

FCC 47 CFR PART 15 SUBPART C **INDUSTRY CANADA RSS-210 ISSUE 8**

CERTIFICATION TEST REPORT

FOR

POWER METER RF ADAPTER

MODEL NUMBER: ST-VM-TESEPROBE-W-AD (RF ADAPTER)

FCC ID: Y8E-VM2013

REPORT NUMBER: R10008567-ADRF

ISSUE DATE: 2013-11-27

Prepared for **VISION METERING, LLC** 7 ROSS CANNON ST YORK, SC 29745, USA

Prepared by **UL LLC** 12 LABORATORY DR. **RESEARCH TRIANGLE PARK, NC 27709 USA** TEL: (919) 549-1400

NVLAP LAB CODE 200246-0

Revision History

	lssue		
Rev.	Date	Revisions	Revised By
	2013-11-27	Initial Issue	Jeff Moser

Page 2 of 41

TABLE OF CONTENTS

1.	ATT	TTESTATION OF TEST RESULTS	
2.	TES	EST METHODOLOGY	
3.	FAC	ACILITIES AND ACCREDITATION	5
4.	CAI	ALIBRATION AND UNCERTAINTY	
	4.1.	MEASURING INSTRUMENT CALIBRATION	
	4.2.	SAMPLE CALCULATION	
	4.3.	MEASUREMENT UNCERTAINTY	
	5.6.	DESCRIPTION OF TEST SETUP	
6.	TES	EST AND MEASUREMENT EQUIPMENT	9
7.	TES	EST RESULTS	11
	7.1.	.1.1. 99% BANDWIDTH – RF ADAPTER	11
	7.2. 7.2. 7.2. 7.2. 7.2. 7.2.	RADIATED EMISSIONS 2.1. FUNDAMENTAL FREQUENCY RADIATED EMISSION – RI 2.2. TRANSMITTER AUTHORIZED BAND EDGES – RF ADAPT 2.3. HARMONICS AND SPURIOUS EMISSIONS ABOVE 1GHz 2.4. WORST-CASE BELOW 1 GHz – RF ADAPTER	
8.	AC	C POWER LINE CONDUCTED EMISSIONS	

Page 3 of 41

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	VISION METERING LLC 7 ROSS CANNON ST YORK, SC 29745, USA		
EUT DESCRIPTION:	POWER METER RF ADAPTER		
MODEL:	ST-VM-TESEPROBE-W-AD		
SERIAL NUMBER:	Non-serialized samples		
DATE TESTED:	2013-09-13 through 2013-10-24		
	APPLICABLE STANDARDS		
ST	ANDARD	TEST RESULTS	
CFR 47 P	art 15 Subpart C	Pass	
INDUSTRY CANADA	A RSS-210 Issue 8 Annex 8	Pass	
INDUSTRY CAN	ADA RSS-GEN Issue 3	Pass	

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL LLC By:

Michel /

Mike Antola EMC Project Lead UL - WiSE Wireless, Interoperability, Security/Payments & EMC Prepared By:

Jeff Moser EMC Program Manager UL - WiSE

Page 4 of 41

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 12 Laboratory Dr., Research Triangle Park, NC 27709, USA.

UL LLC (RTP) is accredited by NVLAP, Laboratory Code 200246-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2002460.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Page 5 of 41

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	+/- 2.5 dB
Radiated Disturbance, 30 to 1000 MHz	+/- 3.4 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 903-927 MHz transceiver device for Power Meters. The EUT is sold as part of a kit (model number ST-VM-TESEPROBE-W) that includes the RF Adapter Reader (ST-VM-TESEPROBE-W-AD) and Optical Head Reader (ST-VM-TESEPROBE-W-HD). This report covers the RF Adapter portion of the kit.

The radio module is manufactured by TestPro.

5.2. MAXIMUM OUTPUT E-FIELD STRENGTH

The transmitter has a maximum output peak E-field as follows:

Frequency Range	Mode	Output PK E-field Strength
(MHz)		(dBuV/m)
903-927	RF Adapter (GFSK)	93.86

Note: Maximum quasi-peak for the RF Adapter was 93.73dBuV/m.

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a monopole antenna, with a maximum gain of 3 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was A590, rev. 2.0.

The EUT driver software installed during testing was TesPro USB Optical Driver, rev. 1.01.

The test utility software used during testing was TS-SPRF900, rev. 2.0.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest peak E-field.

During testing of the RF adapter, it was connected directly to a USB port of a laptop PC, similar to its usage in the field. The laptop was tested in this one (rest) orientation.

Page 6 of 41

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop PC	Lenovo	7661-CC2	L3-AB229	NA		
AC Adapter	Lenovo	92P1109	11S92P1109Z1ZBTZ	NA		
			718B5W			
USB to DB9 Serial Adapter	Aten	UC-232A	Z3844194BL60079	NA		
Partial meter face-plate	-	-	-	NA		
with ANSI type 2 optical						
port						

I/O CABLES

	I/O Cable List						
Cable	Port	Connector	Cable Type	Cable	Remarks		
No		Туре		Length (m)			
1	AC In	AC inlet	Unshielded	1	Detachable Ac power cord to AC		
					adapter.		
2	DC Out	NA	Unshielded	1.7	Non-detachable power cable from		
					AC adaper to laptop PC.		
3	USB	USB	Shielded	0.3	USB-to-DB9 adapter cable between		
					laptop PC and optical port.		
4	DB9	DB9	Unshielded	2.4	2-conductor cable to optical port of		
					meter face.		

TEST SETUP

During testing of the RF adapter, it was connected directly to a USB port of a laptop PC, similar to its usage in the field.

Page 7 of 41

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Antenna-port Measurements

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
SA0016	Spectrum Analyzer	Agilent	N9030A	2013-09-04	2014-09-30
HI0041	Temp/Humid/Pressure Meter	Cole-Parmer	99760-00	2013-01-25	2014-01-25

Radiated Disturbance Emissions

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
AT0037	Loop Antenna (Low Range)	Electro-Metrics	EM-6871	2013-06-19	2014-06-30
AT0036	Loop Antenna (High Range)	Electro-Metrics	EM-6872	2013-06-20	2014-06-30
AT0022	Log-periodic Antenna, 200 MHz to 1000 MHz	Chase	UPA6109	2013-01-29	2014-01-31
AT0025	Biconical Antenna, 30 to 300 MHz	Schaffner- Chase EMC Ltd.	VBA6106A	2013-06-14	2014-06-30
AT0062	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2013-08-27	2014-08-31
SAC_C (Biconical 3m location)	Gain-Loss string for biconical antenna at 3m	Various	Various	2013-09-06	2014-09-30
SAC_D (Log-Periodic 3m location)	Gain-Loss string for log- periodic antenna at 3m	Various	Various	2013-09-06	2014-09-30
SAC_E_LR (Loop & Rod 3m location)	Gain-Loss string for loop/rod antenna at 3m	Various	Various	2013-09-06	2014-09-30
SAR003	Spectrum Analyzer / Receiver	Rohde & Schwarz	ESIB40 (1088.7490.40)	2013-09-03	2014-09-30
SA0016	Spectrum Analyzer	Agilent	N9030A	2013-09-04	2014-09-30
AMP011	RF Amp, 1-20GHz	Miteq	AMF-6D-01002000- 22-10P	2013-09-04	2014-09-30
HI0034	Temp/Humid/Pressure Meter	Cole-Parmer	99760-00	2013-01-25	2014-01-25
72669	Band Reject Filter: 902- 928MHz	Lorch Microwave	5BR8-915/26-S	2013-07-14	2014-07-31
HPF005	High-pass Filter: 1500- 1800MHz	Microtronics	HPM50114-01	2013-09-04	2014-09-30
HPF009	High-pass Filter: 1000- 10,000GHz	Microtronics	HPM17672	2013-10-14	2014-10-30
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA

Page 9 of 41

Conducted Disturbance Emissions - Voltage

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
SA0015	EMI Test Receiver 9kHz-7GHz	Rohde & Schwarz	ESCI 7	2013-09-04	2014-09-30
ATA016	Coaxial cable, 20 ft., BNC -male to BNC-male	UL	RG-223	2013-09-05	2014-09-30
HI0069	Temp/Humid/Pressure Meter	Cole-Parmer	99760-00	2013-06-17	2014-06-17
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
ATA508	Transient Limiter, 0.009 to 100 MHz	Electro-Metrics	EM 7600	2013-09-06	2014-09-30
LISN002	LISN, 50-ohm/50-uH, 2- conductor, 25A	Fischer Custom Com.	FCC-LISN-50-25-2- 01-550V	2013-09-03	2014-09-30

Page 10 of 41

7. TEST RESULTS

7.1.1. 99% BANDWIDTH – RF ADAPTER

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(kHz)
Low	903	0.0417	41.716
Middle	915	0.0417	41.713
High	927	0.0417	41.722

Page 11 of 41

99% BANDWIDTH

7.2. RADIATED EMISSIONS

TEST PROCEDURE

ANSI C63.4

<u>LIMIT</u>

IC RSS-210, A2.9 FCC 15.249

Operation within the bands 902–928 MHz, 2400–2483.5 MHz, 5725–5875 MHZ, and 24.0–24.25 GHz.

