DATASHEET

JUL 1, 2014 V1.6

SC14SPNODE SF **DECT Module with integrated Antenna and FLASH**

General description

The SC14SPNODE SF is a member of the Cordless Module family with an integrated radio transceiver and baseband processor in a single package. It is designed for voice and data applications in the DECT frequency band.

- RF range: 1870 MHz to 1930 MHz
- Receiver sensitivity < -93 dBm
- Transmit power
 - EU: 24 dBm: 1881MHz 1897MHz
 - USA: 20 dBm: 1921MH 1928MHz
 - JP: 23 dBm: 1895MHz 1903MHz
- Power supply voltage: 2.1 V to 3.45 V
- Supports NiMH and Li-Ion batteries
- Small form factor (19.6 mm x 18.0 mm x 2.7 mm)
- Program memory available for custom software.
- 16 Mbit Flash embedded
- Operating temperature range: -40 °C to +85 °C

Features

- Ultra Low Power, sleep current < 3 µA</p>
- ETSI (EU-DECT) and FCC (DECT 6.0) certified
- J-DECT pre-certified

System diagram

DECT Module with integrated Antenna and FLASH

Table of Contents

1.0 Connection diagram
1.1 PIN DESCRIPTION 4
2.0 Introduction
2.1 SCOPE 9
2.2 REFERENCES 9
2.3 GLOSSARY AND DEFINITIONS
2.4 BLOCK DIAGRAM 10
2.5 POWER SUPPLY 10
2.6 ANTENNA OPERATION
2.6.1 Internal antenna only 10
2.6.2 Internal and external antenna with FAD 11
3.0 Specifications 12
3.1 GENERAL 12
3.2 ABSOLUTE MAXIMUM RATINGS
3.3 OPERATING CONDITIONS
3.4 DIGITAL INPUT/OUTPUT PINS
3.6 SUPPLY CURRENTS
3.7 ANALOG FRONT END
3.8 BATTERY MANAGEMENT
3.9 BASEBAND PART 19
3.10 RADIO (RF) PART 20
3.11 RF POWER SUPPLY 21
3.12 RF CHANNEL FREQUENCIES
4.0 Design guidelines
4.1 PCB DESIGN GUIDELINES
4.2 MODULE PLACEMENT ON THE MAIN BOARD
24
4.3 PATTERN FOR PIN 79 ON THE MAIN BOARD. 24
4.4 PRECAUTIONS REGARDING UNINTENDED
COUPLING 24
5.0 Notices to OEM 25
5.1 FCC REQUIREMENTS REGARDING THE END
PRODUCT AND THE END USER 25
5.2 IC REQUIREMENTS REGARDING THE END
PRODUCT AND THE END USER 25
5.3 PRECAUTIONS REGARDING UNINTENDED
COUPLING
5.4 END APPLICATION APPROVAL

	g
ontents	SC14
5.5 SAFETY REQUIREMENTS	SP
6.0 Package information 27	NO
6.1 SOLDERING PROFILE 27	Ď
6.2 MOISTURE SENSITIVITY LEVEL (MSL) 27	
6.3 COPPER PAD, SOLDER OPENING AND STEN-	Ϋ́
CIL	
6.4 MECHANICAL DIMENSIONS	
7.0 Revision history 31	

1.1 PIN DESCRIPTION

Table 1: Pin description

Pin	Module Pin name (Note 1)	In/ Out	lout Drive (mA)	Reset State (Note 2)	Description
1	GND	-	-	-	Ground
2	P0	0	8	Hi-Z	Control port for FAD. See 2.6
3	RFP0	0	8	Hi-Z	Control port for FAD. See 2.6
4	P0n	0	8	Hi-Z	Control port for FAD. See 2.6
5	RFP0n	0	8	Hi-Z	Control port for FAD. See 2.6
6	GND	-	-	-	Ground
7	VREFp	0	-	I	Positive microphone supply voltage
8	CIDINn MICp	I	-	I	INPUT. Caller-id opamp negative input with switchable input protec- tion enabled from start-up. INPUT. Positive microphone input.
9	CIDOUT/ MICn	ю	-	I	OUTPUT. Caller-id opamp output to ADC. INPUT. Negative microphone input.
10	MICh/ LINEIN	I	-	I	INPUT. Headset microphone input with fixed input protection INPUT. Line interface input with fixed input protection
11	VREFm	-	-	-	Negative microphone reference. This pin must also be connected to GND ground, but make sure that the microphone ground is directly routed to VREFm (VREFm is the star point).
12	LSRp/ LINEOUT/ AGND	0	-	0	OUTPUT. Positive loudspeaker output OUTPUT. To Line interface. OUTPUT. Buffered analog ground (0.9 V) if LSRP_MODE = 00.
13	LSRn/ LINEOUT/ AGND	0	-	0	OUTPUT. Negative loudspeaker output. OUTPUT. To Line interface. OUTPUT. Buffered analog ground (0.9 V) if LSRN_MODE = 00.
14	GND	-	-	-	Ground
15	P3[3]/ ADC0	IO	8	I	INPUT/OUTPUT with selectable pull up/down resistor. INPUT. ADC0 input to ADC with programmable input protection enabled from reset. (Note 4)
16	P1[0]/ INT0/ ADC1	IO	2	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. INPUT. Keyboard input interrupt. INPUT. ADC1 input to ADC with programmable input protection enabled from reset. (Note 4)
17	SOCp	I	-	I	Battery State Of Charge positive input. Connect to GND if not used.
18	SOCn	Ι	-	I	Battery State Of Charge negative input. Star point connected to the SOC resistor. Connect to GND if not used.
19	DC_SENCE	I		I	INPUT. Voltage sense input. Connected via a resistor divider to the output of the DC/C converter. Maximum 1.27 V Connect to GND if not used.
20	DC_I	I		I	Current sense input of DC/DC converter. Connect to GND if not used
21	DC_CTRL	0	2	O-PD (fixed 100k pull- down)	OUTPUT. Switching clock for the DC/DC converter, this pad is supplied with VBAT. Leave unconnected if not used.

© 2012 Dialog Semiconductor B.V.

Table 1: Pin description (Continued)							
Pin	Module Pin name (Note 1)	In/ Out	lout Drive (mA)	Reset State (Note 2)	Description		
2	CHARGE_CTRL	0	1	O-0	ANALOG OUTPUT. Charge control pin. Supplied by internal VBAT if device is off else from AVD. Leave unconnected if not used.		
23	CHARGE / P1[7]	I	-	I-PD (270k fixed pull- down)	INPUT. Charger connected indication and supply voltage for power management. Switches on the device if voltage > Vih_a3pad. Must be connected to charger via resistor R>(Vcharger_max-3 V)/10 mA (round to next largest value in range). An internal 10 ms hold circuit keeps device on if the charger voltage ripple momentarily drop below Vil_charge. This eliminates the use of expensive ripple filter. If used as port pin, the maximum input switching speed of this pin is 100 kHz. Leave unconnected if not used.		
24	PAOUTp P3[1] DP1	IO	500	O-0 (5k fixed pull- down)	OUTPUT. CLASSD positive output to loudspeaker. OUTPUT. General purpose output. OUTPUT. DIP port DP1		
25	VDDPA	I	-	-	CLASSD Audio Amplifier supply voltage up to 3.45 V. GND or leave unconnected if PAOUT/P3[1:0] ports are not used.		
6	CP_VOUT1	0	-	I	Charge Pump Output 1. A capacitor of 1 μ F to GND is internally connected to this pin.		
7	PAOUTn P3[0] DP0	IO	500	O-0 (5k fixed pull- down)	OUTPUT. CLASSD negative output to loudspeaker. OUTPUT. General purpose output. OUTPUT. DIP port DP0		
8	GND	-	-	-	Ground		
•	PON/ P1[6]	I	-	I (270k fixed pull- down)	INPUT. Power on, Switches on the device if Voltage > Vih_a3pad. May be directly connected to VBAT. If used as port pin, the maxi- mum input switching speed of this pin is 100 kHz.		
0	ULP_XTAL	I	-	I	32.768 kHz XTAL clock input. Connect to GND if not used. (Note 7)		
1	ULP_PORT	I	-	I	Ultra Low Power Port Pin. Connect to GND if not used. (Note 7)		
2	P2[7]/ INT7 BXTAL	Ю	8	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. INPUT. Keyboard Interrupt.connected to P1[2] or P2[7]. OUTPUT. Digital buffered Xtal oscillator. This pin is not optimized as reference clock for external RF devices.		
3	P1[5]/ INT5/ RDI/ VDDE	Ю	8	O-1	INPUT/OUTPUT with selectable pull up/down resistor. INPUT. Keyboard input interrupt. INPUT. BMC Receive data (for monitoring/external radio). OUTPUT. P1[5] Used for supply of external EEPROM		
4	P1[4]/ INT4/ TDOD	IO	1/2	I-PD	INPUT/OUTPUT with selectable pull up/down resistor. 1 mA or 2 mA mode used to bias external NPN transistor without external resistor. INPUT. Keyboard input interrupt. OUTPUT. BMC transmit digital data.		
5	P1[3]/ INT3/ SIO	Ю	1/2	I-PD	INPUT/OUTPUT with selectable pull up/down resistor. 1 mA or 2 mA mode used to bias external NPN transistor without external resistor. INPUT. Keyboard input interrupt. INPUT/OUTPUT. MicroWire data (for monitoring/external radio).		
86	P1[2]/ INT2/	IO	2	I-PD	INPUT/OUTPUT with selectable pull up/down resistor. INPUT. Keyboard input interrupt.		

Γ

Tal	ole 1: Pin descrip	otion (Con	tinued)		SEMICONDUCTO
Pin	Module Pin name (Note 1)	In/ Out	lout Drive (mA)	Reset State (Note 2)	Description
37	P1[1]/ INT1/ LE	IO	2	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. INPUT. Keyboard input interrupt. INPUT. MicroWire latch enable. (for monitoring/external radio).
3	GND	-	-	-	Ground
	P2[6]/ WTF_IN	IO	2	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Gen2DSP enable signal used to monitor DSP load
0	P0[7]/ SPI_DI/ PWM1	IO	8	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. INPUT. SPI data input. OUTPUT. Timer 0 PWM 1 output.
1	P0[6]/ SPI_DO	IO	8	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. SPI data output.
2	P0[5]/ SPI_CLK	IO	8	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. INPUT/OUTPUT. SPI clock.
3	P0[4]/ SPI_EN	IO	8	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. INPUT/OUTPUT. SPI clock enable. Active low.
4	P0[3]/ SCL2/ URX2	IO	8	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. INPUT/OUTPUT. ACCESS bus 2 clock with programmable Push- pull or open drain. In open drain mode, SCL2 is monitored to sup- port bit stretching by a slave. INPUT. UART2 receive data
5	GND	-	-	-	Ground
	P0[2]/ SDA2/ UTX2	IO	8	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. INPUT/OUTPUT. ACCESS bus 2 data with programmable. Push-pull or open drain. OUTPUT. UART2 transmit data
7	P0[1]/ URX/ PWM0	IO	8	I-PD (10k)	INPUT/OUTPUT with selectable pull up/down resistor. INPUT. UART receive data. OUTPUT. Timer 0 PWM0
8	P0[0]/ UTX	0	8	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. UART transmit data.
9	GND	-	-	-	Ground
)	GND	-	-	-	Ground
1	GND	-	-	-	Ground
2	RSTn	I	1	I-PU (200k pull-up)	Active low Reset input with Schmitt-trigger input, open-drain outpur and pull up resistor to internal VDD. Input may not exceed 2.0 V. Ar internal capacitor of 47 nF is mounted on this pin.
53	JTAG	IO	8	I-PU	JTAG-SDI+; one wire Debug interface with open-drain. Requires external 1 k Ω Pull-up to VDD.
4	P2[5]/ PCM_FSC/ SF	IO	8	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. INPUT/OUTPUT. PCM Frame Sync. OUTPUT. S-field Sync found signal indicating the 00 or 11 pream- ble to unique word transition with 96 ns resolution. Used for debug ging purposes.
55	P2[4]/ SCL1/ PCM_DO/	IO	8	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. INPUT / OUTPUT. ACCESS bus 1 clock with programmable Push pull or open drain. In open drain mode, SCL1 is monitored to sup- port bit stretching by a slave. OUTPUT. PCM data output.

