RF Exposure Evaluation Report

Product Name	e: ARRI Transceiver Module
Model No.	: EMIP400,EMIP400s
FCC ID	: Y7N-EMIP400

Applicant : Arnold & Richter Cine Technik GmbH & Co. Betriebs KG Address : Türkenstrasse 89, 80799 Munich, Germany

Date of Receipt:Jan. 24, 2018Date of Declaration :Jan. 25, 2018Report No.:1810330R-RFUSP02V00Report Version:V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.

Issued Date: Jan. 25, 2018 Report No.: 1810330R-RFUSP02V00

Product Name	ARRI Transceiver Module		
Applicant	Arnold & Richter Cine Technik GmbH & Co. Betriebs KG		
Address	Türkenstrasse 89, 80799 Munich, Germany		
Manufacturer	Arnold & Richter Cine Technik GmbH & Co. Betriebs KG		
Model No.	EMIP400,EMIP400s		
FCC ID.	Y7N-EMIP400		
EUT Rated Voltage	DC 3.3V by fixture		
EUT Test Voltage	DC 3.3V by fixture		
Trade Name	ARRI		
Applicable Standard	FCC 47 CFR 1.1310		
Test Result	Complied		
Documented By	Joanne lin		
Tested By	(Senior Adm. Specialist / Joanne Lin) :		
	(Engineer / Kevin Liu)		
Approved By	Hand		
	(Director / Vincent Lin)		

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range		e	Power Density	Average Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(Minutes)
(A) Limits for Occupational/ Control Exposures				
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for General Population/ Uncontrolled Exposures				
300-1500			F/1500	6
1500-100,000			1	30

F= Frequency in MHz

Friis Formula Friis transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

 $\mathbf{R}=$ distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm^2 . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	ARRI Transceiver Module
Test Item	:	RF Exposure Evaluation

RF Exposure OQPSK:

Operation Frequency	2405-2475MHz
Maximum Conducted output power	19.02dBm
Antenna gain	2dBi

Output Power Into Antenna & RF Exposure Evaluation Distance:

Output Power to Antenna (mW)	Power Density at $R = 20 \text{ cm} (\text{mW/cm2})$
79.79946873	0.025161

Power density is lower than the limit (1 mW/cm2).