

EMI TEST REPORT

Test Report No. 15200257H-B

Customer	SUBARU CORPORATION
Description of EUT	Keyless Access with Push-Button Start System
Model Number of EUT	SU23S-1
FCC ID	Y8PSU23S-1
Test Regulation	FCC Part 15 Subpart B
Test Result	Complied
Issue Date	April 16, 2024
Remarks	-

Representative test engineer	Approved by
7. Noguchi	S. Mijazono
Takafumi Noguchi Engineer	Shinichi Miyazono Engineer
	ACCREDITED CERTIFICATE 5107.02
	d is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15200257H-B Page 2 of 19

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers EMC technical requirements. It does not cover administrative issues such as Manual or non-EMC test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity
 of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 15200257H-B

	Revision	Test Report No.	Date	Page Revised Contents
Ī	- (Original)	15200257H-B	April 16, 2024	-

Test Report No. 15200257H-B Page 3 of 19

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	Hori.	Horizontal	
AAN	Asymmetric Artificial Network		Interference-Causing Equipment Standard	
AC	Alternating Current I/O Input/Output			
AE	Auxiliary equipment	IEC	International Electrotechnical Commission	
AM	Amplitude Modulation	IEEE	Institute of Electrical and Electronics Engineers	
AMN	Artificial Mains Network	IF	Intermediate Frequency	
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference	
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada	
Ant, ANT	Antenna	ISN	Impedance Stabilization Network	
AP	Access Point	ISO	International Organization for Standardization	
ASK	Amplitude Shift Keying	JAB	Japan Accreditation Board	
Atten., ATT	Attenuator	LAN	Local Area Network	
AV	Average	LCL	Longitudinal Conversion Loss	
BPSK	Binary Phase-Shift Keying	LIMS	Laboratory Information Management System	
BR	Bluetooth Basic Rate	LISN	Line Impedance Stabilization Network	
BT	Bluetooth	MRA	Mutual Recognition Arrangement	
BT LE	Bluetooth Low Energy	N/A	Not Applicable	
BW	BandWidth	NIST	National Institute of Standards and Technology	
C.F	Correction Factor	NS	No signal detect.	
Cal Int	Calibration Interval	NSA	Normalized Site Attenuation	
CAV	CISPR AV	OBW	Occupied BandWidth	
CCK	Complementary Code Keying	OFDM	Orthogonal Frequency Division Multiplexing	
CDN	Coupling Decoupling Network	PER	Packet Error Rate	
Ch., CH	Channel	PK	Peak	
CISPR	Comite International Special des Perturbations Radioelectriques	P _{LT}	long-term flicker severity	
Corr.	Correction	POHC(A)	Partial Odd Harmonic Current	
CPE	Customer premise equipment	Pol., Pola.	Polarization	
CW	Continuous Wave	PR-ASK	Phase Reversal ASK	
DBPSK	Differential BPSK	P _{ST}	short-term flicker severity	
DC	Direct Current	QAM	Quadrature Amplitude Modulation	
DET	Detector	QP	Quasi-Peak	
D-factor, D.fac.	Distance factor	QPSK	Quadrature Phase Shift Keying	
Dmax	maximum absolute voltage change during an observation period	r.m.s., RMS	Root Mean Square	
DQPSK	Differential QPSK	RBW	Resolution BandWidth	
DSSS	Direct Sequence Spread Spectrum	RE	Radio Equipment	
DUT	Device Under Test	REV	Reverse	
EDR	Enhanced Data Rate	RF	Radio Frequency	
e.i.r.p., EIRP	Equivalent Isotropically Radiated Power	RFID	Radio Frequency Identifier	
EM clamp	Electromagnetic clamp	RNSS	Radio Navigation Satellite Service	
EMC	ElectroMagnetic Compatibility	RSS	Radio Standards Specifications	
EMI	ElectroMagnetic Interference	Rx	Receiving	
EMS	ElectroMagnetic Susceptibility	S.fac.	Site factor	
EN	European Norm	SINAD	Ratio of (Signal + Noise + Distortion) to (Noise + Distortion)	
e.r.p., ERP	Effective Radiated Power	S/N	Signal to Noise ratio	
ETSI	European Union Standards Institute	SA, S/A	Spectrum Analyzer	
EU	European Union	SABS	South African Bureau of Standards	
EUT	Equipment Under Test	SANS	South African National Standards	
Fac.	Factor	SG	Signal Generator	
FCC	Federal Communications Commission	SVSWR	Site-Voltage Standing Wave Ratio	
FHSS	Frequency Hopping Spread Spectrum	THC(A)	Total Harmonic Current	
FM	Frequency Modulation	THD(%)	Total Harmonic Distortion	
Freq.	Frequency	TR, T/R	Test Receiver	
FSK	Frequency Shift Keying	Tx	Transmitting	
Fund	Fundamental	UFA	Uniform field area	
FWD	Forward	VBW	Video BandWidth	
GFSK	Gaussian Frequency-Shift Keying	Vert.	Vertical	
GNSS	Global Navigation Satellite System	WLAN	Wireless LAN	
GPS	Global Positioning System	xDSL	Generic term for all types of DSL technology (DSL: Digital Subscriber Line)	

CONTENTS	PAGE
SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	
SECTION 3: Test specification, procedures & results	7
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated Emission	
APPENDIX 1: Test data	
Radiated Emission	
APPENDIX 2: Test instruments	16
APPENDIX 3: Photographs of test setup	17
Radiated Emission	
Worst Case Position	
	_

Test Report No. 15200257H-B Page 5 of 19

SECTION 1: Customer information

Company Name	SUBARU CORPORATION
Address	1-1, Subaru-cho, ota-shi, Gunma-ken, 373-8555, Japan
Telephone Number	+81-80-7737-7297
Contact Person	Junichi Motoyama

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Description	Keyless Access with Push-Button Start System
Model Number	SU23S-1
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	March 19, 2024
Test Date	March 28, 2024

2.2 Product Description

General Specification

Rating	DC 12.0 V
Clock frequency (ies) in the	8.000 MHz
system	

Test Report No. 15200257H-B Page 6 of 19

Radio Specification

[Transmitter]

Radio Type	Transmitter
Frequency of Operation	134.2 kHz
Type of Modulation	OOK (A1D)
Antenna	Antenna (TYPE 1) *1), *3) / (TYPE 2) *2)
Antenna Specification	Ferrite antenna coil
Oscillator frequency	4.2944 MHz (Crystal)

^{*1)} Maximum number of this antenna is 2.

[Receiver]

[110001101]	
Radio Type	Receiver
Frequency of Operation	433.92 MHz
Oscillator frequency	30.265 MHz (Crystal)
Intermediate frequency	280 kHz
Type of Modulation	FSK
Type of receiving system	Super-heterodyne
Antenna Type	Internal antenna (Inverted F antenna)
Voltage Controlled	1734.540 MHz (Maximum)
Oscillator	

^{*2)} Maximum number of this antenna is 4.

^{*3)} The Antennas (TYPE 1) of this system have variations of model 1 and model 2.

The difference of these variations is only the outer shell, and the test was performed with the representative model 1.

Test Report No. 15200257H-B Page 7 of 19

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart B The latest version on the first day of the testing period
Title	FCC 47CFR Part15 Radio Frequency Device Subpart B Unintentional Radiators

3.2 Procedures and results

Item	Test Procedure	Limits	Worst margin	Result	Remarks
Conducted	FCC: ANSI C63.4: 2014 +	FCC:Part 15 Subpart B	-	N/A	*1)
emission	C63.4a: 2017	15.107(a)			
	7. AC power - line				
	conducted emission				
	measurements				
	ISED: RSS-Gen 7.1	ISED: RSS-Gen 7.2			
Radiated	FCC: ANSI C63.4: 2014 +	FCC: Part 15 Subpart B	22.29 dB	Complied	-
emission	C63.4a: 2017	15.109(a)	66.626 MHz,		
	8. Radiated		Vertical, QP		
	emission measurements				
	ISED: RSS-Gen 7.1	ISED: RSS-Gen 7.3			
Antenna	FCC: ANSI C63.4: 2014 +	FCC: Part 15 Subpart B	-	N/A	*2)
Terminal	C63.4a: 2017	15.111(a)			
	12. Measurement of				
	unintentional radiators other				
	than ITE				
	ISED: RSS-Gen 7.1	ISED: RSS-Gen 7.4			

^{*} Note: UL Japan, Inc.'s EMI Work Procedure: Work Instructions-ULID-003591.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*2)} The receiving antenna (of this EUT) is installed inside the EUT and cannot be removed (permanently attached). Therefore, Radiated emission test was performed.

