

RADIO TEST REPORT

Test Report No. 15200257H-A-R1

Customer	SUBARU CORPORATION
Description of EUT	Keyless Access with Push-Button Start System
Model Number of EUT	SU23S-1
FCC ID	Y8PSU23S-1
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	April 23, 2024
Remarks	-

Representative test engineer	Approved by
7. Noguchi	S. Mijazono
Takafumi Noguchi Engineer	Shinichi Miyazono Engineer
	ACCREDITED CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed	ed is outside the accreditation scopes in UL Japan, Inc.

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

 $oxed{oxed}$ There is no testing item of "Non-accreditation".

Test Report No. 15200257H-A-R1 Page 2 of 25

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 15200257H-A

This report is a revised version of 15200257H-A. 15200257H-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	15200257H-A	April 16, 2024	-
1	15200257H-A-R1	April 23, 2024	Deletion of the Operating temperature from SECTION 2.2
1	15200257H-A-R1	April 23, 2024	Correction of the Antenna name for Clause 4.1 and 4.2; from "OUTSIDE" to "LUGGAGE"

Test Report No. 15200257H-A-R1 Page 3 of 25

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS			Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	5
SECTION 3: Test specification, procedures & results	7
SECTION 4: Operation of EUT during testing	10
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	13
SECTION 6: -20 dB Bandwidth	15
SECTION 7: 99 % emission bandwidth	15
APPENDIX 1: Test data	16
Radiated Emission (Fundamental and Spurious Emission)	
-20 dB Bandwidth / 99 % emission bandwidth	21
APPENDIX 2: Test instruments	22
APPENDIX 3: Photographs of test setup	
Radiated Emission	
Worst Case Position	24

Test Report No. 15200257H-A-R1 Page 5 of 25

SECTION 1: Customer Information

Company Name	SUBARU CORPORATION		
Address	1-1, Subaru-cho, ota-shi, Gunma-ken, 373-8555, Japan		
Telephone Number +81-80-7737-7297			
Contact Person	Junichi Motoyama		

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Keyless Access with Push-Button Start System
Model Number	SU23S-1
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	March 19, 2024
Test Date	March 27, 2024

2.2 Product Description

General Specification

Rating	DC 12.0 V
--------	-----------

Test Report No. 15200257H-A-R1 Page 6 of 25

Radio Specification

[Transmitter]

Radio Type	Transmitter
Frequency of Operation	134.2 kHz
Type of Modulation	OOK (A1D)
Antenna	Antenna (TYPE 1) *1), *3) / (TYPE 2) *2)
Antenna Specification	Ferrite antenna coil
Oscillator frequency	4.2944 MHz (Crystal)

^{*1)} Maximum number of this antenna is 2.

[Receiver]

Radio Type	Receiver
Frequency of Operation	433.92 MHz
Oscillator frequency	30.265 MHz (Crystal)
Intermediate frequency	280 kHz
Type of Modulation	FSK
Type of receiving system	Super-heterodyne
Antenna Type	Internal antenna (Inverted F antenna)
Voltage Controlled	1734.540 MHz (Maximum)
Oscillator	

^{*2)} Maximum number of this antenna is 4.

^{*3)} The Antennas (TYPE 1) of this system have variations of model 1 and model 2.

The difference of these variations is only the outer shell, and the test was performed with the representative model 1.

Test Report No. 15200257H-A-R1 Page 7 of 25

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C		
	The latest version on the first day of the testing period		
Title	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators		
	Section 15.207 Conducted limits		
Section 15.209 Radiated emission limits; general requirements.			
*Also the EUT complies with FCC Part 15 Subpart B.			

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	<fcc></fcc>	<fcc></fcc>	N/A	N/A	*1)
	ANSI C63.10:2013	Section 15.207			
	6 Standard test methods	<ised></ised>			
	<ised></ised>	RSS-Gen 8.8			
	RSS-Gen 8.8				
Electric Field Strength	<fcc></fcc>	<fcc></fcc>	0.7 dB	Complied	Radiated
of Fundamental	ANSI C63.10:2013	Section 15.209	134.2 kHz, 0 deg.		
Emission	6 Standard test methods	<ised></ised>	Peak with Duty		
	<ised></ised>	RSS-210 7.2	factor		
	RSS-Gen 6.5, 6.12	RSS-Gen 8.9	(Mode 3)		
Electric Field Strength	<fcc></fcc>	<fcc></fcc>	12.7 dB	Complied	Radiated
of Spurious Emission	ANSI C63.10:2013	Section 15.209	0.67100 MHz,		
	6 Standard test methods	<ised></ised>	0 deg.		
	<ised></ised>	RSS-210 7.3	QP		
	RSS-Gen 6.5, 6.6, 6.13	RSS-Gen 8.9	(Mode 4)		
-20 dB Bandwidth	<fcc></fcc>	<fcc></fcc>	N/A	Complied	Radiated
	ANSI C63.10:2013	Reference data			
	6 Standard test methods	<ised></ised>			
	<ised></ised>	-			
	-				

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % emission bandwidth	RSS-Gen 6.7	-	N/A	-	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

Test Report No. 15200257H-A-R1 Page 8 of 25

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range	Frequency range			
3 m	9 kHz to 30 MHz		dB	3.3	
10 m			dB	3.1	
3 m	30 MHz to 200 MHz	Horizontal	dB	4.7	
		Vertical	dB	4.7	
	200 MHz to 1000 MHz	Horizontal	dB	4.8	
		Vertical	dB	6.0	
10 m	30 MHz to 200 MHz	Horizontal	dB	5.2	
		Vertical	dB	5.1	
	200 MHz to 1000 MHz	Horizontal	dB	5.2	
		Vertical	dB	5.2	

-20 dB Bandwidth and 99% Occupied Bandwidth

Item	Unit	Calculated Uncertainty (+/-)
Bandwidth (OBW)	%	0.96

Test Report No. 15200257H-A-R1 Page 9 of 25

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

Test Report No. 15200257H-A-R1 Page 10 of 25

SECTION 4: Operation of EUT during testing

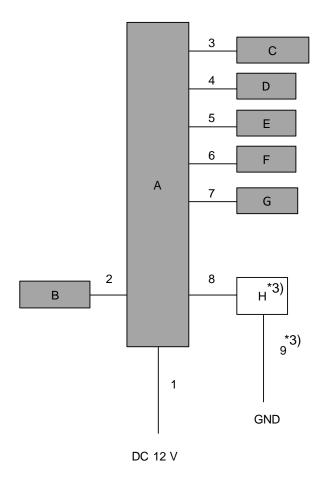
4.1. Operating Mode(s)

Tes	st mode	Remarks
1)	Tx 134.2 kHz Antenna (TYPE1)	-
2)	Tx 134.2 kHz Antenna (TYPE2 INSIDE)	-
3)	Tx 134.2 kHz Antenna (TYPE2 LUGGAGE)	-
4)	Tx 134.2 kHz Antenna (TYPE1 (No.1)) + Antenna (TYPE 1 (No.2))	simultaneous transmission

^{*}Power of the EUT was set by the software as follows;

Software: SMT_ROMUP_WAVETEST_001 Version: 01

(Date: 2023.09.29, Storage location: EUT memory)


Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Justification: The system was configured in typical fashion (as a user would normally use it) for testing.

^{*}This setting of software is the worst case.

4.2 Configuration and Peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

- *This system has two kinds of antenna types.
- Two ports where Antenna (TYPE 1) are connected.
- Four ports where Antenna (3 for TYPE 2 INSIDE and 1 for TYPE 2 LUGGAGE) are connected.
- The difference between INSIDE Antenna and LUGGAGE Antenna is output power only.

The test was performed with each representative one of above three kinds of antenna ports.

* Antenna (Type 1) and Antenna (Type 2) were evaluated with the worst duty respectively.

Worst duty does not change due to the difference in number of connected antennas.

Test Report No. 15200257H-A-R1 Page 12 of 25

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remark
Α	Keyless Access with Push-Button Start System	SU23S-1	SU23S-1-1 *1) SU23S-1-K1 *2)	SUBARU CORPORATION	EUT
В	Antenna	TYPE1 (No.1)	J2142019	SUBARU CORPORATION	EUT
С	Antenna	TYPE1 (No.2)	J2142008	SUBARU CORPORATION	EUT
D	Antenna	TYPE2 INSIDE (No.1)	D33151 000161	SUBARU CORPORATION	EUT
E	Antenna	TYPE2 INSIDE (No.2)	D33151 000163	SUBARU CORPORATION	EUT
F	Antenna	TYPE2 INSIDE (No.3)	D33151 000164	SUBARU CORPORATION	EUT
G	Antenna	TYPE2 LUGGAGE (No.4)	D33151 000135	SUBARU CORPORATION	EUT
Н	Low Frequency & Radio Frequency Bench (TYPE1)	-	No.1	SUBARU CORPORATION	*3)

List of Cables Used

No.	Name	Length (m)	Shield	Remark	
		Cable		Connector	
1	DC Cable	3.0	Unshielded	Unshielded	-
2	Antenna Cable	3.0	Unshielded	Unshielded	-
3	Antenna Cable	3.0	Unshielded	Unshielded	-
4	Antenna Cable	3.0	Unshielded	Unshielded	-
5	Antenna Cable	3.0	Unshielded	Unshielded	-
6	Antenna Cable	3.0	Unshielded	Unshielded	-
7	Antenna Cable	3.0	Unshielded	Unshielded	-
8	Signal Cable	3.0	Unshielded	Unshielded	-
9	GND Cable	6.0	Unshielded	Unshielded	*3)

^{*1)} for Mode 1, 2, 3 *2) for Mode 4

^{*3)} Mode 4 excluded

Test Report No. 15200257H-A-R1 Page 13 of 25

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[Limit conversion]

The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

[Frequency: From 9 kHz to 30 MHz]

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg., 180 deg.) and horizontal polarization.

*Refer to Figure 2 about Direction of the Loop Antenna.

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore, the measured level of emissions may be higher than if measurements were made without a ground plane. However, test results were confirmed to pass against standard limit.

[Frequency: From 30 MHz to 1 GHz]

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

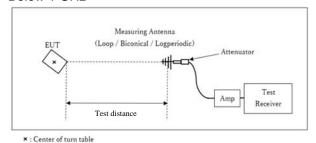
[Test instruments and test settings]

Frequency Below 30 MHz		30 MHz to 200 MHz	200 MHz to 1 GHz
Antenna Type	Loop	Biconical	Logperiodic

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

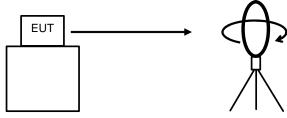
Frequency	From 9 kHz to 90 kHz	From 90 kHz	From 150 kHz	From 490 kHz	From 30 MHz
	and	to	to	to	to
	From 110 kHz	110 kHz	490 kHz	30 MHz	1 GHz
	to 150 kHz				
Instrument used	Test Receiver				
Detector	PK / AV	QP	PK / AV	QP	QP
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m


^{*1)} Distance Factor: 40 x log (3 m / 300 m) = -80 dB

^{*2)} Distance Factor: 40 x log (3 m / 30 m) = -40 dB

Test Report No. 15200257H-A-R1 Page 14 of 25

Figure 1: Test Setup


Below 1 GHz

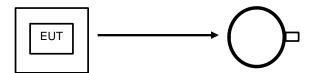
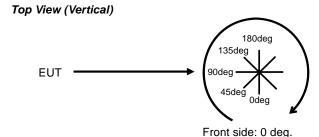

Test Distance: 3 m

Figure 2: Direction of the Loop Antenna



Top View (Horizontal)

Antenna was not rotated.

Forward direction: clockwise

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz to 1 GHz Test data : APPENDIX **Test result** : Pass

Test Report No. 15200257H-A-R1 Page 15 of 25

SECTION 6: -20 dB Bandwidth

Test Procedure

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-20 dB Bandwidth	Enough width	1 to 5 %	Three times	Auto	Peak	Max Hold	Spectrum Analyzer
	to display	of OBW	of RBW				
	emission skirts						

Test data : APPENDIX Test result : Pass

SECTION 7: 99 % emission bandwidth

Test Procedure

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used				
99 % emission bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer				
Peak hold was app	Peak hold was applied as Worst-case measurement.										

Test data : APPENDIX Test result : Pass

Test Report No. 15200257H-A-R1 Page 16 of 25

APPENDIX 1: Test data

Radiated Emission (Fundamental and Spurious Emission)

Ise EMC Lab. Test place

Semi Anechoic Chamber No.3

Date March 27, 2024 22 deg. C / 40 % RH Temperature / Humidity Engineer Takafumi Noguchi

Mode Mode 1

PK or QP

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	100.7	19.5	-74.1	32.2	-	13.9	45.0	31.1	Fundamental
0deg	0.26840	PK	47.9	19.6	-64.3	32.2	-	-29.0	39.0	68.0	
0deg	0.40260	PK	65.9	19.7	-64.4	32.2	-	-11.0	35.5	46.5	
0deg	0.53680	QP	28.6	19.7	-24.4	32.2	-	-8.3	33.0	41.3	
0deg	0.67100	QP	53.5	19.7	-24.4	32.2	-	16.6	31.1	14.5	
0deg	0.80520	QP	26.5	19.7	-24.3	32.2	-	-10.3	29.5	39.8	
0deg	0.93940	QP	42.4	19.7	-24.3	32.1	-	5.7	28.1	22.4	
0deg		QP	22.4	19.7	-24.3	32.1	-	-14.3	26.9	41.2	
0deg		QP	32.7	19.7	-24.3	32.1	-	-4.0	25.9	29.9	
0deg	1.34200	QP	22.1	19.7	-24.3	32.1	-	-14.6	25.0	39.6	
Hori.	42.848	QP	22.9	10.9	7.1	32.2	-	8.7	40.0	31.3	
Hori.	45.226	QP	22.6	10.5	7.2	32.2	-	8.1	40.0	31.9	
Hori.	64.265		22.3	9.1	7.5	32.2	-	6.7	40.0	33.3	
Hori.	67.997	QP	28.4	9.0	7.5	32.2	-	12.7	40.0	27.3	
Hori.	85.689	QP	24.1	9.3	7.7	32.2	-	8.9	40.0	31.1	
Hori.	400.000	QP	21.6	15.8	10.3	32.0	-	15.7	46.0	30.3	
Vert.	42.848		35.2	10.9	7.1	32.2	-	21.0	40.0	19.0	
Vert.	45.226	QP	29.0	10.5	7.2	32.2	-	14.5	40.0	25.5	
Vert.	64.265	QP	29.6	9.1	7.5	32.2	-	14.0	40.0	26.0	
Vert.	67.997	QP	31.6	9.0	7.5	32.2	-	15.9	40.0	24.1	
Vert.	85.689		30.0	9.3	7.7	32.2	-	14.8	40.0	25.2	
Vert.	400.000	QP	21.6	15.8	10.3	32.0	-	15.7	46.0	30.3	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

ſ	Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	0deg	0.13420	PK	100.7	19.5	-74.1	32.2	0.0	13.9	25.0	11.1	Fundamental
[0deg	0.26840	PK	47.9	19.6	-64.3	32.2	0.0	-29.0	19.0	48.0	
ı	0deg	0.40260	PK	65.9	19.7	-64.4	32.2	0.0	-11.0	15.5	26.5	

Result of the fundamental emission at 3 m without Distance factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	100.7	19.5	5.9	32.2	-	93.9	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier)

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated. Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

Test Report No. 15200257H-A-R1 Page 17 of 25

Radiated Emission (Fundamental and Spurious Emission)

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date March 27, 2024
Temperature / Humidity 22 deg. C / 40 % RH
Engineer Takafumi Noguchi

Mode Mode 2

PK or QP

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	101.6	19.5	-74.1	32.2	-	14.8	45.0	30.2	Fundamental
0deg	0.26840	PK	66.1	19.6	-64.3	32.2	-	-10.8	39.0	49.8	
0deg	0.40260	PK	55.9	19.7	-64.4	32.2	-	-21.0	35.5	56.5	
0deg	0.53680	QP	23.1	19.7	-24.4	32.2	-	-13.8	33.0	46.8	
0deg	0.67100	QP	33.6	19.7	-24.4	32.2	-	-3.3	31.1	34.4	
0deg	0.80520	QP	22.2	19.7	-24.3	32.2		-14.6	29.5	44.1	
0deg	0.93940	QP	37.0	19.7	-24.3	32.2	-	0.2	28.1	27.9	
0deg	1.07360	QP	21.9	19.7	-24.3	32.2	-	-14.9	26.9	41.8	
0deg	1.20780	QP	33.4	19.7	-24.3	32.2	-	-3.4	25.9	29.3	
0deg	1.34200	QP	21.9	19.7	-24.3	32.2	-	-14.9	25.0	39.9	
Hori.	42.848	QP	22.8	10.9	7.1	32.2	-	8.6	40.0	31.4	
Hori.	45.226	QP	22.6	10.5	7.2	32.2	-	8.1	40.0	31.9	
Hori.	64.265	QP	22.4	9.1	7.5	32.2	-	6.8	40.0	33.2	
Hori.	67.997	QP	27.1	9.0	7.5	32.2	-	11.4	40.0	28.6	
Hori.	85.689	QP	23.9	9.3	7.7	32.2	-	8.7	40.0	31.3	
Hori.	400.000	QP	21.6	15.8	10.3	32.0	-	15.7	46.0	30.3	
Vert.	42.848	QP	34.4	10.9	7.1	32.2	-	20.2	40.0	19.8	
Vert.	45.226	QP	30.0	10.5	7.2	32.2	-	15.5	40.0	24.5	
Vert.	64.265	QP	28.3	9.1	7.5	32.2	-	12.7	40.0	27.3	
Vert.	67.997	QP	31.2	9.0	7.5	32.2	-	15.5	40.0	24.5	
Vert.	85.689	QP	30.0	9.3	7.7	32.2	-	14.8	40.0	25.2	
Vert.	400.000	QP	21.6	15.8	10.3	32.0	-	15.7	46.0	30.3	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	101.6	19.5	-74.1	32.2	0.0	14.8	25.0	10.2	Fundamental
0deg	0.26840	PK	66.1	19.6	-64.3	32.2	0.0	-10.8	19.0	29.8	
0deg	0.40260	PK	55.9	19.7	-64.4	32.2	0.0	-21.0	15.5	36.5	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor

* Since the peak emission result satisfied the average limit, duty factor was omitted.

Result of the fundamental emission at 3 m without Distance factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	101.6	19.5	5.9	32.2	-	94.8	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier)

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated. Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test Report No. 15200257H-A-R1 Page 18 of 25

Radiated Emission (Fundamental and Spurious Emission)

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date March 27, 2024
Temperature / Humidity 22 deg. C / 40 % RH
Engineer Takafumi Noguchi

Mode Mode 3

PK or QP

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	111.1	19.5	-74.1	32.2	-	24.3	45.0	20.7	Fundamental
0deg	0.26840	PK	66.4	19.6	-64.3	32.2	-	-10.5	39.0	49.5	
0deg		PK	56.4	19.7	-64.4	32.2		-20.5	35.5	56.0	
0deg		QP	23.9	19.7	-24.4	32.2	•	-13.0	33.0	46.0	
0deg		QP	44.3	19.7	-24.4	32.2	-	7.4	31.1	23.7	
0deg		QP	22.2	19.7	-24.3	32.2	-	-14.6	29.5	44.1	
0deg	0.93940	QP	41.9	19.7	-24.3	32.2	-	5.1	28.1	23.0	
0deg		QP	22.0	19.7	-24.3	32.2	-	-14.8	26.9	41.7	
0deg		QP	38.8	19.7	-24.3	32.2	-	2.0	25.9	23.9	
0deg	1.34200	QP	21.9	19.7	-24.3	32.2	1	-14.9	25.0	39.9	
Hori.	42.848		22.8	10.9	7.1	32.2	-	8.6	40.0	31.4	
Hori.	45.226		22.7	10.5	7.2	32.2	-	8.2	40.0	31.8	
Hori.	64.265		22.4	9.1	7.5	32.2	-	6.8	40.0	33.2	
Hori.	67.997	QP	26.9	9.0	7.5	32.2	-	11.2	40.0	28.8	
Hori.	85.689	QP	24.0	9.3	7.7	32.2	1	8.8	40.0	31.2	
Hori.	400.000	QP	21.6	15.8	10.3	32.0	-	15.7	46.0	30.3	
Vert.	42.848	QP	34.4	10.9	7.1	32.2	-	20.2	40.0	19.8	
Vert.	45.226		29.8	10.5	7.2	32.2	-	15.3	40.0	24.7	
Vert.	64.265	QP	29.6	9.1	7.5	32.2	-	14.0	40.0	26.0	
Vert.	67.997	QP	29.2	9.0	7.5	32.2	-	13.5	40.0	26.5	
Vert.	85.689		29.7	9.3	7.7	32.2	-	14.5	40.0	25.5	
Vert.	400.000	QP	21.6	15.8	10.3	32.0	-	15.7	46.0	30.3	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Duty .uoto.											
Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	111.1	19.5	-74.1	32.2	0.0	24.3	25.0	0.7	Fundamental
0deg	0.26840	PK	66.4	19.6	-64.3	32.2	0.0	-10.5	19.0	29.5	
0dea	0.40260	PK	56.4	19.7	-64.4	32.2	0.0	-20.5	15.5	36.0	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor
* Since the peak emission result satisfied the average limit, duty factor was omitted.

Result of the fundamental emission at 3 m without Distance factor

- 1	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
					Factor			Factor				
		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	0deg	0.13420	PK	111.1	19.5	5.9	32.2	-	104.3	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier)

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated. Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test Report No. 15200257H-A-R1 Page 19 of 25

Radiated Emission (Fundamental and Spurious Emission)

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date March 27, 2024
Temperature / Humidity 22 deg. C / 40 % RH
Engineer Takafumi Noguchi

Mode Mode 4

PK or QP

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	100.9	19.5	-74.1	32.2	-	14.1	45.0	30.9	Fundamental
0deg	0.26840	PK	53.4	19.6	-64.3	32.2	-	-23.5	39.0	62.5	
0deg		PK	71.7	19.7	-64.4	32.2		-5.2	35.5	40.7	
0deg	0.53680	QP	32.8	19.7	-24.4	32.2	1	-4.1	33.0	37.1	
0deg		QP	55.3	19.7	-24.4	32.2	-	18.4	31.1	12.7	
0deg		QP	29.7	19.7	-24.3	32.2	-	-7.1	29.5	36.6	
0deg		QP	44.3	19.7	-24.3	32.2	-	7.5	28.1	20.6	
0deg		QP	22.2	19.7	-24.3	32.2	-	-14.6	26.9	41.5	
0deg		QP	34.7	19.7	-24.3	32.2	-	-2.1	25.9	28.0	
0deg	1.34200	QP	22.1	19.7	-24.3	32.2	1	-14.7	25.0	39.7	
Hori.		QP	22.6	11.3	7.1	32.2	-	8.8	40.0	31.2	
Hori.		QP	22.8	11.1	7.1	32.2	-	8.8	40.0	31.2	
Hori.		QP	22.5	10.9	7.1	32.2	-	8.3	40.0	31.7	
Hori.		QP	22.4	9.5	7.3	32.2	-	7.0	40.0	33.0	
Hori.	129.504	QP	22.2	11.4	8.2	32.1	1	9.7	43.5	33.8	
Hori.		QP	21.6	15.8	10.3	32.0	-	15.7	46.0	30.3	
Vert.	40.399	QP	27.6	11.3	7.1	32.2	-	13.8	40.0	26.2	
Vert.		QP	24.2	11.1	7.1	32.2	-	10.2	40.0	29.8	
Vert.		QP	29.3	10.9	7.1	32.2	-	15.1	40.0	24.9	·
Vert.		QP	28.7	9.5	7.3	32.2	-	13.3	40.0	26.7	
Vert.		QP	26.1	11.4	8.2	32.1	-	13.6	43.5	29.9	
Vert.	400.000	QP	21.6	15.8	10.3	32.0	-	15.7	46.0	30.3	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Duty .uoto.											
Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	100.9	19.5	-74.1	32.2	0.0	14.1	25.0	10.9	Fundamental
0deg	0.26840	PK	53.4	19.6	-64.3	32.2	0.0	-23.5	19.0	42.5	
0dea	0.40260	PK	71.7	19.7	-64.4	32.2	0.0	-5.2	15.5	20.7	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor
* Since the peak emission result satisfied the average limit, duty factor was omitted.

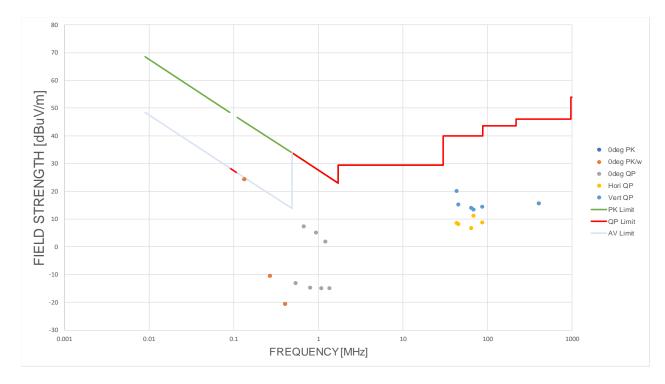
Result of the fundamental emission at 3 m without Distance factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	100.9	19.5	5.9	32.2	-	94.1	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier)

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated. Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test Report No. 15200257H-A-R1 Page 20 of 25

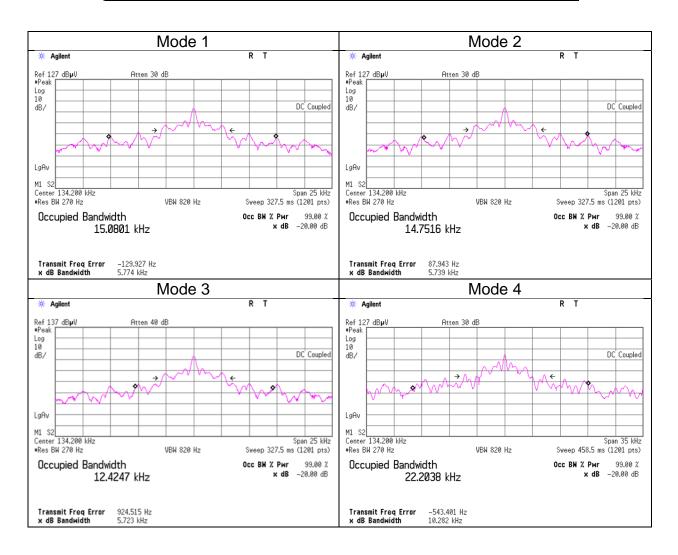

<u>Radiated Spurious Emission</u> (Plot data, Worst case for Fundamental Emission)

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

March 27, 2024 Date 22 deg. C / 40 % RH Temperature / Humidity Takafumi Noguchi Engineer

Mode Mode 3


Test Report No. 15200257H-A-R1 Page 21 of 25

-20 dB Bandwidth / 99 % emission bandwidth

Test place Ise EMC Lab. Semi Anechoic Chamber No.3

Date March 27, 2024
Temperature / Humidity 22 deg. C / 40 % RH
Engineer Takafumi Noguchi
Mode Tx

Mode	-20 dB Bandwidth [kHz]	99 % emission bandwidth [kHz]
1	5.774	15.0801
2	5.739	14.7516
3	5.723	12.4247
4	10.282	22.2038

Test Report No. 15200257H-A-R1 Page 22 of 25

APPENDIX 2: Test instruments

Test Equipment

	Test LIMS ID Description Manufacturer Model Serial Last Cal							
Item	LIM2 ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int	
RE	141216	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM14/ sucoform141-PE/ 421-010/RFM-E321(SW)	-/00640	07/25/2023	12	
RE	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-191	08/10/2023	12	
RE	141295	High Pass Filter 0.15-30MHz	Rohde & Schwarz	EZ-25/3	100041	02/14/2024	12	
RE	141323	Coaxial cable	UL Japan	-	-	09/10/2023	12	
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12	
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/17/2024	12	
RE	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	05/23/2023	12	
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12	
RE	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24	
RE	142152	Loop Antenna	Rohde & Schwarz	HFH2-Z2	836553/009	10/17/2023	12	
RE	142183	Measure	KOMELON	KMC-36	-	10/20/2023	12	
RE	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/23/2023	12	
RE	159670	Coaxial Cable	UL Japan	-	-	11/21/2023	12	
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	i	-	-	
RE	197990	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHBB 9124 + BBA 9106	01365	11/29/2023	12	
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12	

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission