

Page 1 of 36

Report No.: UNIA19062011FR-01

FCC RADIO TEST REPORT

FCC ID: Y8E-VM-LORA

Product : LoRa SX-1276 1W module Trade Name : N/A Model Name : A-00700-HBT-HP Serial Model : N/A Report No. : UNIA19062011FR-01

Prepared for

Vision Metering, LLC

7 Ross Cannon Street, York, SC 29745, USA

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TEST RESULT CERTIFICATION

Applicant's name:	Vision Metering, LLC
Address:	7 Ross Cannon Street, York, SC 29745, USA
Manufacture's Name:	Hunbil Technology (HBT) Trading Limited
Address:	FLAT/RM B 5/F, GAYLORD COMM, BLDG 114-118 LOCKHART RD, HONG KONG
Product description	
Product name:	LoRa SX-1276 1W module
Trade Mark:	N/A
Model and/or type reference .:	A-00700-HBT-HP
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test	:
Date (s) of performance of tests	:
Date of Issue	:
Test Result	:

Jun. 12 ~ 25, 2019 Jun. 26, 2019 Pass

Prepared by:

Reviewer:

Approved & Authorized Signer:

Cahn Yang

Kaba yang/Edito Sher vin Qian/Supervisor

Liuze/Manager

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page

Table of Contents

Page 3 of 36

1.	TEST SUMMARY	
	1.1 TEST PROCEDURES AND RESULTS	5
	1.2 TEST FACILITY	5
	1.3 MEASUREMENT UNCERTAINTY	5
2.	GENERAL INFORMATION	6
	2.1 GENERAL DESCRIPTION OF EUT	6
	2.2 Carrier Frequency of Channels	7
	2.3 Operation of EUT during testing	7
	2.4 DESCRIPTION OF TEST SETUP	
	2.5 MEASUREMENT INSTRUMENTS LIST	
3.	CONDUCTED EMISSIONS TEST	9
	3.1 Conducted Power Line Emission Limit	9
	3.2 Test Setup	9
	3.3 Test Procedure	9
	3.4 Test Result	
4.	RADIATED EMISSION TEST	12
	4.1 Radiation Limit	12
	4.2 Test Setup	12
	4.3 Test Procedure	13
	4.4 Test Result	13
5.	BAND EDGE	
	5.1 Limits	
	5.2 Test Procedure	
	5.3 Test Result	18
6.	OCCUPIED BANDWIDTH MEASUREMENT	
	6.1 Test Setup	
	6.2 Test Procedure	
	6.3 Measurement Equipment Used	20
	6.4 Test Result	
7.	MAXIMUM PEAK OUTPUT POWER	22
	7.1 Test Setup	
	7.2 Test Procedure	
	7.3 Limit	22
	7.4 Test Result	
8.	FREQUENCY SEPARATION	

Table of Contents

Page

8.1 Test Setup	
8.2 Test Procedure	23
8.3 Limit	23
8.4 Test Result	23
9. CONDUCTED SPURIOUS & BAND EDGE EMISSION	25
9.1 Test Setup	
9.2 Test Procedure	
9.3 Limit	
9.4 Test Result	
10. NUMBER OF HOPPING FREQUENCY	30
10.1 Test Limit	
10.2 Test Procedure	
10.3 Test Setup	
10.4 Test Result	
11. TIME OF OCCUPANCY(DWELL TIME)	
11.1 Test Limit	
11.2 Test Procedure	
11.3 Test Setup	
11.4 Test Result	
12. ANTENNA REQUIREMENT	
13. PHOTOGRAPH OF TEST	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA19062011FR-01

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST CONDUCTED EMISSIONS TEST RADIATED EMISSION TEST BAND EDGE OCCUPIED BANDWIDTH MEASUREMENT MAXIMUM PEAK OUTPUT POWER FREQUENCY SEPARATION CONDUCTED BANDEGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSION NUMBER OF HOPPING FREQUENCY TIME OF OCCUPANCY(DWELL TIME) ANTENNA REQUIREMENT RESULT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address

: 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty

Radiated emission expanded uncertainty(9kHz-30MHz) Radiated emission expanded uncertainty(30MHz-1000MHz)

Radiated emission expanded uncertainty (Solvin 2-1000) in 2 Radiated emission expanded uncertainty (Above 1GHz)

- = 2.23dB, k=2 = 3.08dB, k=2
- = 4.42dB, k=2
- = 4.06dB, k=2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	LoRa SX-1276 1W module
Trade Mark	N/A
Model Name	A-00700-HBT-HP
Serial No.	N/A
Model Difference	N/A
FCC ID	Y8E-VM-LORA
Antenna Type	IPEX Connector
Antenna Gain	1.5dBi
Frequency Range	902-928MHz
Modulation Type	FSK
Power Source	DC 3.5V On PCB from Adapter Input AC 120V/60Hz

Table for auxiliary equipment:

Equipment Description	Manufacturer	Model
Adapter	sunshine	XS-1201000SCN

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2.2 Carrier Frequency of Channels