Insure Inv Dout Prive (Note 2) Reset State (Note 2) Description 8 P2[3/ SDA1/ IO 8 I-PU INPUT/OUTPUT with selectable pull up/down resistor. INPUT, PCM data input. OUTPUT. DIP port DP2. 9 P2[3/ SDA1/ IO 8 I-PU INPUT/OUTPUT, ACCESS bus 1 data with programmable Push- pull or open drain. INPUT, PCM data input. OUTPUT. DIP port DP2. 7 P2[2/ PCM CLK/ CLK100 IO 8 I-PD INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. DIP 100 Hz output. 8 P2[1/ ECZ2/ IO 8 I INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Gen2DSP output port. OUTPUT. Gen2DSP output port. 9 P3[0/ P3[3/ P3[4] IO 8 I INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Gen2DSP output port. OUTPUT. Gen2DSP output port. 9 P3[6]/ MING I INPUT/OUTPUT with selectable pull up/down resistor. INPUT. Gen2DSP output port. Genund 1	T _1	le 1. Die de'		*im1\		
S P2[3)/ SDA1/ IO 8 I-PU INPUT/OUTPUT with selectable pull up/down resistor. INPUT / OUTPUT. ACCESS bus 1 data with programmable Push- pull or open drain. INPUT. PCM data input. OUTPUT. DIP pot DP2. 7 P2[2V/ PCM_CLK/ CLK100 I/O 8 I-PD INPUT/OUTPUT with selectable pull up/down resistor. INPUT/OUTPUT. DIP do Louput. 3 P2[1V/ ECZ2/ PWM1/ LED4 IO 8 I INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Gen2DSP output port. OUTPUT. Timer 0 PWM 1 output. LED4: 2.5 mA/5 mA LED current sink. 9 P2[0)/ PWM6/ LED3 IO 8 I INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Timer 0 PWM 1 output. LED3: 2.5 mA/5 mA LED current sink. 0 GND - - Ground Test purpose only. Must be left unconnected. See 2.5 1 VDATIN I - Main supply voltage < 3.45 V. See 2.5 See 2.5 3 VBATIN I - Main supply voltage < 3.45 V. See 2.5 See 2.5 5 P3[2V] IO 8 INPUT/OUTPUT with selectable pull up/down resistor. INPUT/OUTPUT with selectable pull up/down resistor. INPUT	Pin	Module Pin name (Note 1)	In/ Out	lout Drive (mA)	Reset State (Note 2)	Description
7 P2[2]/ PCM_CLK/ CLK100 I/O 8 I-PD INPUT/OUTPUT. With selectable pull up/down resistor. INPUT/OUTPUT. DIP 100 Ho 2 output. 8 P2[1]/ ECZ2/ PWM1/ LED4 IO 8 I INPUT/OUTPUT. Time of PWM 1 output. UTPUT. Gen2DSP output port. OUTPUT. Timer 0 PWM 0 output. LED3 9 P2[0]/ PCMO/ IO 8 I INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Gen2DSP output port. OUTPUT. Timer 0 PWM 0 output. LED3 0 GND - - Ground 1 VDDOUT - - Test purpose only. Must be left unconnected. See 2.5 2 VBATIN I - Main supply voltage < 3.45 V. See 2.5	56	P2[3]/ SDA1/ PCM_DI/ DP2	IO	8	I-PU	INPUT/OUTPUT with selectable pull up/down resistor. INPUT / OUTPUT. ACCESS bus 1 data with programmable Push- pull or open drain. INPUT. PCM data input. OUTPUT. DIP port DP2.
8 P2[1]/ EC22/ PWM1/ LED4 IO 8 I INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Gen2DSP output port. OUTPUT. Timer 0 PWM 1 output. LED4: 2.5 mA/5 mA LED current sink. 9 P2[0]/ EC21/ PWM0/ LED3 IO 8 I INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Gen2DSP output port. OUTPUT. Timer 0 PWM 0 output. LED3: 2.5 mA/5 mA LED current sink. 0 GND - - Ground 1 VDDOUT - - Test purpose only. Must be left unconnected. See 2.5 2 VBATSW - - Main supply voltage < 3.45 V. See 2.5	57	P2[2]/ PCM_CLK/ CLK100	I/O	8	I-PD	INPUT/OUTPUT with selectable pull up/down resistor. INPUT/OUTPUT. PCM clock. OUTPUT. DIP 100 Hz output.
9 P2[0]/ EC21/ PWM0/ LED3 IO 8 I INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Gen2DSP output port. OUTPUT. Timer 0 PWM 0 output. LED3: 2.5 mA/5 mA LED current sink. 0 GND - - Ground 1 VDDOUT - - Test purpose only. Must be left unconnected. See 2.5 2 VBATSW - - Main supply voltage < 3.45 V. See 2.5	58	P2[1]/ ECZ2/ PWM1/ LED4	IO	8	I	INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Gen2DSP output port. OUTPUT. Timer 0 PWM 1 output. LED4: 2.5 mA/5 mA LED current sink.
0 GND - - Ground 1 VDDOUT - - Test purpose only. Must be left unconnected. See 2.5 2 VBATSW Test purpose only. Must be left unconnected. See 2.5 3 VBATIN I - - 4 VBATIN I - - Main supply voltage < 3.45 V. See 2.5	59	P2[0]/ ECZ1/ PWM0/ LED3	IO	8	I	INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Gen2DSP output port. OUTPUT. Timer 0 PWM 0 output. LED3: 2.5 mA/5 mA LED current sink.
1 VDDUT - - Test purpose only. Must be left unconnected. See 2.5 2 VBATSW Test purpose only. Must be left unconnected. See 2.5 3 VBATIN I - Main supply voltage < 3.45 V. See 2.5	0	GND	-	-	-	Ground
VBATSWITest purpose only. Must be left unconnected. See 2.5VBATINI-Main supply voltage < 3.45 V. See 2.5		VDDOUT	-	-	-	Test purpose only. Must be left unconnected. See 2.5
VBATINI-Main supply voltage < 3.45 V. See 2.5VBATINIMain supply voltage < 3.45 V. See 2.5		VBATSW				Test purpose only. Must be left unconnected. See 2.5
VBATINIMain supply voltage < 3.45 V. See 2.5P3[2]/ CIDINp/IO8IINPUT/OUTPUT with selectable pull up/down resistor. INPUT. Caller-id opamp positive input with switchable input protec- tion enabled from start-up.P3[7]/ RINGpIO4IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Positive ringing signal opamp input with switcha- ble input protection.P3[6] / RINGnIO4IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Negative ringing signal opamp input with switcha- ble input protection.P3[6] / RINGOUT/ RINGINGIO4IINPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Negative ringing signal opamp input with switcha ble input protection.P3[5]/ RINGOUT/ RINGINGIO4IINPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Ringer signal detection input to capture timers and ADC. INPUT. Ringer signal detection input to capture timers and ADC.P3[4]/ PARADETIO8IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Parallel set detection input to ADC with switcha- ble input protection.GNDGroundGNDGroundRF1RF signal for external antenna. See 2.6GNDRF signal for external antenna. See 2.6GNDGroundRF0Ground		VBATIN	I	-	-	Main supply voltage < 3.45 V. See 2.5
P3[2]/ CIDINp/IO8IINPUT/OUTPUT with selectable pull up/down resistor. INPUT. Caller-id opamp positive input with switchable input protec- tion enabled from start-up.P3[7]/ RINGpIO4IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Positive ringing signal opamp input with switcha- ble input protection.P3[6] / RINGnIO4IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Positive ringing signal opamp input with switcha- ble input protection.P3[6] / RINGnIO4IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Negative ringing signal opamp input with switcha ble input protection.P3[5]/ RINGOUT/ RINGINGIO4IINPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Ringing opamp output to ADC. INPUT. Ringer signal detection input to capture timers and ADC.P3[4]/ PARADETIO8IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Parallel set detection input to ADC with switcha- ble input protection.GNDGroundGNDGroundRF1RF signal for external antenna. See 2.6GNDRF signal for external antenna. See 2.6GNDRF signal for external antenna. See 2.6GNDGNDGround		VBATIN	I	-	-	Main supply voltage < 3.45 V. See 2.5
P3[7]/ RINGpIO4IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Positive ringing signal opamp input with switchable input protection.P3[6] / RINGnIO4IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Negative ringing signal opamp input with switchable input protection.P3[5] / RINGOUT/ RINGOUT/ RINGINGIO4IINPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Negative ringing opamp output to ADC. INPUT. Ringer signal detection input to capture timers and ADC.P3[4] / PARADETIO8IINPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Ringer signal detection input to capture timers and ADC. INPUT. Ringer signal detection input to capture timers and ADC.GNDGroundGNDGroundRF1GroundRF0RF signal for external antenna. See 2.6GNDRF signal for external antenna. See 2.6		P3[2]/ CIDINp/	IO	8	I	INPUT/OUTPUT with selectable pull up/down resistor. INPUT. Caller-id opamp positive input with switchable input protec- tion enabled from start-up.
7P3[6] / RINGnIO4IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Negative ringing signal opamp input with switcha ble input protection.8P3[5]/ RINGOUT/ RINGINGIO4IINPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Ringing opamp output to ADC. INPUT. Ringer signal detection input to capture timers and ADC.9P3[4]/ PARADETIO8IINPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Ringer signal detection input to capture timers and ADC.9P3[4]/ PARADETIO8IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Parallel set detection input to ADC with switcha- ble input protection.0GNDGround1GNDGround2GNDGround3RF1RF signal for external antenna. See 2.64GNDRF signal for external antenna. See 2.65RF0RF signal for external antenna. See 2.66GNDGround	6	P3[7]/ RINGp	IO	4	I	INPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Positive ringing signal opamp input with switcha- ble input protection.
BP3[5]/ RINGOUT/ RINGINGIO4IINPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Ringing opamp output to ADC. INPUT. Ringer signal detection input to capture timers and ADC.9P3[4]/ PARADETIO8IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Parallel set detection input to ADC with switchable input protection.0GNDGround1GNDGround2GNDGround3RF1RF signal for external antenna. See 2.64GNDRF signal for external antenna. See 2.65RF0Ground	67	P3[6] / RINGn	IO	4	I	INPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Negative ringing signal opamp input with switcha ble input protection.
9P3[4]/ PARADETIO8IINPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Parallel set detection input to ADC with switchable input protection.0GNDGround1GNDGround2GNDGround3RF1RF signal for external antenna. See 2.64GNDRF signal for external antenna. See 2.65RF0Ground	8	P3[5]/ RINGOUT/ RINGING	IO	4	I	INPUT/OUTPUT with selectable pull up/down resistor. OUTPUT. Ringing opamp output to ADC. INPUT. Ringer signal detection input to capture timers and ADC.
DGNDGround1GNDGround2GNDGround3RF1RF signal for external antenna. See 2.64GNDGround5RF0RF signal for external antenna. See 2.66GNDGround	69	P3[4]/ PARADET	IO	8	I	INPUT/OUTPUT with selectable pull up/down resistor. ANALOG INPUT. Parallel set detection input to ADC with switcha- ble input protection.
IGNDGround2GNDGround3RF1RF signal for external antenna. See 2.64GNDGround5RF0RF signal for external antenna. See 2.66GNDGround	'0	GND	-	-	-	Ground
Product GND - - Ground RF1 - - RF signal for external antenna. See 2.6 GND - - Ground F RF0 - - RF signal for external antenna. See 2.6 GND - - Ground GND - - RF signal for external antenna. See 2.6 GND - - Ground		GND	-	-	-	Ground
RF1RF signal for external antenna. See 2.6GNDGroundRF0RF signal for external antenna. See 2.6GNDGNDGround		GND	-	-	-	Ground
GNDGroundRF0RF signal for external antenna. See 2.6GNDGround		RF1	-	-	-	RF signal for external antenna. See 2.6
RF0 - - RF signal for external antenna. See 2.6 GND - - Ground		GND	-	-	-	Ground
GND Ground	5	RF0	-	-	-	RF signal for external antenna. See 2.6
	6	GND	-	-	-	Ground
7 GND Ground	7	GND	-	-	-	Ground
B GND Ground	8	GND	-	-	-	Ground
9 TP1 Tuning point for internal antenna. Follow instructions of section 4.3	'9	TP1	-	-	-	Tuning point for internal antenna. Follow instructions of section 4.3

Pin	Module Pin name (Note 1)	In/ Out	lout Drive (mA)	Reset State (Note 2)	Description
1-88	TP2 to TP9	NC			Must be left unconnected. See section 4.1 and Figure 15.
Note 1:	: "NC" means: leave ι	unconnect	ted.		
	"GND" means intern	ally conne	ected to the	module gro	und plane. Every GND pin should be connected to the main PCB.ground plane.
Note 2:	 All digital inputs have erwise specified 	e Schmitt	trigger inpu	its. After rese	et all I/Os are set to input and all pull-up or pull-down resistors are enabled unless oth-
	PU = Pull-up resisto	r enabled,	, PD = Pull-	down resisto	or enabled, I = input,
	O = output, Hi-Z = h	igh imped	ance, 1 = lo	ogic HIGH le	vel, 0 = logic LOW level
Note 3:	Refer also to Px_DII Back drive protected	R_REGS for d pins allow	or INPUT/C w alwavs in	DUTPUT and Iterfacing wit	l Pull-up/Pull-down configurations h devices up to a supply voltage of 3.45 V.
	If PAD_CTRL_REG	[xxx_OD]	bit is set the	en	······································
	1) the internal Pull-u	p resistors	s are alway	s disabled to	prevent currents from 1.8 V < Vin < 3.45 V to VDD.
	resistor value deterr	tput, the o nines the i	rise time of	the signal.	red as open drain to allow the output level to reach vin >1.8 v. The external pull-up
Note 4:	For base station app	olications v	with high lir	ne input volta	ges, an input protection on all ADC inputs can be enabled with
	AD_CTRL_REG[AD	Cx_PR_D	DIS] ='0'. To	limit the inp	ut current as specified in chapter "specifications", an external resistor must placed in
	ADC1 are linear fror	n 0 V to 1.	.8 V.	it protection (
Note 5:	In digital mode extra	a static VD	DPA curre	nt will flow (S	See Supply currents (indicative value) (table 9, page 14)). So the digital mode is not
	recommended in po	rtable app	lications.Th	ne reason for	r this output overvoltage protection is that a speaker is an inductor (which can store
	when the inductor re	eleases its	energy to	the battery (which is not present anymore as a buffer). To prevent this electrical overstress situa-
	tion, the overvoltage	e protectio	n is added.		
Note 6: Note 7:	This pin description All UI P pins use sn	describes ap-back de	all functior	that is supp	orted by hardware. Supported pin function depends on installed software.
	This means that the	snap-back	k device of	a ULP pin m	ay remain conductive, when triggered while the pin is directly connected to the battery
	voltage. If any of the	ULP pins	are directl	y or indirectly	y electrically accessible on the outside of the application, system level ESD precau-
	tions must be taken	to ensure	that the sh	ар-раск сеч	ice is not inggered while in active mode, to prevent the chip from being damaged.

S

2.0 Introduction

2.1 SCOPE

The SC14SPNODE SF is a programmable DECT module for voice and data services, Ultra Low Energy (ULE) sensor applications and actuator applications.

This module includes a fully integrated DECT RF and baseband processor, 16 Mbit QSPI FLASH, one internal antenna, two antenna switches and a 20.736 MHz crystal. Customer end products can be designed by adding just a few components to this module.

Customer and Dialog software are stored in the internal 16 Mbit QSPI FLASH.

Dialog standard software for the SC14SPNODE supports:

- EU-DECT (CAT-iq V2.0, V3.0), DECT6.0 for North American and Japan DECT.
- ETSI certified
- · ETSI 300 444 (DECT GAP) compliant
- FCC approved, Japan DECT pre-certified

The end product must undergo certification testing again if other software than Dialog standard software stack is used.

Dialog will provide the following standard software stacks:

- · Wireless sensor application with ULE
- · Wireless actuator application with ULE
- Cordless Voice module application

2.2 REFERENCES

- AN-D-207, External Antenna design guidelines for the SC14 Module, Dialog Semiconductor, Application note
- 2. AN-D-174, SC14480 Battery Management; using the State of Charge function, Dialog Semiconductor, Application Note
- 3. MX25U1635E, Macronix, Data sheet
- 4. Dialog Semiconductor web page to get software release information: <u>http://www.dialog-semicon-ductor.com/products/short-range-wireless-tech-nology/software-stacks</u>
- 5. AN-D-204, RF settings in Natalie, Dialog Semiconductor, Application note

2.3 GLOSSARY AND DEFINITIONS

AFE	Analog Front End
CAT-iq	Cordless Advanced Technology, Internet and Quality
Codec	Coder and Decoder converts analog signals to digital signals and vice versa
CVM	Cordless Voice Module
DECT	Digital Enhanced Cordless Telephone

EMC	Equipment Manufacturer's Code
ESD	ElectroStatic Discharge
FAD	Fast Antenna Diversity
FP	Fixed Part
GAP	General Access Profile (DECT)
IPEI	International Portable Equipment Identity (ETSI EN 300 175-6)
IWU	Inter Working Unit (ETSI EN 300 175-1)
MCU	Micro Controller Unit
MMI	Man Machine Interface (keypad, LCD, buzzer, microphone, earpiece, speaker, headset)
NSMD	Non Solder Mask Defined (pad)
NTP	Normal Transmitted Power
OTP	One Time Programmable
PCB	Printed Circuit Board without components
PP	Portable Part
PSTN	Public Switched Telephone Network
RF	Radio Frequency
RFPI	Radio Fixed Part Identity (ETSI EN 300 175-6)
RLR	Receive Loudness Rating
RSSI	Radio Signal Strength Indication (ETSI EN 300 175-1)
Sidetone	Feedback of microphone signal to earpiece
SLR	Sending Loudness Rating
SPI	Serial Peripheral Interface Bus
TDD	Time Division Duplex
UART	Universal Asynchronous Receiver and Transmitter
ULE	Ultra Low Energy
VES	Virtual EEPROM Storage

SC14SPNODE

Ś

2.5 POWER SUPPLY

Figure 3 Internal circuit of the power supply

Figure 3 shows the internal power supply circuit of the SC14SPNODE SF.

2.6 ANTENNA OPERATION

Figure 4 shows the internal antenna circuit of the SC14SPNODE SF. Pin RF0 is used for two external antennas and can also be used for RF test purposes, so it is recommended to add a 10 pF capacitor as reserve pattern even when the two external antennas are not used.

Figure 4 Internal circuit of the antenna part

Re-certification of the SC14SPNODE SF is required if at least one external antenna is added. On request, Dialog Semiconductor can provide a pre-certified PCB layout for an external antenna circuit.

RF1 is also recommended to use and can be connected to the RF cable to be able to do the JPN DECT type approval test.

2.6.1 Internal antenna only

The FAD function is not enabled if only the internal antenna is used. In this case RFP0, RFP0n, P0 and P0n must be left unconnected.

2.6.2 Internal and external antenna with FAD

Figure 5 shows one external antenna that is connected to RF1 of the SC14SPNODE SF. This configuration supports the FAD function. In this case pins RFP0, RFP0n, P0 and P0n must be left unconnected. The software patch code is not needed if the SC14SPNODE SF is operated as FP.

Figure 5 One external antenna

2.7 BATTERY MANAGEMENT

Figure 6 Handset (PP) application with 2x NiMH

Figure 6 shows a handset application with NiMH. SOC (State Of Charge) is used to measure the amount of charge in the rechargeable batteries.

Figure 7 shows an FP application. The FP uses an external LDO, so the SOC pins are not used and can be connected to GND.

Table 2: SC14SPNODE production parameters

The SOC circuit is used to very accurately determine the amount of charge in rechargeable batteries as well as the discharge state of Alkaline batteries. This information is essential for the battery charging algorithm and necessary for battery status indication to the user. Detailed information can be found in AN-D-174 (see Reference [2]).

Figure 7 Base station (FP) application

Pin CHARGE_CTRL is driven high when either "sensed voltage on the VBAT pin" is lower than the voltage setting (defined by the module hardware) or "sensed current via SOCp" is lower than the current setting (defined by the module hardware). Pin CHARGE_CTRL can drive up to 500 μ A as source current (see Table 19).

2.8 EMBEDDED QSPI FLASH

The SC14SPNODE SF has a QSPI FLASH with type number MX25U1635E as embedded FLASH. Please refer to Reference [3] for detailed specifications.

The MX25U1635E has an OTP area, a part of which has already been factory programmed by Dialog for tuning purposes.

Table 2 shows the production parameters and the relation between the SC14SPNODE SF register address and the OTP address.

The OTP addresses from 0x020 to 0x1FF are available for write access before locking the OTP.

Register name	SC14SPNODE address	OTP address	Alignment Spec.
RF_BURST_MODE_CTRL_REG[MODINDEX]	0xFF7053[5:0]	0x05	340 kHz to 370 kHz
CLK_FREQ_TRIM_REG (lsb)	0xFF400A	0x06	20.736 MHz +/- 1 ppm
CLK_FREQ_TRIM_REG (msb)	0xFF400B	0x07	
BANDGAP_REG	0xFF4810	0x08	1.8 V +/- 1%

3.0 Specifications

All MIN/MAX specification limits are guaranteed by design, or production test, or statistical methods unless note 8 is added to the parameter description. Typical values are informative.

Note 8: This parameter will not be tested in production. The MIN/MAX values are guaranteed by design and verified by characterization.

3.1 GENERAL

Table 3: SC14SPNODE SF module

ITEM	CONDITIONS	VALUE	UNIT
Dimensions	l x w x h	18.0 x 19.6 x 2.7	mm
Weight		1.5	g
Temperature range		-40 to +85	°C
Frequency range	According to DECT standard	1870 to 1930	MHz
Antenna range	According to DECT standard; (Note 9)		
	- typical outdoor	350	m
	- typical indoor	75	m
Standards compliancy	ETS 300 444 (DECT GAP), former TBR2214 FCC part 15		
Power supply	2 cell NiCd/NiMH Note: for 1 Li-Ion battery an external LDO is required.	2.10 to 3.45	V
Maximum PCB warpage	For entire reflow range	0.1	mm

Note 9: The resulting range is very dependent of the mechanical design. Dialog Semiconductor is not responsible for this design and as such Dialog Semiconductor is not responsible for the resulting performance range of the final product.

3.2 ABSOLUTE MAXIMUM RATINGS

Table 4: Absolute Maximum Ratings (Note 10)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	MAX	UNIT
Vbat_max	Max voltage on pin VBATIN, VDDPA			3.45	V
Vpon_max	Max voltage on pin PON			5.5	V
Vled_max	Max voltage on pin LED4, LED3			3.6	V
Vdig_bp_max	Max voltage on digital pins with back drive protection; ports P0 and P2 (except P2.6)			3.6	v
Vdig_max	Max voltage on other digital pins			2.0	V
Vana_max	Max voltage on analog pins			2.2	V
Vesd_hbm	ESD voltage according to human body model; all pins			2000	v
Vesd_mm	ESD voltage according to machine model; all pins			150	v

Note 10: Absolute maximum ratings are those values that may be applied for maximum 50 hours. Beyond these values, damage to the device may occur.

3.3 OPERATING CONDITIONS

Table 5: Operating Conditions (Note 11)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Vbat	Supply voltage on pin VBATIN		2.1		3.45	V
Vdd_pa	CLASSD supply voltage on pin VDDPA		2.1		3.45	V
Vpon	Voltage on pin PON				5.5	v
Vdig_bp	Voltage on digital pins with back drive protection; ports P0 and P2 (except P2.6)				3.45	v
Vdig	Voltage on other digital pins	VDD = 1.8 V			1.98	v
Vana	Voltage on analog pins	AVD = 1.8 V			2.1	v
Icharge	Current through pin CHARGE	Rseries > (Vcharge-3 V)/ 10 mA			10	mA
Ipa	Current through pin PAOUTp, PAOUTn	(Note 12)			500	mA
lout_vrefp	Output current through pin VREFp				1	mA
ТА	Ambient temperature	(Note 13)	-40		+85	°C

Note 11: Within the specified limits, a life time of 10 years is guaranteed.

Note 12: A life time of 10 years of the CLASS-D amplifier is guaranteed if switched on for 10% of the time.

Note 13: Within this temperature range full operation is guaranteed.

3.4 DIGITAL INPUT/OUTPUT PINS

Table 6: Digital input levels

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Vil_dig	Logic 0 input level; all digital input pins except PON, CHARGE and RSTn	VDD = 1.8 V			0.3*VDD	v
Vil_pon	Logic 0 input level; pin PON				0.9	V
Vil_charge	Logic 0 input level; pin CHARGE				0.9	v
Vil_rst	Logic 0 input level; pin RSTn	VDD = 1.8 V			0.2*VDD	V
Vih_dig	Logic 1 input level; all digital input pins except PON, CHARGE and RSTn	VDD = 1.8 V	0.7*VDD			v
Vih_pon	Logic 1 input level; pin PON		1.5			V
Vih_charge	Logic 1 input level; pin CHARGE		1.5			v
Vih_rst	Logic 1 input level; pin RSTn	VDD = 1.8 V	0.8*VDD			V

Table 7: Digital output levels

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Vol_dig	Logic 0 output level	VDD = 1.8 V; lout = 2, 4, 8 mA (Note 14)			0.2*VDD	v
Voh_dig	Logic 1 output level	VDD = 1.8 V; lout = 2, 4, 8 mA (Note 14)	0.8*VDD			V

Note 14: For output drive capability, see section "Pin Description" on page 4.

3.5 ULTRA LOW ENERGY (ULE) I/O PIN

Table 8: ULP_PORT specifications

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Vil_ulp	Logic 0 input level; pin ULP_PORT	Vbat = 2.1 V to 3.45 V			0.2*Vbat	v
Vih_ulp	Logic 1 input level; pin ULP_PORT	Vbat = 2.1 V to 3.45 V	0.8*Vbat			v
Vol_ulp	Logic 0 output level; pin ULP_PORT	lout = 1 mA, Vbat = 2.4 V			0.2*Vbat	v
Voh_ulp	Logic 1 output level; pin ULP_PORT	lout = 1 mA, Vbat = 2.4 V	0.8*Vbat			v
lpull_up_ulp	Input current with pull up enabled; pin ULP_PORT	Vin = GND		2.5		μΑ
lpull_down_ulp	Input current with pull down enabled; pin ULP_PORT	Vin = Vbat; Vbat = 2.1 V to 3.45 V		2.5		μΑ

3.6 SUPPLY CURRENTS

Table 9: Supply currents (indicative value)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	Unit
lavd_pa	CLASSD normal mode supply current at AVD	CLASSD_PD=0		3.5		mA
lavd_paport	CLASSD digital port mode supply current at AVD	(P3_0_MODE = 00 or P3_1_MODE = 00) and CLASSD_PD=1. (Note 15)		5		μΑ

Note 15: PAOUTp and PAOUTn have internal fixed resistors connected to VSSPA. The values are $5 \text{ k}\Omega$ if CLASSD[CLASSD_VOUT] = 01, else $6 \text{ k}\Omega$. So in digital mode with a '1' on output a small static current will flow.

3.7 ANALOG FRONT END

Table 10: Microphone amplifier

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Vmic_0dB_unt	Untrimmed differen- tial RMS input volt- age between MICp and MICn (0 dBm0 reference level) (Note 8)	0 dBm0 on COUT (Note 17) MIC_GAIN[3:0] = 0, @ 1020 Hz; <u>Tolerance:</u> • 13% when untrimmed (BANDGAP_REG=8) (Note 16) • 6% when trimmed (Note 18)	114	131	149	mV
Rin_mic	Resistance of acti- vated microphone amplifier inputs (MICp, MICn and MICh) to internal GND (Note 8)		75	150		kΩ
Vmic_offset	Input referred DC-off- set (Note 8)	MIC_GAIN[30] = 1111 3 sigma deviation limits	-2.6		+2.6	mV

Note 16: BANDGAP_REG will be tuned at the factory.

Note 17: 0 dBm0 on COUT = -3.14 dB of max PCM value. COUT is CODEC output in test mode

Note 18: Trimming possibility is foreseen. At system production the bandgap reference voltage can be controlled within 2% accuracy and data can be stored in Flash. Either AVD or VREF can be trimmed within 2% accuracy. If AVD is trimmed VREF will be within 2% accuracy related to either AVD. Or vice versa VREF can be trimmed. For Vref trimming measure Δ (VREFp, VREFm) and update BANDGAP_REG[3..0].

Table 11: Microphone amplifier (Operating Condition)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Vmic_cm_level	MICp and MICn com- mon mode voltage	MICp and MICn are set to GND with internal resistors (Rin_mic). If DC coupled the input voltage must be equal to this voltage.		(0.9 V/1.5)* VREFp		v

Table 12: Microphone supply voltages

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Vref_unt	VREFp-VREFm untrimmed (Note 19)	I _{LOAD} = 0 mA BANDGAP_REG = 8 (Note 18)	1.41	1.5	1.59	v
Rout_vrefp	VREFp output resistance	Figure 8		1		Ω
Nvrefp_idle	Peak noise on VREFp-VREFm (Note 8)	CCITT weighted			-120	dBV
PSRRvrefp	Power supply rejec- tion Vref output (Note 8)	See Figure 8, AVD to VREFp/m, f = 100 Hz to 4 kHz BANDGAP_REG[5:4] = 3	40			dB

Note 19: Vrefm is a clean ground input and is the 0 V reference.

Table 13: VREFp load circuit

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Cload_vrefp	VREFp (parasitic) load capacitance				20	pF
lout_vrefp	VREFp output current				1	mA

Figure 8 VREFp load circuit

Table 14: LSRp/LSRn outputs

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Vlsr_0dB_unt	Untrimmed differen- tial RMS output volt- age between LSRp and LSRn in audio mode (0 dBm0 refer- ence level)	0 dBm0 on CIN (Note 20), LSRATT[2:0] = 001, @ 1020 Hz Load circuit A (see Figure 9, Table 15) with RL1= $\infty \Omega$, Cp1 or load circuit B (see Figure 10) with RL2, Cp2 and Cs2 <u>Tolerance:</u> • 13% when untrimmed (BANDGAP_REG=8) • 6% when trimmed (Note 18)	621	714	807	mV
Rout_lsr	Resistance of acti- vated loudspeaker amplifier outputs LSRp and LSRn			1		Ω
Vlsr_dc	DC offset between LSRp and LSRn (Note 8)	LSRATT[2:0] = 3 $R_{L1} = 28 \Omega$ 3 sigma deviation limits	-20		20	mV

Note 20: 0 dBm0 on CIN = -3.14 dB of max PCM value.

ICONDUCTOR

Table 15: LSRp/LSRn load circuits

Table 15: LSRp/LSRn load circuits								
PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT	P	
Cp1_RI1_inf	Load capacitance	see Figure 9, $R_{L1} = \infty$			30	pF	6	
Cp1_Rl1_1k	Load capacitance	see Figure 9, $R_{L1} \le 1 \ k\Omega$			100	pF	Ď	
RI1	Load resistance		28			Ω		
Cp2	Parallel load capacitance	see Figure 10			30	pF	Ŧ	
Cs2	Serial load capacitance				30	μF		
RI2	Load resistance		600			Ω		

Figure 9 Load circuit A: Dynamic loudspeaker

Table 16: PAOUTp, PAOUTn outputs

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Vpa_4v	Differential rms output voltage between PAOUTp and PAOUTn	Trimmed bandgap input = 0 dBm0, 1 kHz (Note 17) Output low-pass filtered CLASSD_VOUT = 0		0.985		Vrms
Vpa_6v		As above CLASSD_VOUT = 1		1.478		Vrms
Zload_pa_4v	Speaker impedance,	With these values, the peak cur-	4			Ω
Zload_pa_6v	connected between PAOUTp and PAOUTn	rents stays within the operating range.	6			Ω

Table 17: PAOUTp, PAOUTn outputs (Note 21)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
Rout_pa	Differential output resistance between PAOUTp and PAOUTn	See (Note 21)		1		Ω

Note 21: Clipping of the outputs occurs when the VDDPA drops and the following conditions becomes true. If CLASSD_CTRL_REG[CLASSD_CLIP] is not equal to zero then upon a programmable number of clipping occurrences a CLASSD_INT is generated: The software can stop clipping by reducing the gain via the GENDSP:

$$\frac{\text{peak(LowPassFiltered(PAOUTp-PAOUTm))}}{\text{VDDPA} - \text{VSSPA}} > \frac{\text{Zload}}{\text{Zload} + \text{Rout_pa}}$$

Clipping occurs if

Figure 10 Load circuit B: Piezo loudspeaker

DECT Module with integrated Antenna and FLASH

Table 18: PAOUTp, PAOUTn external components

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
C_VDDPA	Decoupling capacitor on VDDPA	Required when Class-D is used and guaranteed life time. (see Figure 11)		1		μF
Cs_PAOUT	Snubber capacitor (to reduce ringing at PAOUTp/n)	Required when Class-D is used to prevent EMI and guaranteed life time. (see Figure 11)		1		nF
Rs_PAOUT	Snubber resistor (to reduce ringing at PAOUTp/n)	Required when Class-D is used to prevent EMI and guaranteed life time. (see Figure 11)		1		Ω

Figure 11 Class-D external components

Efficiency 75% at 300 mW@2 V, 500 mW@2.5 V into a 4 Ω transducer.

DECT Module with integrated Antenna and FLASH

3.8 BATTERY MANAGEMENT

Table 19: CHARGE_CTRL pin

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Voh_charge_ctrl	Drive capability of pin	sourcing 500 μA	1.6			V
Vol_charge_ctrl	CHARGE_CTRL	sinking 100 μA			0.2	V

Table 20: State of charge circuit (SoC) (Operating condition)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
Vsocp_socn	Input voltage between SOCp and SOCn	With the prescribed 0.1 Ω sense resistor this results in the usable current range	-100		+100	mV

Figure 13 State of charge (SOC) counter accuracy

3.9 BASEBAND PART

Table 21: Baseband specifications

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Fbit_uart	Serial interface bit rate	UART; Interface for external microprocessor or PC			115.2	kbit/s
Fbit_flash	Flash download bit rate	Via UART			115.2	kbit/s
lbat_stdby_fp	Standby supply current	FP application (3.3 V)		55	60	mA
lbat_act_fp	Active supply current	FP application (3.3 V)		65	70	mA
lbat_stdby_pp	Standby supply current	PP application (3.3 V)		4.5	6	mA
lbat_act_pp	Active supply current	PP application (3.3 V)		30	40	mA

3.10 RADIO (RF) PART

Standards compliancy: ETS 301 406 (former TBR6).

Table 22: Radio specifications

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
P_Rx	Receiver sensitivity	BER = 0.001; TA = 25 °C	-93	-92	-89	dBm
P_Rx_T	Receiver sensitivity, full temperature range	BER = 0.001; -40 °C ≤ TA ≤ +85 °C	-94		-87	dBm
IPL	Intermodulation perform- ance level (EN 301 406 section 4.5.7.6)	TA = 25 °C; Pw = -80 dBm; Δf = 2 channels	-35			dBm
NTP	Normal transmitted power	DECT: 250 mW		24	26	dBm
		J-DECT: 10 mW average per frame for each slot		23	24.5	dBm
		DECT6.0: 100 mW (max peak)			20.0	dBm
dPrfpa_T	RFPA power variation, full temperature range	-40 °C \leq TA \leq +85 °C		2.5	4	dB
Fbit	Bit rate	GFSK modulation		1.152		Mbit/s
BW_Tx	Transmitter bandwidth	DECT GFSK; NTP = 20 dB			1.728	MHz

Table 23: RFPA preferred settings for various power modes (PP application)

Address (VES)	Register / Parameter	HPM/U (USA)	HPM (Europe)	HPM/J (Japan)
0x3D	RF_BBADC_CTRL_REG	0x0380	0x03A0	0x0398
0x39	RF_PA_CTRL1_REG	0x09A0	0x0CF0	0x2CE0
0x3B	RF_TEST_MODE2_REG	0x0056	0x0062	0x0068
0x05	RF_PLL_CTRL2_REG[MODINDEX]	0x25	0x25	0x23
0x23	Upper RSSI threshold	0x2C	N/A	0x28
0x24	Lower RSSI threshold	0x22	N/A	0x1E

MAX UNIT 3.45 V 20 mV

3.11 RF POWER SUPPLY

Table 24: Requirements for linear supply regulator

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
VBAT IN	Voltage at VBAT SW	Unloaded V _B Loaded V _B -V ₁ -V ₂ -V ₃	2.1	3	3.45	v
V ₁	Settling time	l = 50 mA			20	mV
V ₂	Receive period	l = 130 mA			100	mV
V ₂	Transmit period	l = 550 mA			200	mV
V ₃	Drop during transmit				25	mV

Figure 14 RF power supply

3.12 RF CHANNEL FREQUENCIES

Frequency (MHz)	DECT CH	J-DECT CH	DECT6.0 CH
1881.792	9		
1883.520	8		
1885.248	7		
1886.976	6		
1888.704	5		
1890.432	4		
1892.160	3		
1893.888	2		
1895.616	1	1	
1897.344	0	0	
1899.072		10	
1900.800		11	
1902.528		12	
1921.536			4
1923.264			3
1924.992			2
1926.720			1
1928.448			0

Table 25: RF frequencies and channel numbers

RF setting values must be followed according to AN-D-204 when DECT country mode was changed.

SC14SPNODE SF

S

4.0 Design guidelines

4.1 PCB DESIGN GUIDELINES

- Because of the presence of the digital radio frequency burst with 100 Hz time division periods (TDD noise), supply ripple and RF radiation, special attention is needed for the power supply and ground PCB layout.
- Power supply considerations Both high and low frequency bypassing of the supply line connections should be provided and placed as close as possible to the SC14SPNODE. In order to get the best overall performance for both FP and PP applications, a number of considerations for the PCB has to be taken into account.
 - Make angle breaks on long supply lines to avoid resonances at DECT frequencies. Maximum 80 mm before an angle break is recommended.
 - Supply lines should be placed as far as possible away from sensitive audio circuits. If it is necessary to cross supply lines and audio lines, it should be done with right angles between supply and audio lines/circuits (microphone, ear-speaker, speakerphone, etc.)
 - Ground plane considerations
 In order to achieve the best audio performance and to avoid the influence of power supply noise, RF radiation, TDD noise and other noise sources, it is important that the audio circuits on both FP and PP applications boards are connected to the VREFM pin on the SC14SPNODE with separate nets in the layout.

It is advised to provide the following audio circuits with separate ground nets connected to the VREFM pin:

- Microphone(s)
- Headset microphone and speaker
- Speakerphone (signal grounds)

Depending on the layout it may also be necessary to bypass a number of the audio signals listed above to avoid humming, noise from RF radiation and TDD noise. It is also important to choose a microphone of appropriate quality with a high RF immunity (with builtin capacitor).

ESD performance

Besides TDD noise, the ESD performance is important for the end-application. In order to achieve a high ESD performance supply lines should be placed with a large distance from charging terminals, display, headset connector and other electrical terminals with direct contact to the ESD source. On a two-layer PCB application it is important to keep a simulated one layer ground. With a stable ground ESD and TDD noise performance will always improve.

Clearance around test patterns
 Pin number 81 to 88 are used for production test

purposes. In order to avoid any interference or disturbance the area around these signal pins must be kept clear of any signal and/or GND. The recommended clearance is at least 1 mm as shown in Figure 15.

Figure 15 Clearance around test patterns

ŝ

4.2 MODULE PLACEMENT ON THE MAIN BOARD

In order to ensure FCC compliance, proper coverage and to avoid detuning of the antennas, it is required to place the module on the main board free from other surrounding materials.

Keep a distance of at least 10 mm from the antenna elements to conducting objects and at least 5 mm to non-conducting objects.

Keep in mind that electrical shielding objects, even partly surrounding the antennas, will normally cause a significant degradation of the coverage. Place the module at the edge of the main-board as shown in Figure 16.

If the module has to be placed away from the edge of the main-board, then avoid conducting areas in front of the antennas and make a cut-out in the main board underneath the antennas as shown in the figure.

See Figure 18 and Figure 21 for the detailed package outline.

Figure 16 Module placement on the main board (top view)

4.3 PATTERN FOR PIN 79 ON THE MAIN BOARD

The copper pattern for pin 79 on the main board is very important because it is part of the internal antenna of the module. It is used to extend the internal antenna for optimum RF performance.

The PCB pattern shown in Figure 19 under "pads C" for pin 79 on the main board was used during module certification.

4.4 PRECAUTIONS REGARDING UNINTENDED COUPLING

The SC14SPNODE includes an internal antenna, so by integration on the main board precautions shall be taken in order to avoid any kind of coupling from the main board to the RF part of the module.

If there is any doubt about this, a brief radio test should be performed.

5.0 Notices to OEM

The end product has to be certified again if it has been programmed with other software than Dialog standard software stack for portable part and/or uses one or two external antenna(s).

5.1 FCC REQUIREMENTS REGARDING THE END PRODUCT AND THE END USER

The end product that the module is integrated into must be marked as follows:

"Contains Transmitter Module FCC ID: Y82-SC14S / IC: 9576A-SC14S"

The literature provided to the end user must include the following wording:

FCC compliance statement

This device complies with Part 15 of the FCC Rules.] for **only portable part**.

Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation of the device.

Module transmetteur ID IC: 9576A-SC14S.

Son fonctionnement est soumis aux deux conditions suivantes: (1) cet appareil ne doit pas causer d'interférences nuisibles et (2) appareil doit accepter toute interférence reçue, y compris les interférences qui peuvent perturber le fonctionnement.

Changes or modifications to the equipment not expressly approved by the Party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generate, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

Reorient or relocate the receiving antenna

- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Privacy of communications may not be ensured when using this phone.

5.2 INDUSRY CANADA REQUIREMENTS REGARD-ING THE END PRODUCT AND THE END USER

The host device shall be properly labelled to identify the modules within the host device. The Industry Canada certification label of a module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labelled to display the Industry Canada certification number of the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as follows:

Contains transmitter module IC: 9576A-SC14S

L'appareil hôte doit être étiqueté comme il faut pour permettre l'identification des modules qui s'y trouvent. L'étiquette de certification d'Industrie Canada d'un module donné doit être posée sur l'appareil hôte à un endroit bien en vue en tout temps. En l'absence d'étiquette, l'appareil hôte doit porter une etiquette donnant le numéro de certification du module d'Industrie Canada, précédé des mots " Contient un module d'émission ", du mot " Contient " ou d'une formulation similaire exprimant le même sens, comme suit :

Contient le module d'émission IC: 9576A-SC14S

This device complies with Industry Canada licenceexempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

CAN ICES-3 (B)/NMB-3(B)

5.3 PRECAUTIONS REGARDING UNINTENDED COUPLING

Integration on the main board precautions shall be taken in order to avoid any kind of coupling from the main board to the RF part of the module. If there is any doubt about this, a radio short test should be performed.

5.4 END APPLICATION APPROVAL

The module is intended to be used in an end application. Type approval concerning the end product, except for the module, should off cause be done. Please contact a test-house in order to clarify what is needed.

5.5 SAFETY REQUIREMENTS

This section provides of an overview of the safety requirements you must adhere to when working with the SC14SPNODE.

- The specific external power supply for the SC14SPNODE has to fulfil the requirements according to clause 2.5 (Limited power source) of this standard EN 60950-1:2006.
- Interconnection circuits shall be selected to provide continued conformance to the requirements of clause 2.2 for SELV (Safety Extra Low Voltage) circuits according to EN 60950-1:2006 after making connections.
- Interface type not subjected to over voltages (i.e. does not leave the building).
- Requirements additional to those specified in this standard may be necessary for:
 - Equipment intended for operation in special environments (for example, extremes of temperature, excessive dust, moisture or vibration, flammable gases and corrosive or explosive atmospheres).
 - Equipment intended to be used in vehicles, on Board ships or aircraft, in tropical countries or at altitudes greater than 2000 m.
 - Equipment intended for use where ingress of water is possible.
- Installation by qualified personnel only!
- The product is a component intended for installation and use in complete equipment. The final acceptance of the component is dependent upon its installation and use in complete equipment.

6.0 Package information

6.1 SOLDERING PROFILE

The SC14SPNODE should be soldered using a standard reflow soldering profile and lead free solder paste as shown below. Adjustments to the profile may be necessary depending on process requirements.

6.2 MOISTURE SENSITIVITY LEVEL (MSL)

The MSL is an indicator for the maximum allowable time period (floor life time) in which a moisture sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a maximum temperature of 30°C and a maximum relative humidity of 60% RH. before the solder reflow process.

The SC14SPNODE is qualified to MSL 3.

MSL Level	Floor Life Time
MSL 4	72 hours
MSL 3	168 hours
MSL 2A	4 weeks
MSL 2	1 year
MSL 1	Unlimited at 30°C/85%RH

SEMICONDUCTOR

6.4 MECHANICAL DIMENSIONS

7.0 Revision history

Jul1, 2014 v1.6:

• Changed maximum RF output power for DECT 6.0

Apr 16, 2014 v1.5:

• Added an explanation for RF1 on 2.6

Feb 11, 2014 v1.4:

Correct 6.3Copper pad, solder openinG and STENCIL28

Feb 4, 2014 v1.3:

Modified 6.3Copper pad, solder openinG and STENCIL28

Nov 8, 2013 v1.2:

 Added section "5.2 INDUSTRY CANADA REQUIREMENTS REGARDING THE END PROD-UCT AND THE END USER"

Sept 12, 2013 v1.1:

- Ordering code for tray version corrected.
- Ordering code for tape-on-reel version removed.

July 10, 2013 v1.0: Initial version

Product Status Definitions

Datasheet Status	Product Status	Definition
Advance Information	Formative or in Design	This data sheet contains the design specifications for prod- uct development. Specifications may change in any manner without notice.
Preliminary	First Production	This data sheet contains preliminary data. Supplementary data will be published at a later date. Dialog Semiconductor reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
No Identification Noted	Full production	This data sheet contains final specifications. Dialog Semi- conductor reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Obsolete	Not in Production	This data sheet contains specifications on a product that has been discontinued by Dialog Semiconductor. The data-sheet is printed for reference information only.

Dialog Semiconductor reserves the right to make changes without notice to any products herein to improve reliability, function or design. Dialog Semiconductor does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the right of others.

Life Support Policy

DIALOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNCIL OF DIALOG SEMICONDUCTOR. As used herein:

1. Life support devices or systems are devices or systems which,

(a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labelling, can be reasonably expected to result in a significant injury to the user.

 A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Dialog Semiconductor does not assume any responsibility for use of any circuit described, no circuit patent licenses are implied, and Dialog reserves the right, at any time without notice, to change said circuitry or specifications.

RoHS Compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU concerning Restriction of Hazardous Substances (RoHS/RoHS2).

Dialog Semiconductor's statement on RoHS can be found on the customer portal <u>http:/portal.dialog-semiconduc-tor.com</u>. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

Germany Headquarters Dialog Semiconductor GmbH Phone: +49 7021 805-0

United Kingdom Dialog Semiconductor (UK) Ltd Phone: +44 1793 757700

The Netherlands Dialog Semiconductor B.V. Phone: +31 73 640 88 22 North America Dialog Semiconductor Inc. Phone: +1 408 727 3200

Japan Dialog Semiconductor K. K. Phone: +81 3 5425 4567

Taiwan Dialog Semiconductor Taiwan Phone: +886 226 580 388 Singapore

Dialog Semiconductor Singapore Phone: +65 64845419

China Dialog Semiconductor China Phone: +852 2607 4271

Korea Dialog Semiconductor Korea Phone: +82 2 569 2301 SE