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/ meter)	Field strength of harmonics (microvolts/ meter)
902–928 MHz 2400–2483.5 MHz 5725–5875 MHz 24.0–24.25 GHz	50 50 250	500 500 500 2500

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Frequency (MHz)	Field strength (microvolts/meter)	Measure- ment dis- tance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88–216	150 **	3
216–960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76– 88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

Page 15 of 41

<u>RESULTS</u>

Page 16 of 41

Page 18 of 41

Page 19 of 41

HIGH CHANNEL: HORIZONTAL

		r 50Ω			ENSEINT	ALI		o: Voltago	U3:16:5	
				PNO: Wide 😱	Trig: Free Ru #Atten: 10 dB	n	#Avgiyp	e. voltage	I	TYPE MWWW DET P P N N
		E Official Of	12 40	I Gam.cow				Mkr	2 928.00	0 00 MI
) dB/di	v R€	ef 100.00	dBµV						47.	44 dB
		{)1								
0.0	/									
0.0	1									
0.0	1									
0.0	/				2					54.00 (
0.0 📈			Varia minal anna da marchada	فالإاراب والإام المحالية والدرعا والتجارية	and the state of the	and the second	المجامع الأبجانا فالباط	an an international and a statement	discontration and the	water shares
0.0										
0.0										
0.0										
0.0										
									-	
enter Doc P	928.00 M 100	UU IVIHZ			300 kHz			#Swee	Span N 8 00 me	2.500 M (10001 m
163 0	** 100	7 NHZ		v DV4	JVV NIIZ			#94466	/ 0.00 115	(10001)
ARIMUDE 1 N	1 f		26 997 50 MHz	89.51 d	BuV	N FUNCTI	IUN WIDTH	FU	NCTION VALUE	
2 N	1 f		928.000 00 MHz	47.44 c	BμV					
3 4										
5										
7										
8										
0										
1										
1 2										

Page 20 of 41

Page 21 of 41

7.2.2. TRANSMITTER AUTHORIZED BAND EDGES – RF ADAPTER

AUTHORIZED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 22 of 41

AUTHORIZED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 23 of 41

AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 24 of 41

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 25 of 41

7.2.3. HARMONICS AND SPURIOUS EMISSIONS ABOVE 1GHz – RF ADAPTER

Page 26 of 41

CUSTOME	R: Vision	Metering								
_AB NUME	BER: 13LE	3158								
MODEL: R	F Module									
MODE: 903	3MHz									
TESTED B	Y: M. Nol	ting								
Test	Meter				Field					
Frequency	Reading		Antenna	Gain/Loss	Strength	FCC AV	Margin	FCC PK	Margin	
[GHz]	[dBuV]	Detector*	[dB/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[dBuV/m]	[dB]	Polarit
1.622	58.30	PK	28.60	-39.40	47.50	54.0	-6.5	74.0	-26.5	Н
1.663	55.66	PK	28.90	-39.40	45.16	54.0	-8.8	74.0	-28.8	Н
1.807	57.59	PK	30.00	-39.40	48.19	-	-	74.0	-25.8	Н
2.710	50.80	PK	32.40	-37.70	45.50	54.0	-8.5	74.0	-28.5	Н
3.613	49.23	PK	33.30	-37.30	45.23	54.0	-8.8	74.0	-28.8	Н
6.322	51.71	PK	35.40	-33.20	53.91	-	-	74.0	-20.1	Н
7.225	44.51	PK	35.70	-32.90	47.31	54.0	-6.7	74.0	-26.7	Н
1.806	56.40	VB10	30.00	-39.40	47.00	54.0	-7.0	-	-	Н
6.321	49.80	VB10	35.40	-33.20	52.00	54.0	-2.0	-	-	Н
6.321	49.54	VB10	35.40	-33.20	51.74	54.0	-2.3	-	-	Н
1.622	64.07	PK	28.60	-39.40	53.27	-	-	74.0	-20.7	V
1.665	56.06	PK	28.90	-39.40	45.56	54.0	-8.4	74.0	-28.4	V
1.806	57.05	PK	30.00	-39.40	47.65	54.0	-6.4	74.0	-26.4	V
1.999	53.27	PK	31.50	-39.20	45.57	54.0	-8.4	74.0	-28.4	V
2.710	48.48	PK	32.40	-37.70	43.18	54.0	-10.8	74.0	-30.8	V
3.613	49.62	PK	33.30	-37.30	45.62	54.0	-8.4	74.0	-28.4	V
6.322	48.86		35.40	-33.20	51.06	-	-	74.0	-22.9	V
1.224	46.32		35.70	-32.90	49.12	-	-	74.0	-24.9	V
1.620	57.20	VB10	28.60	-39.40	46.40	54.0	-7.6	-	-	V
6.321	49.04	VB10	35.40	-33.20	51.24	54.0	-2.8	-	-	V
1.224	45.65	VB10	35.70	-32.90	48.45	54.0	-5.6	-	-	V

Page 28 of 41

MIDDLE	CHANN	EL: TAE	BULAR [ΟΑΤΑ						
CUSTOME	R: Vision	Metering								
LAB NUME	BER: 13LE	3158								
MODEL: R	F Module									
MODE: 91	5MHz									
TESTED B	Y: M. Nol	ting								
Test	Meter				Field					
Frequency	Reading		Antenna	Gain/Loss	Strength	FCC AV	Margin	FCC PK	Margin	
[GHz]	[dBuV]	Detector*	[dB/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[dBuV/m]	[dB]	Polarity
1.622	56.60	PK	28.60	-39.40	45.80	54.0	-8.2	74.0	-28.2	Н
1.660	55.55	PK	28.90	-39.40	45.05	54.0	-9.0	74.0	-29.0	Н
1.831	55.18	PK	30.20	-39.40	45.98	54.0	-8.0	74.0	-28.0	Н
2.458	48.78	PK	32.00	-38.10	42.68	54.0	-11.3	74.0	-31.3	Н
2.746	50.02	PK	32.40	-37.70	44.72	54.0	-9.3	74.0	-29.3	Н
3.661	48.88	PK	33.30	-37.20	44.98	54.0	-9.0	74.0	-29.0	Н
6.406	49.91	PK	35.50	-33.00	52.41	-	-	74.0	-21.6	Н
7.321	42.69	PK	35.60	-32.70	45.59	54.0	-8.4	74.0	-28.4	Н
6.405	50.34	VB10	35.50	-33.00	52.84	54.0	-1.2	-	-	Н
1.622	56.75	PK	28.60	-39.40	45.95	54.0	-8.1	74.0	-28.1	V
1.661	55.72	PK	28.90	-39.40	45.22	54.0	-8.8	74.0	-28.8	V
1.831	55.67	PK	30.20	-39.40	46.47	54.0	-7.5	74.0	-27.5	V
2.452	50.80	PK	32.00	-38.10	44.70	54.0	-9.3	74.0	-29.3	V
2.746	48.59	PK	32.40	-37.70	43.29	54.0	-10.7	74.0	-30.7	V
3.661	50.07	PK	33.30	-37.20	46.17	54.0	-7.8	74.0	-27.8	V
6.406	50.81	PK	35.50	-33.00	53.31	-	-	74.0	-20.7	V
7.321	44.81	PK	35.60	-32.70	47.71	54.0	-6.3	74.0	-26.3	V
6.405	50.25	VB10	35.50	-33.00	52.75	54.0	-1.3	-	-	V
*PK: Peak [Detector									
*VB10Hz: 1	MHz RBW	, 10Hz VBW								

Page 29 of 41

Page 30 of 41

CUSTOME	R: Vision	Metering								
LAB NUME	BER: 13LE	3158								
MODEL: R	F Module									
MODE: 92	7MHz									
TESTED B	Y: M. Nol	ting								
Test	Meter				Field					
Frequency	Reading		Antenna	Gain/Loss	Strength	FCC AV	Margin	FCC PK	Margin	
[GHz]	[dBuV]	Detector*	[dB/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[dBuV/m]	[dB]	Polarity
1.622	59.44	PK	28.60	-39.40	48.64	-	-	74.0	-25.4	Н
1.662	53.91	PK	28.90	-39.40	43.41	54.0	-10.6	74.0	-30.6	Н
1.855	54.59	PK	30.40	-39.40	45.59	54.0	-8.4	74.0	-28.4	Н
1.862	55.59	PK	30.50	-39.40	46.69	54.0	-7.3	74.0	-27.3	Н
2.440	51.31	PK	32.00	-38.20	45.11	54.0	-8.9	74.0	-28.9	Н
2.782	52.13	PK	32.50	-37.80	46.83	54.0	-7.2	74.0	-27.2	Н
3.709	47.26	PK	33.30	-37.20	43.36	54.0	-10.6	74.0	-30.6	Н
6.490	48.75	PK	35.60	-32.90	51.45	-	-	74.0	-22.6	Н
7.417	42.58	PK	35.60	-32.60	45.58	54.0	-8.4	74.0	-28.4	Н
1.621	52.94	VB10	28.60	-39.40	42.14	54.0	-11.9	-	-	Н
6.489	50.29	VB10	35.60	-32.90	52.99	54.0	-1.0	-	-	Н
1.622	58.81	PK	28.60	-39.40	48.01	54.0	-6.0	74.0	-26.0	V
1.666	56.74	PK	28.90	-39.40	46.24	54.0	-7.8	74.0	-27.8	V
1.855	54.85	PK	30.40	-39.40	45.85	54.0	-8.2	74.0	-28.2	V
1.993	50.11	PK	31.50	-39.20	42.41	54.0	-11.6	74.0	-31.6	V
2.453	50.04	PK	32.00	-38.10	43.94	54.0	-10.1	74.0	-30.1	V
2.782	51.69	PK	32.50	-37.80	46.39	54.0	-7.6	74.0	-27.6	V
3.709	50.01	PK	33.30	-37.20	46.11	54.0	-7.9	74.0	-27.9	V
6.490	50.01	PK	35.60	-32.90	52.71	54.0	-1.3	74.0	-21.3	V
7.417	44.55	PK	35.60	-32.60	47.55	54.0	-6.5	74.0	-26.5	V
6.489	50.76	VB10	35.60	-32.90	53.46	54.0	-0.5	-	-	V

7.2.4. WORST-CASE BELOW 1 GHz – RF ADAPTER

SPURIOUS EMISSIONS BELOW 30 MHz

Note: All measurements were made at a test distance of 3 m. The limits in the plots and tabular data are the FCC/IC limits extrapolated from the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz – 30 MHz) to the measurement distance to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (specification distance / test distance).

Page 32 of 41

The above plots demonstrate there were no EUT-related emissions of interest relative to the FCC 15.209 limit below 30MHz.

SPURIOUS EMISSIONS 30 TO 1000 MHz

Page 34 of 41

MANUFAC	TURE: Vi	sion Meter	ing					
LAB#: 13LE	3158							
MODEL: R	F Module:	Worst-ca	se channe	el				
RED=VER		UE=HORIZ	ONTAL					
TESTED B	Y: M. Nol	tina						
						FCC		
Test	Meter				Field	15.249		
Frequency	Reading		Antenna	Gain/Loss	Strength	Limit	Margin	
[MHz]	[dBuV]	Detector*	[dB/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Polarity
168.008	35.33	PK	14.80	-23.20	26.93	43.5	-16.6	Н
192.172	32.70	PK	15.20	-22.90	25.00	43.5	-18.5	Н
239.493	45.21	PK	11.30	-28.30	28.21	46.0	-17.8	Н
479.653	43.74	PK	17.20	-26.60	34.34	46.0	-11.7	Н
48.038	35.78	PK	10.10	-24.10	21.78	40.0	-18.2	V
138.569	36.37	PK	14.20	-23.60	26.97	43.5	-16.5	V
168.008	36.95	PK	14.80	-23.20	28.55	43.5	-15.0	V

8. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

Page 36 of 41

<u>RESULTS</u>

LINE 1 RESULTS

Page 37 of 41

USTOMER	VISION ME	FERING							
AB #:13LB1	58								
IODEL:TP-F	RF-ANSI-x								
IODE: WOF	RST-CASE C	HANNEL; L	INE 1						
ESTED BY:	B. KIEWRAI	P. FOOTE							
						FCC		FCC	
Test	Meter				RF Line	15.207		15.207	
Frequency	Reading			Cable	Voltage	(QP)	Margin	(AV)	Margin
[MHz]	[dBuV]	Detector*	LISN [dB]	Loss [dB]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dB]
0.158	48.43	PK	0.40	9.30	58.13	65.6	-7.5	-	-
0.163	46.76	PK	0.30	9.30	56.36	65.3	-8.9	-	-
0.175	42.67	PK	0.30	9.30	52.27	64.7	-12.4	-	-
0.200	43.61	PK	0.30	9.30	53.21	63.6	-10.4	-	-
0.209	43.53	PK	0.20	9.30	53.03	63.2	-10.2	-	-
0.222	39.96	PK	0.20	9.30	49.46	62.8	-13.3	-	-
0.231	38.52	PK	0.20	9.30	48.02	62.4	-14.4	-	-
0.252	39.18	PK	0.20	9.30	48.68	61.7	-13.0	-	-
0.274	35.94	PK	0.20	9.30	45.44	61.0	-15.6	-	-
0.452	31.34	PK	0.10	9.30	40.74	56.8	-16.1	-	-
3.712	30.51	PK	0.10	9.40	40.01	56.0	-16.0	-	-
13.338	38.02	PK	0.10	9.60	47.72	60.0	-12.3	-	-
0.161	25.97	CAV	0.40	9.30	35.67	-	-	55.4	-19.7
0.162	25.57	CAV	0.40	9.30	35.27	-	-	55.4	-20.1
0.166	27.07	CAV	0.30	9.30	36.67	-	-	55.2	-18.5
0.197	16.04	CAV	0.30	9.30	25.64	-	-	53.7	-28.1
0.211	11.98	CAV	0.20	9.30	21.48	-	-	53.2	-31.7
0.220	10.78	CAV	0.20	9.30	20.28	-	-	52.8	-32.6
0.226	9.78	CAV	0.20	9.30	19.28	-	-	52.6	-33.3
0.260	20.19	CAV	0.20	9.30	29.69	-	-	51.4	-21.8
0.265	21.37	CAV	0.20	9.30	30.87	-	-	51.3	-20.4
0.444	23.73	CAV	0.10	9.30	33.13	-	-	47.0	-13.9
3.709	15.96	CAV	0.10	9.40	25.46	-	-	46.0	-20.5
13.338	21.62	CAV	0.10	9.60	31.32	-	-	50.0	-18.7

Page 38 of 41

LINE 2 RESULTS

Page 39 of 41

USTOMER	VISION MET	FERING							
AB #:13LB1	58								
IODEL:TP-F	RF-ANSI-x								
IODE: WOF	ST-CASE C	HANNEL; L	INE 2						
ESTED BY:	B. KIEWRA/	P. FOOTE							
						FCC		FCC	
Test	Meter				RF Line	15.207		15.207	
Frequency	Reading			Cable	Voltage	(QP)	Margin	(AV)	Margin
[MHz]	[dBuV]	Detector*	LISN [dB]	Loss [dB]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dB]
0.175	43.70	PK	0.30	9.30	53.30	64.7	-11.4	-	-
0.200	42.43	PK	0.30	9.30	52.03	63.6	-11.6	-	-
0.221	40.39	PK	0.20	9.30	49.89	62.8	-12.9	-	-
0.227	39.55	PK	0.20	9.30	49.05	62.5	-13.5	-	-
0.264	35.87	PK	0.20	9.30	45.37	61.3	-15.9	-	-
3.208	31.51	PK	0.10	9.40	41.01	56.0	-15.0	-	-
13.756	35.15	PK	0.10	9.60	44.85	60.0	-15.2	-	-
15.610	35.00	PK	0.20	9.60	44.80	60.0	-15.2	-	-
16.207	34.63	PK	0.20	9.60	44.43	60.0	-15.6	-	-
0.177	20.29	CAV	0.30	9.30	29.89	-	-	54.6	-24.8
0.193	22.46	CAV	0.30	9.30	32.06	-	-	53.9	-21.9
0.217	14.08	CAV	0.20	9.30	23.58	-	-	52.9	-29.4
0.221	11.82	CAV	0.20	9.30	21.32	-	-	52.8	-31.5
0.270	16.02	CAV	0.20	9.30	25.52	-	-	51.1	-25.6
3.212	19.79	CAV	0.10	9.40	29.29	-	-	46.0	-16.7
13.754	18.92	CAV	0.10	9.60	28.62	-	-	50.0	-21.4
15.613	20.58	CAV	0.20	9.60	30.38	-	-	50.0	-19.6
16.205	20.84	CAV	0.20	9.60	30.64	-	-	50.0	-19.4

END OF REPORT