Channel	Freq. (MHz)						
0	902.3	16	905.5	32	908.7	48	911.9
1	902.5	17	905.7	33	908.9	49	912.1
2	902.7	18	905.9	34	909.1	50	912.3
3	902.9	19	906.1	35	909.3	51	912.5
4	903.1	20	906.3	36	909.5	52	912.7
5	903.3	21	906.5	37	909.7	53	912.9
6	903.5	22	906.7	38	909.9	54	913.1
7	903.7	23	906.9	39	910.1	55	913.3
8	903.9	24	907.1	40	910.3	56	913.5
9	904.1	25	907.3	41	910.5	57	913.7
10	904.3	26	907.5	42	910.7	58	913.9
11	904.5	27	907.7	43	910.9	59	914.1
12	904.7	28	907.9	44	911.1	60	914.3
13	904.9	29	908.1	45	911.3	61	914.5
14	905.1	30	908.3	46	911.5	62	914.7
15	905.3	31	908.5	47	911.7	63	914.9

Page 7 of 36

2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode

Low Channel: 902.3MHz Middle Channel: 908.7MHz High Channel: 914.9MHz

2.4 DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

AC 120V/60Hz	EUT	
--------------	-----	--

Operation of EUT during Radiation testing:

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

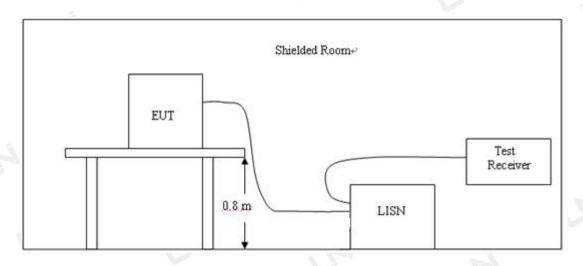
2.5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated unti		
	CONDUCTED EMISSIONS TEST						
1	AMN	Schwarzbeck	NNLK8121	8121370	2019.9.9		
2	AMN	ETS	3810/2	00020199	2019.9.9		
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2019.9.9		
4	AAN	TESEQ	T8-Cat6	38888	2019.9.9		
		RADIATED	EMISSION TEST				
1	Horn Antenna	Sunol	DRH-118	A101415	2019.9.29		
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2019.9.29		
3	PREAMP	HP	8449B	3008A00160	2019.9.9		
4	PREAMP	HP	8447D	2944A07999	2019.9.9		
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2019.9.9		
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2019.9.28		
7	Signal Generator	Agilent	E4421B	MY4335105	2019.9.28		
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019.9.28		
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2019.9.9		
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2019.9.28		
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2019.9.9		
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2019.9.9		
13	RF Power sensor	DARE	RPR3006W	15100041SNO88	2020.3.13		
14	RF Power sensor	DARE	RPR3006W	15100041SNO89	2020.3.13		
15	RF power divider	Anritsu	K241B	992289	2019.9.28		
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2019.9.28		
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.9.8		
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019.9.8		
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.9.8		
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2020.1.11		
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.11.02		
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2020.3.13		
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.10.24		
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2020.5.10		
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2020.5.10		
26	Frequency Meter	VICTOR	VC2000	997406086	2020.5.10		
27	DC Power Source	HYELEC	HY5020E	055161818	2020.5.10		
		Test	software		N.		
1	E3	Audix	6.101223a	N/A	N/A		

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3. CONDUCTED EMISSIONS TEST

3.1 Conducted Power Line Emission Limit


For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

	Maximum RF Line Voltage(dBµV)				
Frequency	CLASS A		CLASS B		
(MHz)	Q.P.	Ave.	Q.P.	Ave.	
0.15~0.50	79	66	66~56*	56~46*	
0.50~5.00	73	60	56	46	
5.00~30.0	73	60	60	50	

* Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

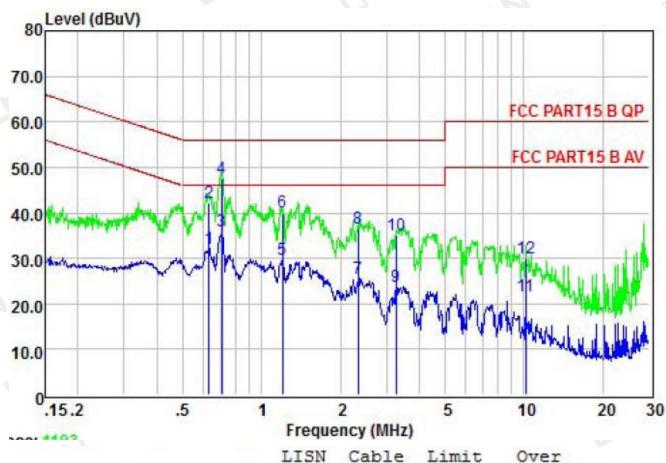
3.4 Test Result

Pass

Remark:

All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported.
All modes of Low, Middle, and High channel were tested, only the worst result of Middle Channel was reported as below:

深圳市优耐检测技术有限公司


Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

Limit Remark

Line

Temperature:	26°C	Relative Humidity:	48%		
Test Date:	Jun. 18, 2019	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Line		
Test Mode:	Fransmitting mode 908.7MHz (worst mode)				

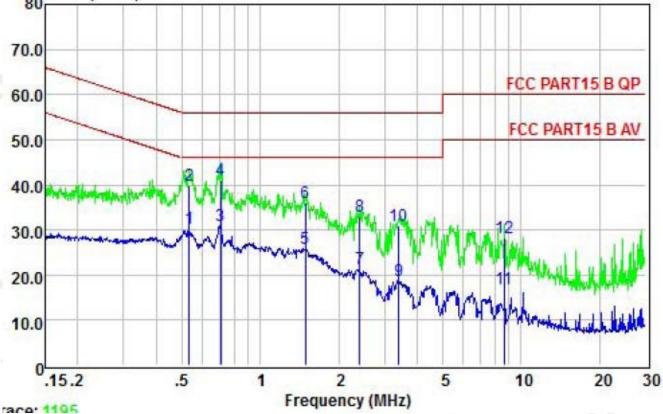
LISN Cable

		ried	TEAST	FACCOL	1033	TTHE	TTUT	REMAIN
	7	MHz	dBuV	dB	dB	dBuV	dB	1975-
	1	0.63	32.19	9.60	0.25	46.00	-13.81	Average
	2	0.63	42.36	9.60	0.25	56.00	-13.64	QP
	3	0.71	35.85	9.61	0.26	46.00	-10.15	Average
	4	0.71	47.47	9.61	0.26	56.00	-8.53	QP
	5	1.20	29.60	9.60	0.27	46.00	-16.40	Average
	6	1.20	40.00	9.60	0.27	56.00	-16.00	QP
	7	2.35	25.61	9.62	0.28	46.00	-20.39	Average
	8	2.35	36.69	9.62	0.28	56.00	-19.31	QP
	9	3.26	23.76	9.63	0.29	46.00	-22.24	Average
	10	3.26	35.15	9.63	0.29	56.00	-20.85	QP
100	11	10.18	21.58	9.68	0.39	50.00	-28.42	Average

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result - Limit.

9.68

12


10.18

30.00

0.39 60.00 -30.00 QP

Temperature:	26 ℃	Relative Humidity:	48%	a.			
Test Date:	Jun. 18, 2019	Pressure:	1010hPa	4.			
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral				
Test Mode: Transmitting mode 908.7MHz (worst mode)							
Ro Level (dB			N.				

LISN Cable Freq Level Factor Loss

le Limit ss Line

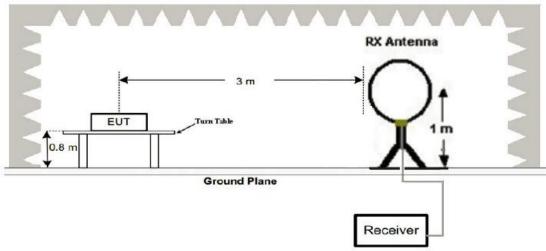
Over Limit Remark

1	MHz	dBuV	dB	dB	dBuV	dB	-	
1	0.53	30.33	9.59	0.25	46.00	-15.67	Average	
2	0.53	39.84	9.59	0.25	56.00	-16.16	QP	
3	0.70	30.92	9.60	0.26	46.00	-15.08	Average	
4 5	0.70	40.92	9.60	0.26	56.00	-15.08	QP	
5	1.49	25.90	9.58	0.27	46.00	-20.10	Average	
6	1.49	35.99	9.58	0.27	56.00	-20.01	QP	
7	2.41	21.31	9.59	0.28	46.00	-24.69	Average	
8	2.41	33.12	9.59	0.28	56.00	-22.88	QP	
9	3.40	18.76	9.63	0.29	46.00	-27.24	Average	
10	3.40	30.92	9.63	0.29	56.00	-25.08	QP	
11	8.64	17.06	9.67	0.37	50.00	-32.94	Average	
12	8.64	28.19	9.67	0.37	60.00	-31.81	QP	

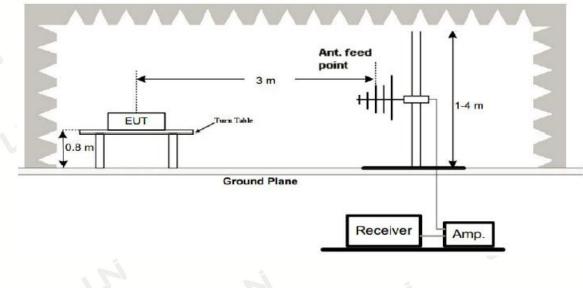
Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

4. RADIATED EMISSION TEST

4.1 Radiation Limit

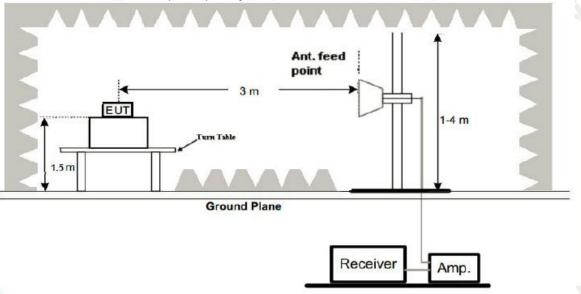

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Distance	Radiated	Radiated
(MHz)	(Meters)	(dBµV/m)	(µV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz


2. Radiated Emission Test-Up Frequency 30MHz~1GHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3. Radiated Emission Test-Up Frequency Above 1GHz

- 4.3 Test Procedure
 - 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
 - 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
 - 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
 - 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
 - 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
 - 6. Repeat above procedures until the measurements for all frequencies are complete.
 - 7. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a).
 - 8. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

PASS

Remark:

1. All modes of Low, Middle, and High channel were tested, only the worst result of Middle Channel was reported as below:

3. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

4. Radiated emission test from 9KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9KHz to 30MHz and not recorded in this report.

Below 1GHz Test Results:

Temperature:	22 °C	Relative Humidity:	48%				
Test Date:	Jun. 18, 2019	Pressure:	1010hPa				
Test Voltage:	/oltage: AC 120V, 60Hz Polarization: Horizontal						
Test Mode:	ode: Transmitting mode 908.7MHz (worst mode)						

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit	
Factor = Ant. Factor + Cable Loss	

13.58

12.57

11.75

0.24

0.24

0.30

43.50

43.50

-7.80 QP

-8.67 QP

43.50 -11.24 QP

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

4

5

6

173.81

181.92

194.45

35.70

34.83

32.26

Temperature: 22°C		22°C		Relative Hu	Relative Humidity: 48		48%		
Test Date: Jun. 1		ın. 18, 2019		Pressure: 10		1010hPa			
Test Voltag	je: AC 12	0V, 60Hz		Polarization	: Ve	ertical			
Test Mode:	: Transr	mitting mode	908.7MHz (wo	orst mode)	·				
Level (c	dBuV/m)								
00 20101 (0									
90								- I-	
80									
70									
50									
						FC	C PAR	115B	
50				_			_	-000	
10			56						
	2	3.	I MIN						
50 1	where .	MA	AL CIT	VAM		and one		and the second	
20	in mus a	My V Y	<h 11<="" th=""><th>hour.</th><th>al Marine</th><th>all and the second</th><th>the second</th><th></th></h>	hour.	al Marine	all and the second	the second		
CO MAN WY	J.	make.	W II	and the second	have				
10									
0 20	50	40		200		500		40	
30	50	10		200 ncy (MHz)		500		10	
			Antenna	Cable	Limit	Over			
	Frag				Line		Dom	anle	
	Freq	TEAST	Factor	Loss	TTHE	LIMIC	Rem	ark	
-	MHZ	dBuV/m	dB/m	dB	dBuV/m	dB			
	11112	abav/m	GD/ III	ab	aba y/m	ab			
1	36.64	25.17	13.04	0.20	40.00	-14.83	QP		
2			13.27						
3		30.73				-9.27			
4			12.02						
5	145.86		15.36			-8.17			

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss

15.57

Remark:

6

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

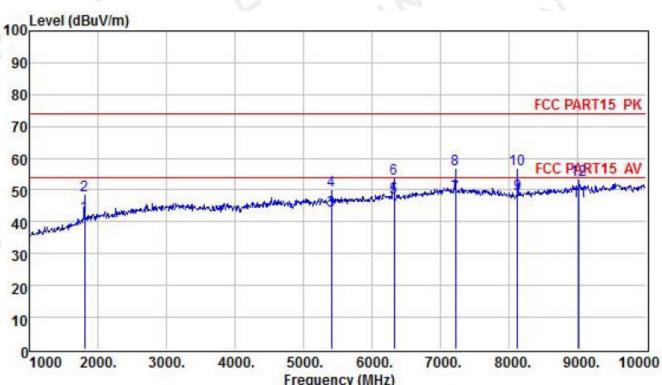
37.04

(3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

154.28

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

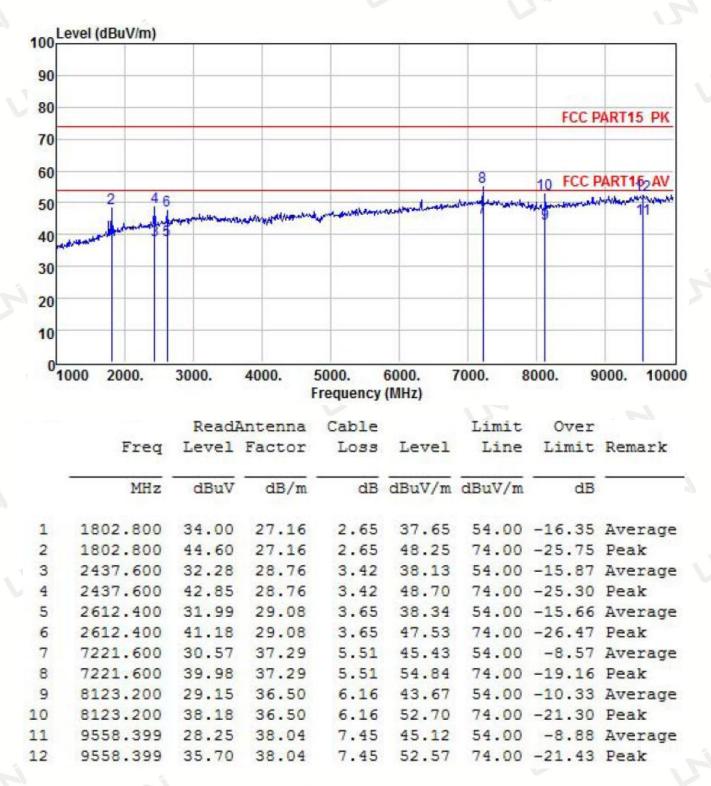

0.23 43.50

-6.46

OP

Above 1 GHz Test Results:

Temperature:	22 ℃	Relative Humidity:	48%			
Test Date:	Jun. 18, 2019	Pressure:	1010hPa			
Test Voltage:	Vertical					
Test Mode:	Transmitting mode 908.7MHz (worst mode)					


				equency (mille)			
		Read	Antenna	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	-
1	1802.800	38.25	27.16	2.65	41.90	54.00	-12.10	Average
2	1802.800	44.56	27.16	2.65	48.21	74.00	-25.79	Peak
3	5409.200	32.58	33.96	4.43	43.33	54.00	-10.67	Average
4	5409.200	38.97	33.96	4.43	49.72	74.00	-24.28	Peak
5	6320.000	34.69	35.64	4.98	47.55	54.00	-6.45	Average
6	6320.000	40.57	35.64	4.98	53.43	74.00	-20.57	Peak
7	7221.600	33.57	37.29	5.51	48.43	54.00	-5.57	Average
8	7221.600	41.78	37.29	5.51	56.64	74.00	-17.36	Peak
9	8123.200	34.17	36.50	6.16	48.69	54.00	-5.31	Average
10	8123.200	41.86	36.50	6.16	56.38	74.00	-17.62	Peak
11	9024.800	30.57	37.42	6.89	46.47	54.00	-7.53	Average
12	9024.800	37.19	37.42	6.89	53.09	74.00	-20.91	Peak

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss

深圳市优耐检测技术有限公司	
Shenzhen United Testing Technology Co., Ltd.	2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China
United Testing Technology(Hong Kong) Limited	深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

Temperature:	22°C	Relative Humidity:	48%				
Test Date:	Jun. 18, 2019	Pressure:	1010hPa				
Test Voltage: AC 120V, 60Hz		Polarization:	Horizontal				
Test Mode:	Transmitting mode 908.7MHz (worst mode)						

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

5. BAND EDGE

5.1 Limits

FCC PART 15.247 Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10kHz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

Radiated Band Edge Test:

Horizontal:		2	j_			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
902	56.24	-5.81	50.43	74.00	-23.57	РК
902	53.14	-5.81	47.33	54.00	-6.67	AV
928	57.05	-5.84	51.21	74.00	-22.79	РК
928	53.25	-5.84	47.41	54.00	-6.59	AV
Remark: Fact	tor = Antenna Facto	or + Cable Lo	oss – Pre-amplifier			

Vertical:

vertical.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
902	56.85	-5.81	51.04	74.00	-22.96	PK
902	53.47	-5.81	47.66	54.00	-6.34	AV
928	57.12	-5.84	51.28	74.00	-22.72	РК
928	53.26	-5.84	47.42	54.00	-6.58	AV
Remark: Fact	tor = Antenna Facto	or + Cable I o	oss – Pre-amplifier	V		1,

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

6. OCCUPIED BANDWIDTH MEASUREMENT

- 6.1 Test Setup Same as Radiated Emission Measurement
- 6.2 Test Procedure
 - 1. The EUT was placed on a turn table which is 0.8m above ground plane.
 - 2. Set EUT as normal operation.
 - 3. Spectrum Setting : RBW= 1KHz, VBW=3KHz, Sweep time = Auto.
 - 4. The useful radiated emission from the EUT was detected by the spectrum analyser with peak detector.

6.3 Measurement Equipment Used

Same as Radiated Emission Measurement

6.4 Test Result

PASS

GFSK Modulation:

Frequency (MHz)	20dB Bandwidth (kHz)	Result
902.3	148.4	PASS
908.7	145.2	PASS
914.9	145.4	PASS

CH: 902.3MHz


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH: 908.7MHz

CH: 914.9MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

7. MAXIMUM PEAK OUTPUT POWER

7.1 Test Setup

7.2 Test Procedure

According to ANSI C63.10:2013 Maximum peak conducted output power for HFSS devices: The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple derector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

7.3 Limit

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

7.4 Test Result

PASS

Frequency	Peak Output	Limit (dBm)	Result
riequency	power (dBm)		Result
902.3	29.579		
908.7	29.655	30	Pass
914.9	29.479		15

Report No.: UNIA19062011FR-01

8. FREQUENCY SEPARATION

8.1 Test Setup

8.2 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz.

8.3 Limit

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

8.4 Test Result

PASS

Frequency	CH Separation (kHz)	Limit (MHz)	Result
902.3	559.0	148.4	pass
908.7	612.5	145.2	pass
914.9	581.2	145.4	pass

CH: 902.3MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 24 of 36

CH: 908.7MHz

CH: 914.9MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

LNi

9. CONDUCTED SPURIOUS & BAND EDGE EMISSION

9.1 Test Setup

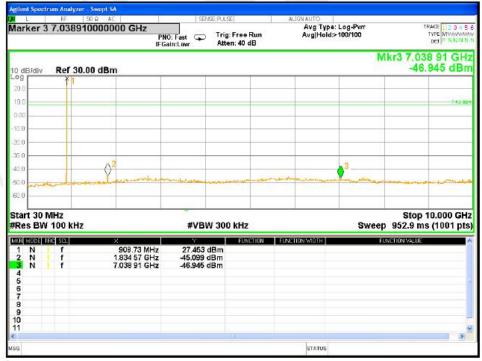
9.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as TX operation and connect directly to the spectrum analyzer.
- 3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz.
- 4. Set detected by the spectrum analyzer with peak detector.

9.3 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

9.4 Test Result

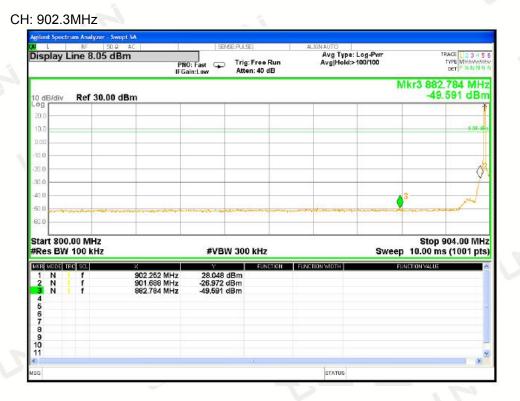

PASS

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH: 902.3MHz

	RF	50 Q AC		SE	ENGE: PULSE		ALIGN AUTO	0		
isplay L	ine 7.9			0: Fast 🖕		ee Run 10 dB		: Log-Pwr 91/100		RACE 2 3 4 5 TVPE MINIMANA DET PINININ
) dB/div	Ref 30).00 dBm							Mkr1 92 27.	7.36 MH 957 dBn
^{pg}	11									
0.0										
0.0	_					_				7.04-6
00										
10										
10										
10										
10		Ť	A2					2		
		and the	Y	and the second second		- and have	mine was	Q	1	
1.0	August and the second	water we highly be bade			Contract of the local division of the local			and the second	and the second states on the second states	A MALON TON IL PA
1.0		_								
tart 30 M	VIHz	*							Stop 1	0.000 GH
Res BW	100 kHz	2		#VB	W 300 kl	Hz		Swee	ep 952.9 ms	(1001 pt
R MODE T	RC SOL	Х		Y		UNCTION	FUNCTION WIDTH		FUNCTION MALUE	
1 N 2 N	f		902.36 MHz 711 93 GHz	27.957						
2 N 3 N	i		038 91 GHz	-48.529	dBm					
4										
5 6 7										
7 B										
9										
0										
					304					
G							STATUS			

CH: 908.7MHz

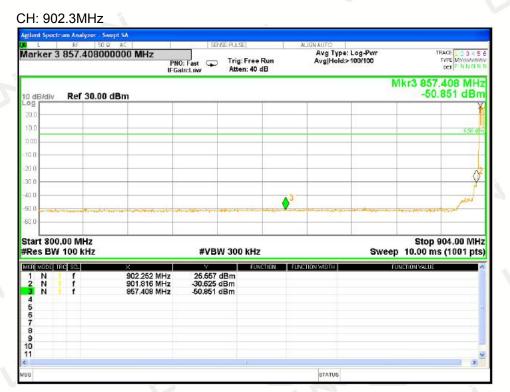


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH: 914.9MHz

L		RF	50.0 AC		SBN	SE:PULSE	ALIGN AUTO			
arker	37		2000000	0 GHz	0: Fast 🖵	Trig: Free Run Atten: 40 dB		:: Log-Pwr >100/100	1	TVPE NINNIN
) dB/di	v	Ref 30	.00 dBm						Vikr3 7.06 -48	8 82 GH
^{pg}		<u>* 1</u>								
0.0										
0,0										7,30,43
(QD)										
1.0										
1.0										
10		-								
10		_	-	\wedge^2				3		
1.0	den martin	- and the second	mender	and the second states and	Marshalters. M.	white and the second second second	man and a strange	- Mary Mary	-	and the second second
0.0	0.000									
L										
tart 30 Res B		lz 00 kHz	2		#VBV	V 300 kHz		Swee	stop 952.9 m	10.000 GH s (1001 pts
(R) MODE	TAC	SCL	×		Ŷ	FUNCTION	FUNCTION WOTH		FUNCTION VALUE	
1 N 2 N	1	1		914.30 MHz 781 72 GHz	27.364 0					
3 N		f	7.	068 82 GHz	-48.048 (
4 5										
6										
7										
9										
1										
						- 0]				>

For Band edge



深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH: 914.9MHz

	AC .	SENSE: PULS	E	ALIGNAUTO		
arker 3 960.93600	PNG): Fast 🖵 Trig in:Low Atte	Free Run n: 40 dB	Avg Type: Log-Pv Avg Hold:>100/10	D D	TRACE 1 2 3 4 5 TVPE MWWAW DET PININT
dB/div Ref 30.00	dBm					0.936 MH 0.824 dB
0.0						7.61
00						
o here	and the second second second second	ىلىرچىرىيەن بىلىرىيا س ەرىيە مەنتىپ		and a second and a second second	Server a second second second second	ويعتمونان ويرجع إسراني وعمر
art 900.00 MHz es BW 100 kHz		#VBW 300	kHz		Stop Sweep 7.267 r	1.00000 G ns (1001 p
R MODE TRO SCL	×	Y I	FUNCTION	UNCTION WIDTH	FUNCTION VALUE	
N f N f N f	914 .868 MHz 928.040 MHz 960.936 MHz	27.406 dBm -35.503 dBm -50.824 dBm				
						-

For Hopping Band edge

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

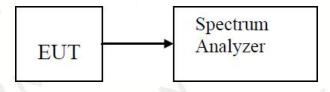
CH: 914.9MHz

	AC	SENS	E:RULSE	AL.	IGN AUTO			
larker 3 955.54000	PNG): Fast 🖵	Trig: Free Run Atten: 40 dB		Avg Type: L Avg Hold:≻1	og-Pwr 00/100	3	RACE 1234 TVPE MYNAMA DET PNNNT
0 dB/div Ref 30.00 d	dBm					-	/kr3 955 -51	.540 MH 962 dBr
°g 20.0 4441								
10.0								4,90 d
200								
0.0 02								
ao 2								
0.0			3					
0.0	and a second and a second	- and the state of	and the second	and and a second	and a second	handaların deshekilde	Contraction of	-
50.0								
tart 900.00 MHz Res BW 100 kHz		#VBN	/ 300 kHz			Swee	Stop 1 7.267 m	.00000 GH s (1001 pt
KR MODE THE SOL	×	Y	FUNCTION	FUNCT	IDN WIDTH	F	UNCTION VALUE	_
1 N f 2 N f 3 N f 4	914,280 MHz 928,104 MHz 955,540 MHz	24.902 d -29.033 d -51.962 d	Bm					
5								
7								
9								
ĩ								

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

10. NUMBER OF HOPPING FREQUENCY

10.1 Test Limit


For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of

occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

10.2 Test Procedure

The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below, Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = Auto.

10.3 Test Setup

10.4 Test Result

PASS

Number of Hopping Channel 64

ant Freq 900	50 Ω .00000	DO MHz	IO: Fast 🕞	Trig: Free			ALIGN AUTO : Log-Pwr :>100/100	TRAC	E 1 2 3 4 5 6 E M WWWW T P N N N N N	Frequency
	20.00 d		Sain:Low	Atten: 30) dB			DE		Auto Tur
10.0	J	· • • • • • • • • • • • • • • • • • • •	******	111111111	<u></u>	*****		******	۱۰۰۰	Center Fre 908.000000 Mi
0.00						×				Start Fro 900.000000 M
30.0		8								Stop Fr 916.000000 M
40.0 50.0		<u></u>				<u></u>				CF St 1.600000 M <u>Auto</u> M
50.0 Malalminutivati		2 2				n 5			Mar No.	Freq Offs 0
70.0										Scale Ty
start 900.000 N Res BW 100 k			#VBW	300 kHz		#	Sweep	Stop 916 8.000 ms (.000 MHz 1001 pts)	Log <u>l</u>

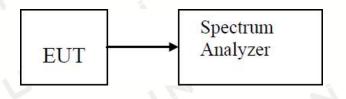
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

11. TIME OF OCCUPANCY(DWELL TIME)

11.1 Test Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of

occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.


11.2 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.

Sweep Time is 20 second.

Set the center frequency on any frequency would be measure and set the frequency span to zero span.

11.3 Test Setup

11.4 Test Result

PASS

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Frequency	Dwell Time(ms)	Limit(ms)	Result		
902.3	375.0	400	Pass		
908.7	372.9	400	Pass		
914.9	372.9	400	Pass		

CH: 902.3MHz

	50 Ω AC	SENSE:INT	ALIGN AUTO		Frequency
enter Freq 902.	200000 MHz PNO: Wide +	Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWW	
	IFGain:Low	Atten: 10 dB		DET P NNNN	
					Auto Tune
0 dB/div Ref 0.0	0 dBm				
og					100 0 10-00
10.0					Center Free
20.0			2		902.300000 MH
30.0					
40.0					Start Fre
50.0					902.300000 MH
50.0					502.000000 1111
70.0					
30.0					Stop Fre
anon property and	ntrachumanistan and historical an	mannetermentalistic	underseally and the first standards	her himself and the second second	902.300000 MH
0.0					
enter 902.300000	MHz			Span 0 Hz	CF Step
es BW 100 kHz	#VB	W 300 kHz	Sweep 20.0)00 s (1001 pts)	100.000 kH
IKR MODE TRC SCL	x	Y FL	INCTION FUNCTION WIDTH		<u>Auto</u> Mai
1					
2 3					Freq Offse
4					0 H
5 6 7				E	
7 8					Scale Type
9					Scale Type
10 11				L	_og <u>Lii</u>
		m		•	
G			STATUS		

Frequency	E 1 2 3 4 5 6 E WWWWWW T P NNNN	TY	align auto : Log-Pwr	Avg Typ	g: Free Run ten: 10 dB		MHz PNO: Wide IFGain:Low	0 Ω AC		RF eq 9	ter Fi	en
Auto Tur	75.0 ms 0.69 dB		Δ				II Gain.Low	dBm	f 0.00	Re	3/div	
Center Fre 902.300000 MH				×								0 g 1 0.0 0.0
Start Fre 902.300000 MH			butth	alyahan ay Manushan	and makes the makes with	Allentinas						0.0 10.0 10.0
Stop Fre 902.300000 MH	Mr. Marman	alaster (Line)ala	1 <u>Δ</u> 2			×2	hand the lot and	handlinestill	'ann an	benjum	r Mar Ind	0.0 0.0 0.0
CF Ste 100.000 kH <u>Auto</u> Ma	pan 0 Hz 1001 pts)	1.000 s (Sweep	CTION FU) kHz	BW		MHz		00 k	ter 90 BW 1	es
Freq Offs 0 H	ш				-0.69 dB I.12 dBm	(Δ)	375.0 ms 367.7 ms		(Δ)			1 2 3 4 5
Scale Typ												6 7 8 9 0
54 b.	T F				m					1		1

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH: 908.7MHz

RF 50 Ω AC Center Freq 908.670000	MLIZ	SENSE:INT	ALIGN AUTO	TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 0.00 dBm	PNO: Wide - Trig:	Free Run h: 10 dB		TYPE WWWWW DET P N N N N	Auto Tune
-10.0					Center Fred 908.670000 MH
-40.0					Start Fre 908.670000 MH
-70.0 -80.0 -90.0	to mention and the	www.lilanation.com	editionent de la trattionande	Anglen the and the state of the	Stop Fre 908.670000 MH
Center 908.670000 MHz Res BW 100 kHz MKR MODE TRC SCL X	#VBW 300 k	Hz		Span 0 Hz 1.000 s (1001 pts)	CF Ste j 100.000 kH <u>Auto</u> Ma
1 2 3 4 5 6 7				E	Freq Offse 0 H
7 8 9 10 11					Scale Type
< ISG	m		STATUS	•	

Center Freq 908.67		Avg Type e Run	ALIGN AUTO e: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N	Frequency
10 dB/div Ref 0.00	ii cuincon		ΔMk	r1 372.9 ms -0.30 dB	Auto Tun
-10.0 -20.0 -30.0				*	Center Fre 908.670000 MH
-40.0					Start Fr 908.670000 M
-70.0 -80.0 -90.0	1/2 minutes	ann an thai bear an an an thai bear an	Argosteriniteren ersenterist	easterligentersperturier	Stop Fro 908.670000 Mi
Center 908.670000 Res BW 100 kHz	WHz #VBW 300 kHz		-	Span 0 Hz)0 s (1001 pts) FUNCTION VALUE	CF Ste 100.000 ki <u>Auto</u> M
1 Δ2 1 t (Δ) 2 F 1 t 3 4 5	372.9 ms (Δ) -0.30 66.77 ms -83.77 d	dB		E	Freq Offs
6 7 8 9 10 11					Scale Typ
8	11		STATUS	•	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

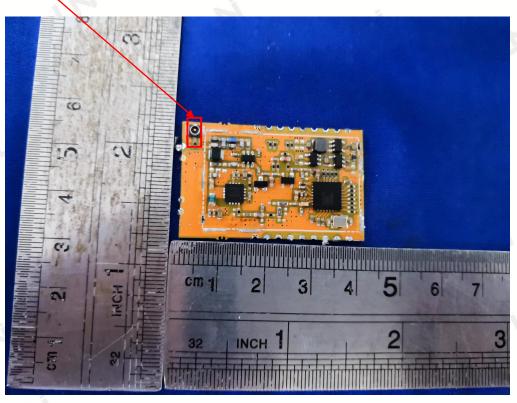
Page 34 of 36

CH: 914.9MHz

RF 50 Ω	AC	SENSE:INT	ALIGN AUTO		Frequency
enter Freq 914.900	000 MHz	Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWW	Frequency
	PNO: Wide ↔ IFGain:Low	Atten: 10 dB		DET P NNNN	Auto Tur
0 dB/div Ref 0.00 dB	m				Center Fre
20.0					914.900000 Mł
40.0					Start Fre
50.0					914.900000 MI
10.0					Stop Fr
	wareless and the same and the same	unallin montal planetices	when we have the first of the second se	nen haden have been blow - share an or	914.900000 M
enter 914.900000 MH es BW 100 kHz KR MODE TRC SOL	-	300 kHz Y FUN	Sweep	Span 0 Hz 20.000 s (1001 pts) FUNCTION VALUE	CF Ste 100.000 k <u>Auto</u> M
2 3 4 5 6				E	Freq Offs 0
7 8 9					Scale Ty
10					Log <u>L</u>
1				Enter a	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

12. ANTENNA REQUIREMENT

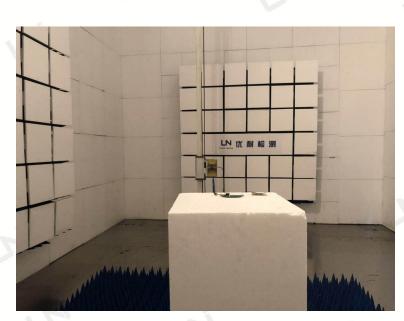

Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

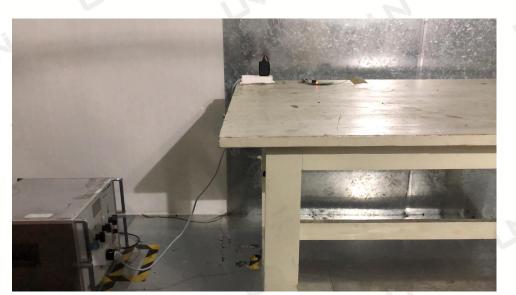
Antenna Connected Construction

The antenna used in this product is an Extenal antenna, The directional gains of antenna used for transmitting is 1.5dBi.

BT ANTENNA:


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA19062011FR-01


13. PHOTOGRAPH OF TEST

Radiated Emission (Below 1G)

Radiated Emission (Above 1G)

End of Report

Conducted Emission

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited