STATE OF		- F				(LT)		N

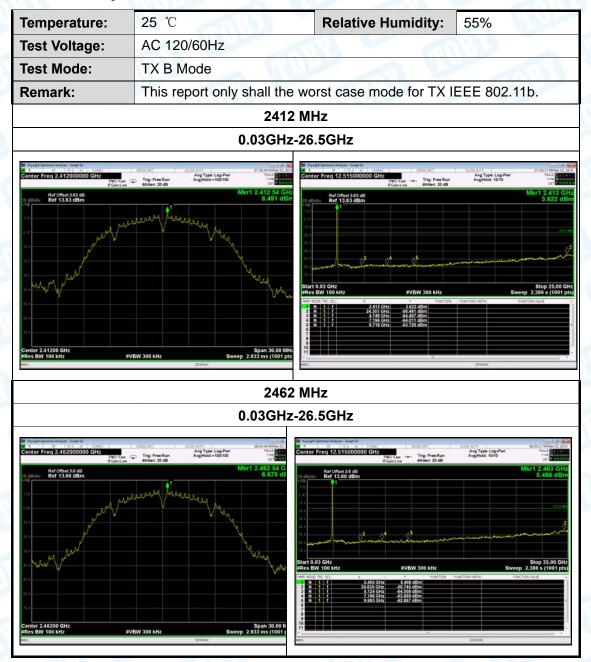
- 1. Emission Level= Read Level+ Correct Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page: 30 of 49

Test Mode: IEEE 802.11n TH20

Low channe	Low channel: 2412 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2390	Н	61.74	49.65	2.82	64.56	52.47	74	54	-9.44	-1.53
4824	Н	42.06	27.99	14.55	56.61	42.54	74	54	-17.39	-11.46
	Н		1	6	77-2		077 (15)		3 1	
		2 OFF	To be				1			×
2390	V	50.31	39.89	2.82	53.13	42.71	74	54	-20.87	-11.29
4824	V	41.97	28.28	14.55	56.52	42.83	74	54	-17.48	-11.17
W	V	(1 PF)	ـــ الا	2 7/1/						

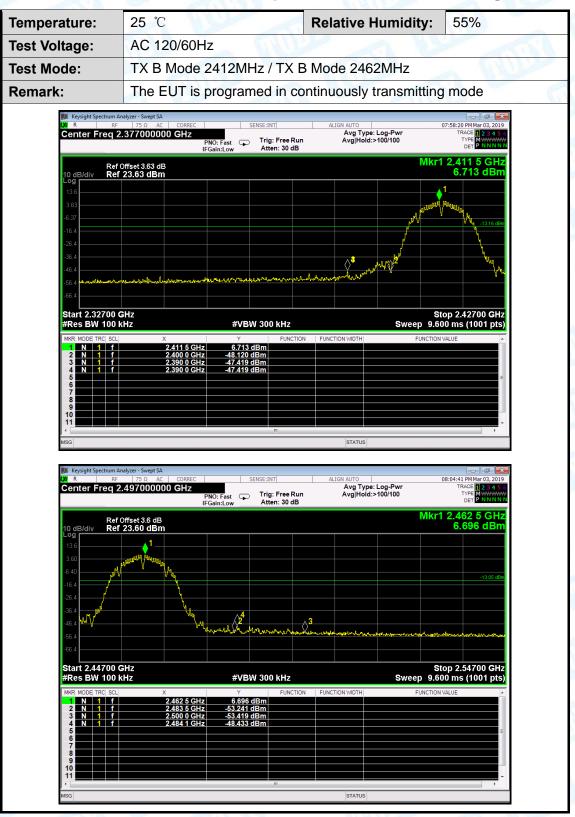
Middle char	nnel: 2	437 MHz	21111							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
4874	Н	41.84	28.44	14.86	56.70	43.30	74	54	-17.30	-10.70
	Н				17-		(1)(5)	333	[]	1177
	Н		1977	\					// V	
ALL PARTY	_	AU			-	TIP IN		LAND.		2
4874	V	41.98	28.36	14.86	56.85	43.22	74	54	-17.15	-10.78
V	V				0 2		11/17/1		-12	
0.5	V	1777		1 6				40	/	


High channe	High channel: 2462 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)	
2483.5	Н	61.63	45.63	3.41	65.04	49.04	74	54	-8.96	-4.96	
4924	Н	41.73	28.31	15.17	56.90	43.48	74	54	-17.10	-10.52	
	Н	WY			1	-	S	TITE:	S 22		
	1	777 -	6	11/20		AMIL		A W			
2483.5	V	48.52	37.84	3.41	51.93	41.25	74	54	-22.07	-12.75	
4924	V	42.35	28.15	15.17	57.54	43.32	74	54	-16.46	-10.68	
The same	V			183	67			M. R. C.		(1) \	

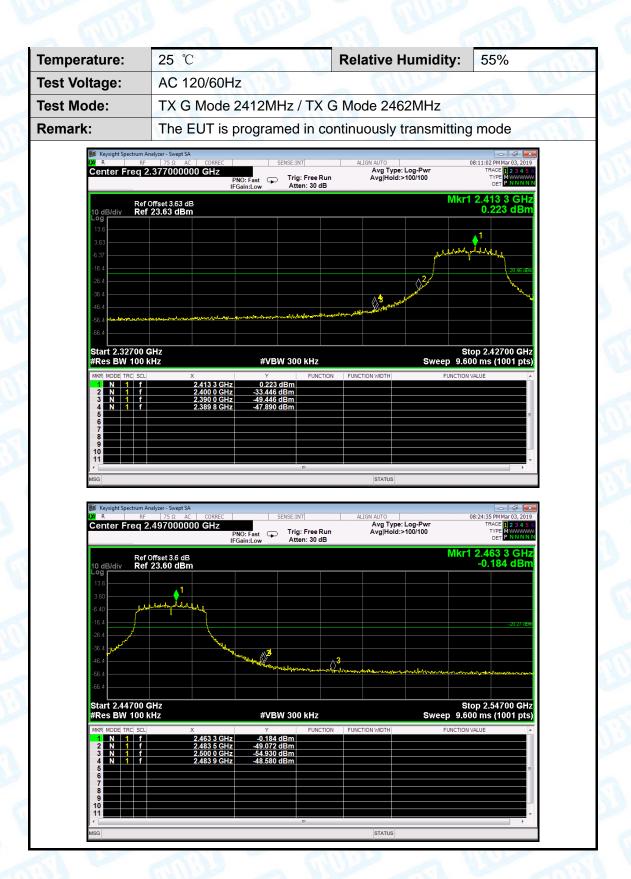
- 1. Emission Level= Read Level+ Correct Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page: 31 of 49

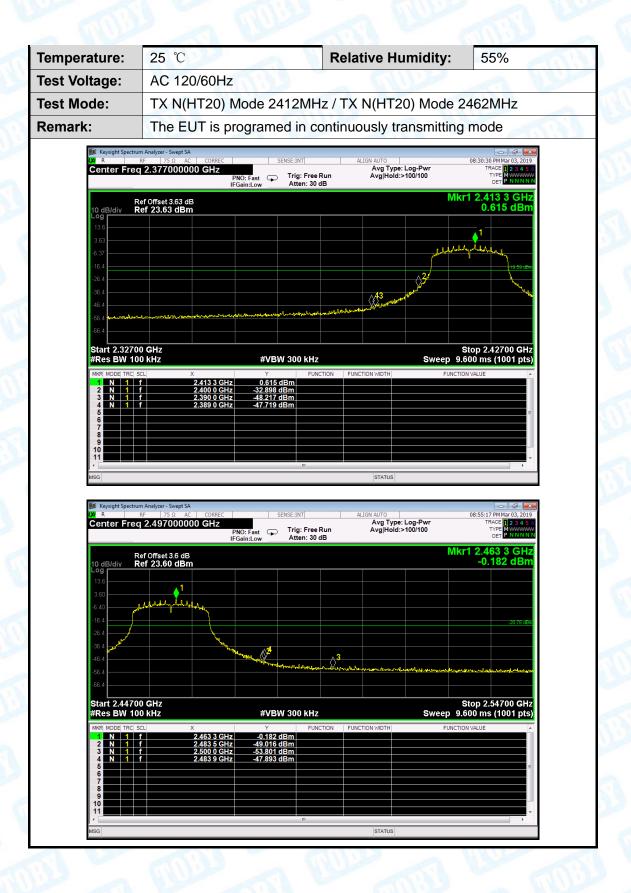
Conducted RF Spurious Emission Test Data



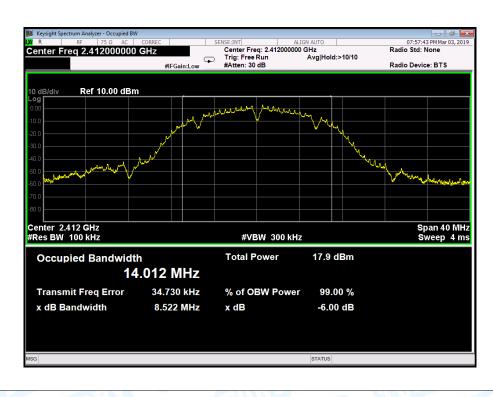
Page: 32 of 49


Conducted Restricted Bands Requirement and Band-Edge Test Data




Page: 33 of 49

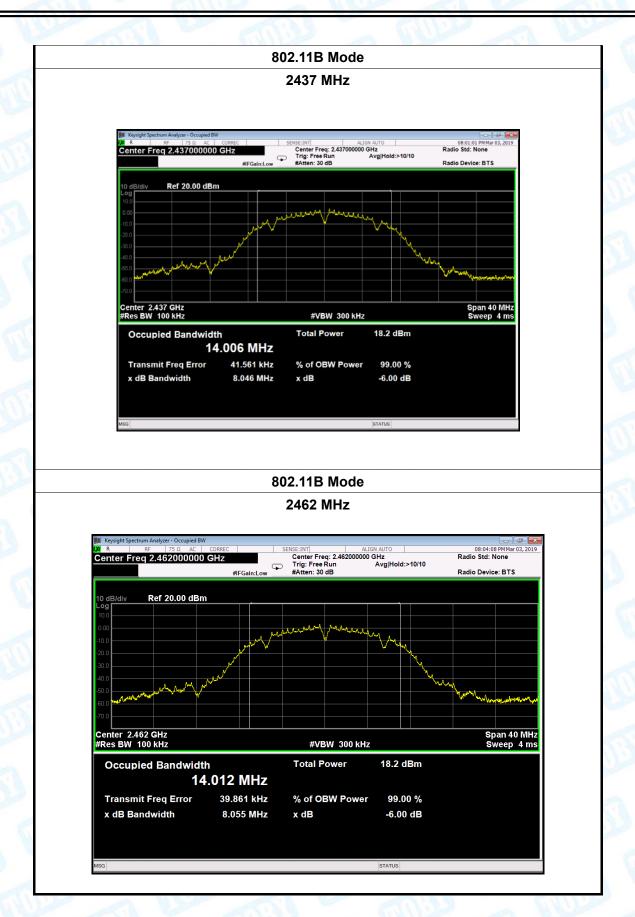
Page: 34 of 49


Page: 35 of 49

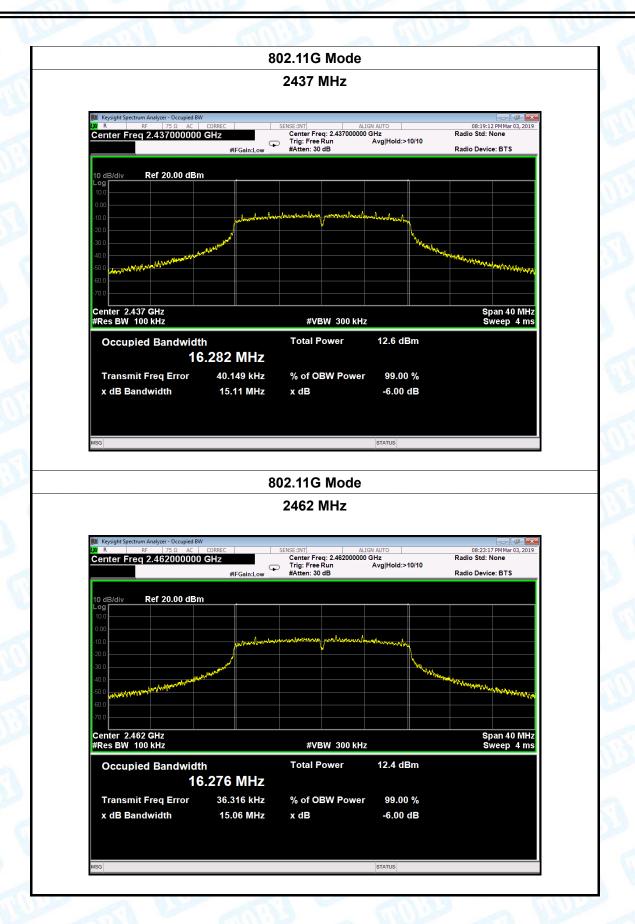
Attachment C-- Bandwidth Test Data

Temperature:	25 °C	Relative Humidity:	55%							
Test Voltage:	AC 120/60Hz									
Test Mode: TX 802.11B Mode										
Channel frequence	y 6dB Bandwidth	99% Bandwidth	Limit							
(MHz)	(MHz)	(MHz)	(MHz)							
2412	8.522	14.012								
2437	8.046	14.006	>=0.5							
2462	8.055	14.012								

802.11B Mode


2412 MHz

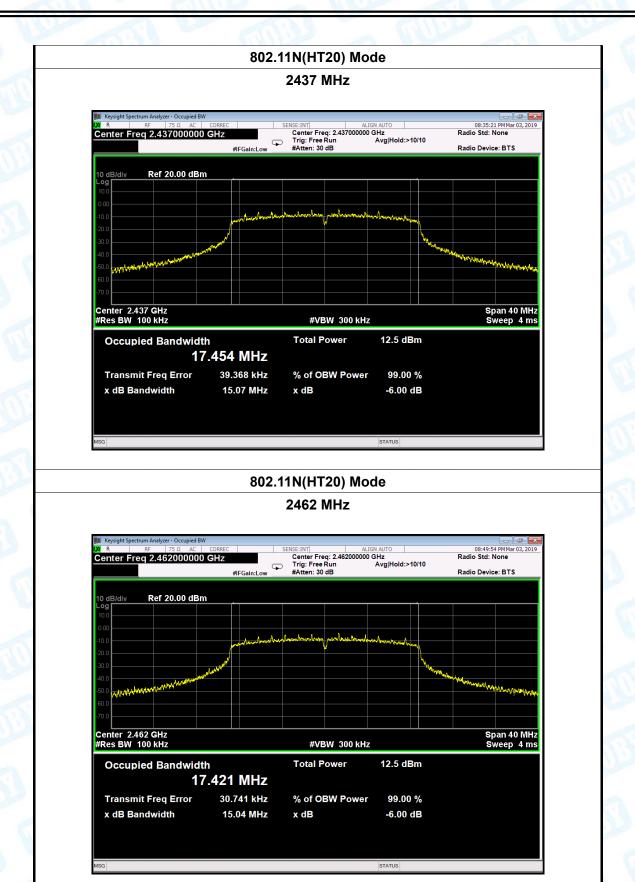
Page: 36 of 49


Page: 37 of 49

mperature:	25 ℃			Relative F	lumidity:	55%	
st Voltage:	AC 120/60Hz						
st Mode:	TX 802.11G Mode						
nannel frequer	псу	6dB Bandw	/idth	99% Ba	ndwidth	Limit	
(MHz)		(MHz)		(MHz)		(MHz)	
2412		14.45		16.274			
2437		15.11		16.	282	>=0.5	
2462		15.06		16.:	276		
		8	02.11G Mo	de			
			2412 MHz	,			
Keysight Spectrum LXI R R Center Freq		CORREC	SENSE:INT Center Freq: 2.412 Trig: Free Run #Atten: 30 dB	ALIGN AUTO 000000 GHz Avg Hold:	10/10	08:09:31 PM Mar 03, 2019 o Std: None o Device: BTS	
IXI R R	F 75 Ω AC	CORREC CORREC	Center Freq: 2.412 Trig: Free Run	000000 GHz	10/10	08:09:31 PM Mar 03, 2019 o Std: None	
Center Freq	F 75 Ω AC	CORREC D GHz #IFGain:Low	Center Freq: 2.412 Trig: Free Run	000000 GHz	10/10	08:09:31 PM Mar 03, 2019 o Std: None	
Center Freq	F 75 Ω AC 2.41200000 0	CORREC D GHz #IFGain:Low	Center Freq: 2.412 Trig: Free Run #Atten: 30 dB	000000 GHz	10/10	08:09:31 PM Mar 03, 2019 o Std: None	
Center Freq	F 75 Ω AC 2.41200000 0	CORREC D GHZ #IFGain:Low	Center Freq: 2.412 Trig: Free Run #Atten: 30 dB	000000 GHz Avg Hold:	10/10	08:09:31 PM Mar 03, 2019 o Std: None	
10 dB/div Log -5:00 -15:0 -25:0 -36:0	2.412000000 Ref 5.00 dBm	CORREC D GHZ #IFGain:Low	Center Freq: 2.412 Trig: Free Run #Atten: 30 dB	000000 GHz Avg Hold:	10/10	08:09:31 PMMar 03, 2019 Std: None Device: BTS	
10 dB/div Log -5.00 -25.0	2.412000000 Ref 5.00 dBm	CORREC D GHZ #IFGain:Low	Center Freq: 2.412 Trig: Free Run #Atten: 30 dB	000000 GHz Avg Hold:	10/10	08:09:31 PM Mar 03, 2019 o Std: None	
Center Freq 10 dB/div Log -5.00 -15.0 -25.0 -35.0 -45.0 -45.0 -75.0	2.412000000 Ref 5.00 dBm	CORREC D GHZ #IFGain:Low	Center Freq: 2.412 Trig: Free Run #Atten: 30 dB	000000 GHz Avg Hold:	10/10	08:09:31 PMMar 03, 2019 Std: None Device: BTS	
Center Freq 10 dB/div Log -5.00 -15.0 -25.0 -35.0 -45.0 -55.0 -65.0 -75.0 -85.0	Ref 5.00 dBm	CORREC D GHZ #IFGain:Low	Center Freq: 2.412 Trig: Free Run #Atten: 30 dB	000000 GHz Avg Hold:	10/10	08:09:31 PMMar 03, 2019 • Std: None • Device: BTS	
Center Freq 10 dB/div Log -5.00 -15.0 -25.0 -35.0 -45.0 -45.0 -75.0	2.4120000000	CORREC D GHZ #IFGain:Low	Center Freq: 2.412 Trig: Free Run #Atten: 30 dB	Avg Hold:	10/10	08:09:31 PMMar 03, 2019 Std: None Device: BTS	
Center Freq 10 dB/div Log -5.00 -15.0 -25.0 -45.0 -75.0 -85.0 -75.0 -85.0 -75.0 -85.0 -75.0 -85.0 -75.0 -85.0 -75.0 -85.0 -75.0 -85.0 -75.0 -85.0 -75.0 -85.0	2.41200000000000000000000000000000000000	#IFGain:Low	Center Freq: 2.412 Trig: Free Run #Atten: 30 dB	Avg Hold:	Radio	08:09:31 PMMar 03, 2019 D Std: None D Device: BTS	
Center Freq 10 dB/div Log -5.00 -15.0 -25.0 -45.0 -45.0 -75.0 -85.0 -85	2.41200000000000000000000000000000000000	#IFGain:Low	Center Freq: 2.41: Trig: Freq: 2.41: #Atten: 30 dB	O kHz	Radio	08:09:31 PMMar 03, 2019 D Std: None D Device: BTS	

Page: 38 of 49

Page: 39 of 49


Temperature:	25 ℃		Relative Humidity:	55%	
Test Voltage:	AC 120/60Hz				
Test Mode:	TX 802.11N(HT20) Mode				
Channel frequen	annel frequency 6dB Bandwidth 99% Bandwidth Lim				
(MHz)		(MHz)	(MHz)	(MHz)	
2412		15.08	17.432		
2437		15.07	17.454	>=0.5	
2462 15.04 17.421					
		802.11N(HT	720) Mode		
		2412	MHz		

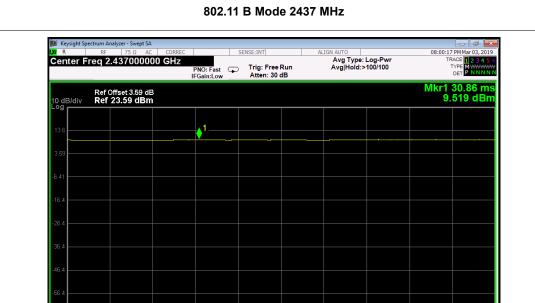
Page: 40 of 49

Page: 41 of 49

Attachment D-- Peak Output Power Test Data

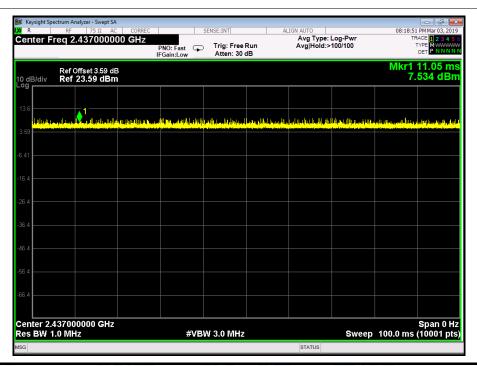
Test Condition	ns:	: Continuous Transmitting Mode				
Temperature:		25 °C Relative Humid		Relative Humidity	: 55%	
Test Voltage:		AC 120/60Hz	MA			
Mode	С	hannel frequency (MHz)	Tes	st Result (dBm)	Limit (dBm)	
		2412		16.26		
802.11b		2437	16.43			
		2462	16.56			
802.11g		2412		15.65		
		2437		15.35	30	
		2462	15.29			
802.11n		2412	15.74			
		2437		15.19		
(HT20)		2462		15.16		
		Resu	ılt: I	PASS		

Duty Cycle				
Mode	Channel frequency (MHz)	Test Result		
	2412			
802.11b	2437			
	2462			
802.11g	2412			
	2437	>98%		
	2462			
802.11n (HT20)	2412			
	2437			
	2462			

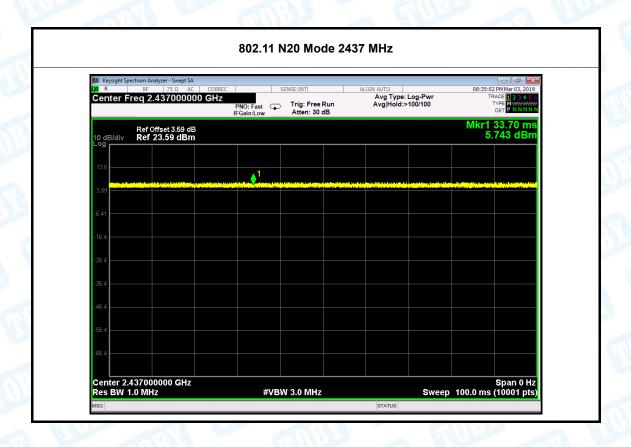


Page: 42 of 49

Span 0 Hz Sweep 100.0 ms (10001 pts)

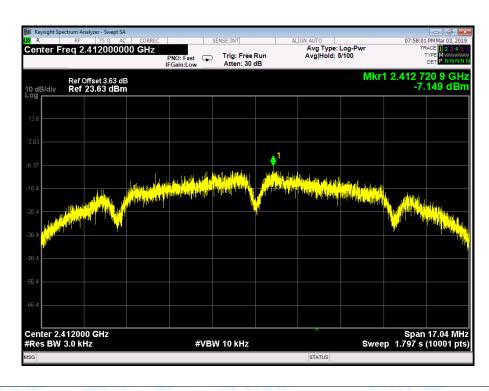


Center 2.437000000 GHz Res BW 1.0 MHz


802.11 G Mode 2437 MHz

#VBW 3.0 MHz

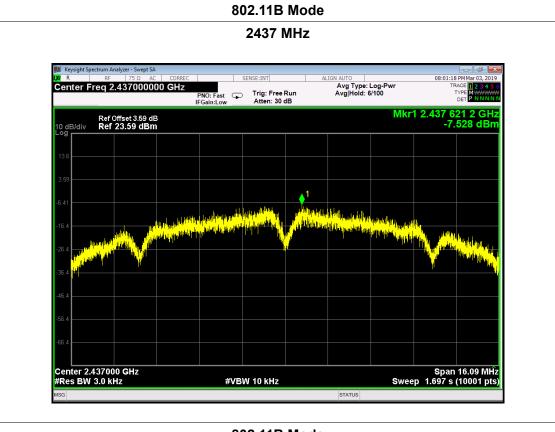
Page: 43 of 49



Page: 44 of 49

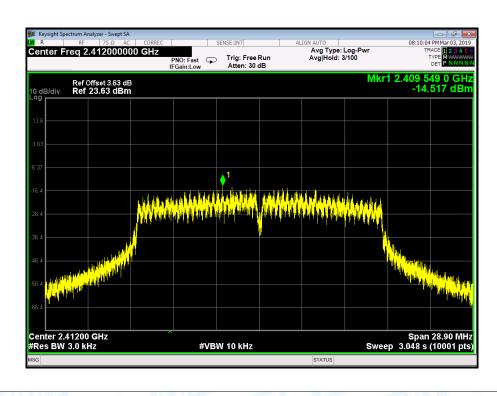
Attachment E-- Power Spectral Density Test Data

Temperature:	25 °C	25 °C Relative Humidity: 55%				
Test Voltage:	AC 120/6	AC 120/60Hz				
Test Mode:	TX 802.1	TX 802.11B Mode				
Channel Fre	equency	Power Density		Limit		
(MHz	2)	(dBm/3 kHz)		(dBm/3 kHz)		
2412	2	-7.149				
2437		-7.528		8		
2462	2	-6.991				

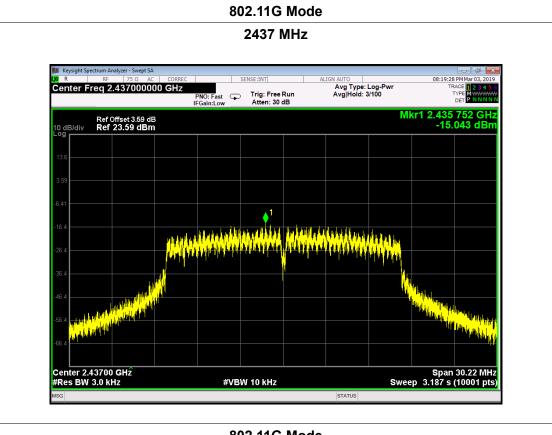

802.11B Mode

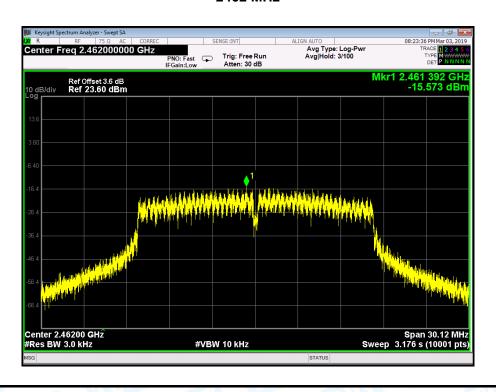


Page: 45 of 49


802.11B Mode

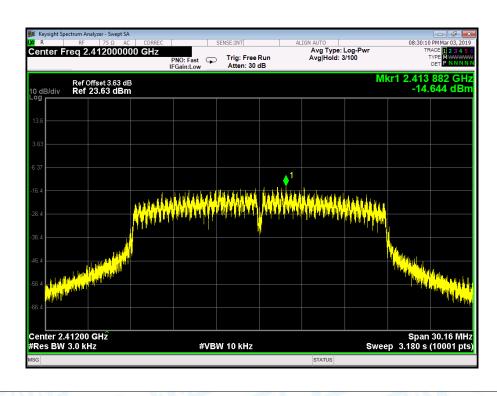
Page: 46 of 49


Temperature:	25 ℃	1 11	Temperature:	25 ℃
Test Voltage:	AC 120/6	0Hz	Will The	73 1111
Test Mode:	TX 802.1	1G Mode		
Channel Frequency	uency	Power Dens	sity	Limit
(MHz)		(dBm/3 kH	z)	(dBm/3 kHz)
2412		-14.517		
2437		-15.043		8
2462		-15.573		
		802.11G Mo	de	



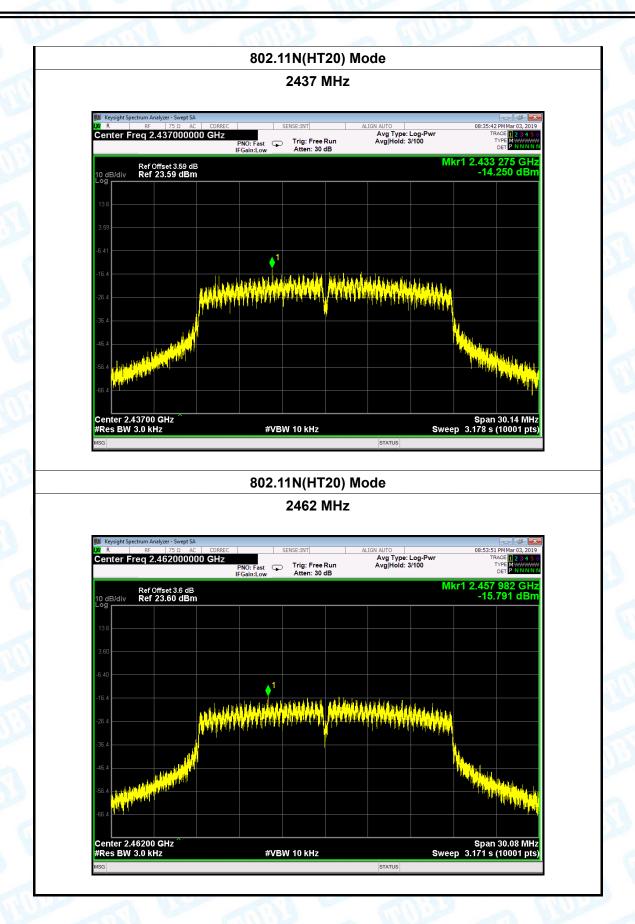
47 of 49 Page:

802.11G Mode



Page: 48 of 49

Temperature:	25 ℃	Temperatu		25 ℃		
Test Voltage:	AC 120/60Hz					
Test Mode:	TX 802.11N(HT20) Mode					
Channel Frequency Powe			nsity	Limit		
(MHz)		(dBm/3 kHz)		(dBm/3 kHz)		
2412	2412		4			
2437		-14.250		8		
2462		-15.791				
902 44N/UT20\ Mada						


802.11N(HT20) Mode

Page: 49 of 49

----END OF REPORT----