Test Report No. 15200257H-B Page 8 of 19

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range	Unit	Calculated Uncertainty (+/-)			
3 m	9 kHz to 30 MHz	9 kHz to 30 MHz				
10 m			dB	3.1		
3 m	30 MHz to 200 MHz	Horizontal	dB	4.7		
		Vertical	dB	4.7		
	200 MHz to 1000 MHz	Horizontal	dB	4.8		
		Vertical	dB	6.0		
10 m	30 MHz to 200 MHz	Horizontal	dB	5.2		
		Vertical	dB	5.1		
	200 MHz to 1000 MHz	Horizontal	dB	5.2		
		Vertical	dB	5.2		
3 m	1 GHz to 6 GHz	1 GHz to 6 GHz				
	6 GHz to 18 GHz	dB	5.2			
1 m	10 GHz to 18 GHz	dB	5.3			
	18 GHz to 26.5 GHz	dB	5.2			
	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz				
0.5 m	26.5 GHz to 40 GHz	<u> </u>	dB	4.8		

Test Report No. 15200257H-B Page 9 of 19

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

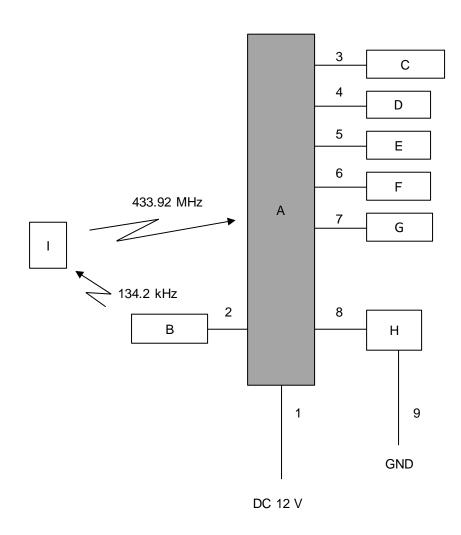
ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

Test Report No. 15200257H-B Page 10 of 19


SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Receiving mode
Software(s)	SMT_ROMUP_WAVETEST_001 Version: 01

^{*}The test signal level was confirmed to be sufficient to stabilize the local oscillator of the EUT.

4.2 Configuration and peripherals

^{*}Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

^{*} It was confirmed by using checker that the EUT receives the signal from the transmitter (pair of EUT).

^{*} Item No. A includes Receiver Antenna.

Test Report No. 15200257H-B Page 11 of 19

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Keyless Access with Push-Button Start System	SU23S-1	No.1	SUBARU CORPORATION	EUT
В	Antenna	TYPE1 (No.1)	J2142019	SUBARU CORPORATION	-
С	Antenna	TYPE1 (No.2)	J2142008	SUBARU CORPORATION	-
D	Antenna	TYPE2 INSIDE (No.1)	D33151 000161	SUBARU CORPORATION	-
E	Antenna	TYPE2 INSIDE (No.2)	D33151 000163	SUBARU CORPORATION	-
F	Antenna	TYPE2 INSIDE (No.3)	D33151 000164	SUBARU CORPORATION	-
G	Antenna	TYPE2 LUGGAGE (No.4)	D33151 000135	SUBARU CORPORATION	-
Н	Low Frequency & Radio Frequency Bench (TYPE1)	-	No.1	SUBARU CORPORATION	-
I	Smart Key	14AKC	No.1	SUBARU CORPORATION	-

List of Cables Used

No.	Name	Length (m)	Shield	Remarks	
			Cable	Connector	
1	DC Cable	3.0	Unshielded	Unshielded	-
2	Antenna Cable	3.0	Unshielded	Unshielded	-
3	Antenna Cable	3.0	Unshielded	Unshielded	-
4	Antenna Cable	3.0	Unshielded	Unshielded	-
5	Antenna Cable	3.0	Unshielded	Unshielded	-
6	Antenna Cable	3.0	Unshielded	Unshielded	-
7	Antenna Cable	3.0	Unshielded	Unshielded	-
8	Signal Cable	3.0	Unshielded	Unshielded	-
9	GND Cable	6.0	Unshielded	Unshielded	-

Test Report No. 15200257H-B Page 12 of 19

SECTION 5: Radiated Emission

5.1 Operating environment

Date : See data
Test place : See data
Temperature : See data
Humidity : See data
Test engineer : See data

5.2 Test configuration

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The EUT was set on the edge of the tabletop.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength.

Photographs of the set up are shown in APPENDIX 3.

5.3 Test conditions

Frequency range : 30 MHz to 200 MHz (Biconical antenna)

200 MHz to 1000 MHz (Logperiodic antenna)

1000 MHz to 10000 MHz (Horn antenna)

Test distance : 3 m

EUT position : Table top

EUT operation mode : See Clause 4.1

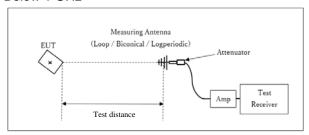
5.4 Test procedure

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The radiated emission measurements were made with the following detector function of the Test Receiver and the Spectrum Analyzer.

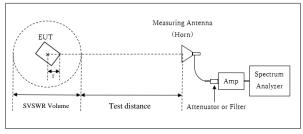
Test antenna was aimed at the emission source for receiving the maximum signal and always kept. (Above 1 GHz)


Frequency	Below 1 GHz	Above 1 GHz *1)
Instrument used	Test Receiver	Test Receiver
IF Bandwidth	QP: BW 120 kHz	PK: BW 1 MHz, CAV: BW 1 MHz

^{*1)} The measurement data was adjusted to a 3 m distance using the following Distance Factor. Distance Factor: See Figure 1.

Test Report No. 15200257H-B Page 13 of 19

Figure 1: Test Setup


Below 1 GHz

Test Distance: 3 m

× : Center of turn table

1 GHz to 10 GHz

- r: Radius of an outer periphery of EUT
- ×: Center of turn table

Test Distance: 3 m (1 GHz to 6 GHz), 4.3 m (6 GHz to 10 GHz)

[1 GHz to 6 GHz]

Distance Factor: $20 \times \log (3.5 \text{ m}^*/3.0 \text{ m}) = 1.34 \text{ dB}$ *Test Distance: (3 + SVSWR Volume /2) - r = 3.5 m

SVSWR Volume: 2.0 m

[6 GHz to 10 GHz]

Distance Factor: $20 \times \log (4.5 \text{ m}^*/3.0 \text{ m}) = 3.53 \text{ dB}$ *Test Distance: (4.3 + SVSWR Volume /2) - r = 4.5 m

SVSWR Volume: 1.4 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.)

r = 0.5 m

- The noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

5.5 Test result

Summary of the test results: Pass

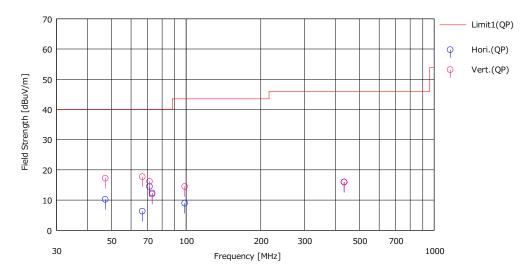
The limit is rounded down to one decimal place.

The test result is rounded off, so some differences might be observed.

Test Report No. 15200257H-B Page 14 of 19

APPENDIX 1: Test data

Radiated Emission


Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date March 28, 2024
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Takafumi Noguchi
(Below 1 GHz)

Mode 1

Limit: FCC_Part 15 Subpart B(15.109)_Class B

No.	Freq.	Reading (QP)	Ant Fac	Loss	Gain	Result (QP)	Limit (QP)	Margin (QP)	Pola.	Height	Angle	Ant.	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]		[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	
1	47.238	23.10	12.11	7.20	32.19	10.22	40.00	29.78	Hori.	400	0	BA	
2	66.626	24.40	6.60	7.49	32.18	6.31	40.00	33.69	Hori.	400	0	BA	
3	71.252	32.80	6.33	7.55	32.18	14.50	40.00	25.50	Hori.	400	0	BA	
4	73.004	30.60	6.34	7.57	32.17	12.34	40.00	27.66		400	0	BA	
5	98.768	23.30	9.94	7.89	32.15	8.98	43.50	34.52		400	0	BA	
6	433.640	21.20	16.23	10.54	32.02	15.95	46.00	30.05	Hori.	100	97	LA22	
7	434.200	21.20	16.24	10.54	32.02	15.96	46.00	30.04		100	164	LA22	
8	47.238	30.10	12.11	7.20	32.19	17.22	40.00	22.78	Vert.	100	182	BA	
9	66.626	35.80	6.60	7.49	32.18		40.00	22.29		100	67	BA	
10	71.252 73.004	34.50 30.20	6.33	7.55 7.57	32.18 32.17	16.20 11.94	40.00 40.00	23.80 28.06		100 100	82 259	BA BA	
12	98,768	28.80	9,94	7.89	32.17	14.48	43.50	29.02		100	104		
13	433,640	21.20	16,23	10,54	32.02	15,95	46.00	30.05	Vert. Vert.	100	2	LA22	
14	434,200	21.20	16,24	10.54	32.02	15.96	46.00	30.04		100	241	LA22	
'-	101,200	21.20	10.24	10.04	02.02	10.70	70,00	00.04	¥011.	100	2-71	LIVEZ	
				1									

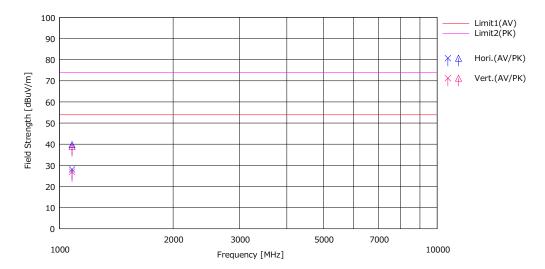
CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS(CABLE + ATT) - GAIN(AMP)

Except for the above table: adequate margin data below the limits.

Test Report No. 15200257H-B Page 15 of 19

Radiated Emission


Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date March 28, 2024
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Takafumi Noguchi
(Above 1 GHz)

Mode 1

Limit : FCC_Part 15 Subpart B(15.109)_Class B

	F	Red	ding	Ant Fac	Loss	Gain	Res	sult	Li	mit	Ma	rgin	Pola.	Hereka	A I-		
No	Freq.	(AV)	(PK)	Anirdo	LOSS	Gan	(AV)	(PK)	(AV)	(PK)	(AV)	(PK)	Pola	Height	Angle	Ant. Type	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]	[cm]	[deg]	1,700	
	1080,000	35.10	46.80	24.64	2.90	34.58	28.06	39.76	53.90	73.90	25.84	34.14	Hori.	100	0	H20	
	2 1080,000	34.00	45.90	24.64	2.90	34.58	26.96	38.86	53.90	73.90	26.94	35.04	Vert.	100	0	H20	
	<u> </u>																

CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS(CABLE + D-factor) - GAIN(AMP)

Except for the above table: adequate margin data below the limits.

Test Report No. 15200257H-B Page 16 of 19

APPENDIX 2: Test instruments

Test equipment

	equipir		1				
Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-191	08/10/2023	12
RE	141323	Coaxial cable	UL Japan	-	ı	09/10/2023	12
RE	141427	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103B+BBA9106	08031	07/11/2023	12
RE	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	258	11/20/2023	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2024	12
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/17/2024	12
RE	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	05/23/2023	12
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
RE	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
RE	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	10/18/2023	12
RE	142183	Measure	KOMELON	KMC-36	-	10/20/2023	12
RE	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/23/2023	12
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	238712	Double Ridge Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	687	08/10/2023	12
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12
RE	246001	Microwave Cable	Huber+Suhner	SF103/11PC35/11PC35/ 1000mm / SF126E/5000mm	800673(1m) / 610204(5m)	03/06/2024	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission