TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664

1. Report No: DRTFCC1811-0258

2. Customer

Name (FCC): Nolangroup S.p.A.

• Name (IC): NOLANGROUP S.P.A. con Socio Unico

• Address (FCC): Nolangroup S.p.A., via Terzi di S.Agata 2 24030 - Brembate di sopra (BG) - Italia

· Address (IC): Via G. Terzi di S.Agata n.2 24030 Brembate di Sopra (BG) Italy

3. Use of Report: FCC & IC Original Grant

4. Product Name / Model Name: N-Com B901 X / B901 X

FCC ID: Y6MNCOM21 / IC: 9455A-NCOM21

5. Test Method Used: ANSI C63.10-2013

Test Specification: FCC Part 15 Subpart C.247

RSS-247 Issue 2 (2017-02), RSS-GEN Issue 5 (2018-04)

6. Date of Test: 2018.10.30 ~ 2018.11.07

7. Testing Environment: See appended test report.

8. Test Result: Refer to the attached test result.

Affirmation Name : JaeHyeok Bang Reviewed by Name : Geunki Son (Signature)

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.

2018.11.21.

DT&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1811-0258	Nov. 21, 2018	Initial issue

Table of Contents

1. General Information	4
1.1 Testing Laboratory	4
1.2 Testing Environment	4
1.3 Measurement Uncertainty	4
1.4 Details of Applicant	5
1.5 Description of EUT	5
1.6 Declaration by the applicant / manufacturer	
1.7 Information about the FHSS characteristics	6
1.8 Test Equipment List	
1.9 Summary of Test Results	
1.10 Conclusion of worst-case and operation mode	
2. Maximum Peak Output Power Measurement	
2.1 Test Setup	
2.2 Limit	
2.3 Test Procedure	
2.4 Test Results	
3. 20 dB BW & Occupied BW	
3.1 Test Setup	
3.2 Limit	
3.3 Test Procedure	
3.4 Test Results	
4. Carrier Frequency Separation	
4.1 Test Setup	
4.2 Limit	
4.3 Procedure	
4.4 Test Results	
5. Number of Hopping Frequencies	
5.1 Test Setup	
5.2 Limit	
5.3 Procedure	
5.4 Test Results	
6. Time of Occupancy (Dwell Time)	
6.1 Test Setup	
6.1 Test Setup	
6.3 Test Procedure	
6.4 Test Results	
7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission .	
7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission .	
7.1 Test Setup	
7.3. Test Procedures	
7.3.1. Test Procedures for Radiated Spurious Emissions	
7.3.2. Test Procedures for Conducted Spurious Emissions	
7.4. Test Results	
7.4.1. Radiated Spurious Emissions	
7.4.2. Conducted Spurious Emissions	
8. Transmitter AC Power Line Conducted Emission	
8.1 Test Setup	
8.2 Limit	
8.3 Test Procedures	
8.4 Test Results	
9. Antenna Requirement	
APPENDIX I	70

IC: 9455A-NCOM21

Report No.: DRTFCC1811-0258

1. General Information

1.1 Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC MRA Accredited Test Firm No.: KR0034

- IC Test site No.: 5740A-4, 5740A-5

www.dtnc.net

Telephone : +82-31-321-2664 FAX : +82-31-321-1664

1.2 Testing Environment

Ambient Condition	
Temperature	+20 °C ~ +24 °C
■ Relative Humidity	40 % ~ 44 %

1.3 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Test items Measurement uncertainty	
Transmitter Output Power	0.7 dB (The confidence level is about 95 %, k = 2)
Conducted spurious emission	0.9 dB (The confidence level is about 95 %, k = 2)
AC conducted emission	2.4 dB (The confidence level is about 95 %, k = 2)

1.4 Details of Applicant

Applicant(FCC) : Nolangroup S.p.A.

Applicant(IC) : NOLANGROUP S.P.A. con Socio Unico

Address(FCC) : Nolangroup S.p.A., via Terzi di S.Agata 2 24030 - Brembate di sopra (BG) – Italia

Report No.: **DRTFCC1811-0258**

Address(IC) : Via G. Terzi di S.Agata n.2 24030 Brembate di Sopra (BG) Italy

Contact person : Claudio Corollo

1.5 Description of EUT

EUT	N-Com B901 X
Model Name	B901 X
Add Model Name	NA
Hardware version	1.0
Software version	1.0
Power Supply	DC 5V
Frequency Range	2402 MHz ~ 2480 MHz
Modulation Technique	GFSK, π/4-DQPSK, 8DPSK
Number of Channels	79
Antenna Type	Dipole Antenna
Antenna Gain	PK: 1.70 dBi

1.6 Declaration by the applicant / manufacturer

- NA

1.7 Information about the FHSS characteristics

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following :
 - A) The hopping sequence is pseudorandom

Note 1 : Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 42, 54, 72, 09, 01, 11, 33, 41, 34, 42, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 41, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 52, 71, 08, 24, 06, 24, 48, 56, 45, 46, 70, 01, 72, 06, 25, 33, 12, 28, 49, 60, 45, 58, 74, 13, 05, 18, 37, 49 etc

The System receiver have input bandwidths that match the hopping channel bandwidths of Their corresponding transmitters and shift frequencies in synchroniztation with the transmit Ted signals.

- B) All channels are used equally on average
- C) The receiver input bandwidth equals the transmit bandwidth
- D) The receiver hops in sequence with the transmit signal
- 15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.
- 15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate its
 channels selection / hopping sequence with other frequency hopping systems for the express
 purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple
 transmitters.
- 15.247(h): The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the number of test channels from 79 channels to a minimum number of 20 channels.

1.8 Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	18/07/09	19/07/09	MY50200834
Multimeter	FLUKE	17B	17/12/26	18/12/26	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	17/12/27	18/12/27	255571
Signal Generator	ANRITSU	MG3695C	18/02/12	19/02/12	173501
Thermohygrometer	BODYCOM	BJ5478	1801/03	19/01/03	120612-1
HYGROMETER	TESTO	608-H1	18/02/10	19/02/10	34862883
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2495A MA2490A	18/07/04	19/07/04	1338003 1249304
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESR7	17/11/16	18/11/16	101109
SINGLE-PHASE MASTER	NF	4420	18/08/30	19/08/30	3049354420023
TWO-LINE V-NETWORK	ROHDE&SCHWARZ	ENV216	17/12/18	18/12/18	101979
Cable	DTNC	CABLE	18/06/22	19/06/22	RF-82
Cable	DTNC	CABLE	18/06/25	19/06/25	RF-07

Note1: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

1.9 Summary of Test Results

FCC Part RSS Std.	Parameter	Limit (Using in 2400~ 2483.5 MHz)	Test Condition	Status Note 1
	Carrier Frequency Separation	>= 25 kHz or >= Two thirds of the 20 dB BW, whichever is greater.		С
15.247(a) RSS-247(5.1)	Number of Hopping Frequencies	>= 15 hops		С
1100 217 (0.1)	20 dB Bandwidth	N/A		С
	Dwell Time	=< 0.4 seconds		С
15.247(b) RSS-247(5.4)	Transmitter Output Power	For FCC =< 1 Watt, if CHs >= 75 Others =< 0.125 W For IC if CHs >= 75 =< 1 Watt For Conducted Power =< 4 Watt For e.i.r.p, Others =< 0.125 W For Conducted Power. =< 4 Watt For e.i.r.p	Conducted	С
15.247(d) RSS-247(5.5)	Conducted Spurious Emissions	The radiated emission to any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density.		С
RSS Gen(6.7)	Occupied Bandwidth (99 %)	N/A		С
15.247(d) 15.205 & 209 RSS-247(5.5) RSS-Gen (8.9 & 8.10)	Radiated Spurious Emissions	FCC 15.209 Limits	Radiated	NTNote2
15.207 RSS-Gen(8.8)	AC Conducted Emissions	FCC 15.207 Limits	AC Line Conducted	С
15.203 -	Antenna Requirements	FCC 15.203	-	С

Note 1 : C = Comply NC = Not Comply NT = Not Tested NA = Not Applicable

Note 2: This test item was performed in other laboratory according to applicant's request. Please refer to the Radiated Test Report

1.10 Conclusion of worst-case and operation mode

The EUT has three type of modulation (GFSK, π /4DQPSK and 8DPSK).

Therefore all applicable requirements were tested with all the modulations.

And packet type was tested at the worst case(DH5).

The field strength of spurious emission was measured in three orthogonal EUT positions (X-axis, Y-axis and Z-axis).

Tested frequency information,

- Hopping Function : Enable

	TX Frequency (MHz)	RX Frequency (MHz)
Hopping Band	2402 ~ 2480	2402 ~ 2480

- Hopping Function : Disable

	TX Frequency (MHz)	RX Frequency (MHz)
Lowest Channel	2402	2402
Middle Channel	2441	2441
Highest Channel	2480	2480

2. Maximum Peak Output Power Measurement

2.1 Test Setup

Refer to the APPENDIX I.

2.2 Limit

■ FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. §15.247(b)(1), For frequency hopping systems operating in the 2400 2483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725 5805 MHz band : 1 Watt.

IC Requirements

1. RSS-247(5.4), For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e)

2.3 Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using; Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 20 dB BW

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

2.4 Test Results

Modulation	Tested Channel	Frame Average Output Power		Peak Output Power	
		dBm	mW	dBm	mW
	Lowest	16.02	39.99	18.06	63.97
<u>GFSK</u>	Middle	17.29	53.58	19.19	82.99
	Highest	17.35	54.33	19.43	87.70
	Lowest	5.10	3.24	8.84	7.66
<u>π/4DQPSK</u>	Middle	6.71	4.69	10.86	12.19
	Highest	5.79	3.79	9.95	9.89
<u>8DPSK</u>	Lowest	5.08	3.22	9.54	8.99
	Middle	6.70	4.68	11.69	14.76
	Highest	5.76	3.77	10.80	12.02

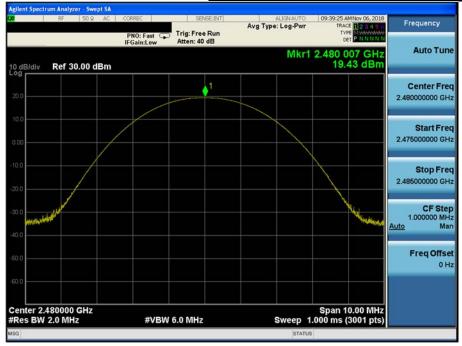
Note 1: The frame average output power was tested using an average power meter for reference only.

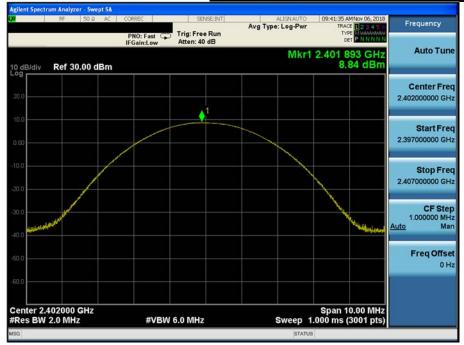
Note 2: See next pages for actual measured spectrum plots.


Peak Output Power

Lowest Channel & Modulation : GFSK

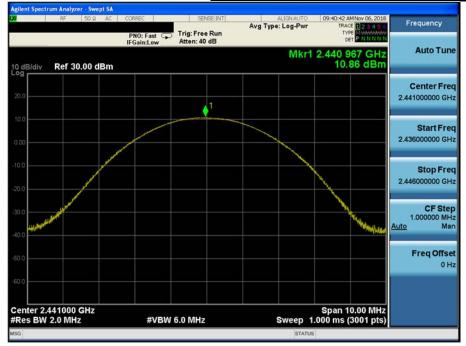
Peak Output Power

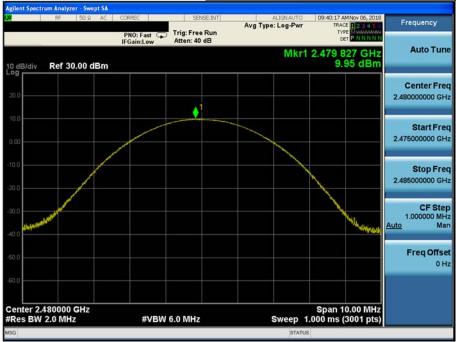

Middle Channel & Modulation : GFSK


Peak Output Power

Highest Channel & Modulation : GFSK

Peak Output Power


<u>Lowest Channel & Modulation : π/4DQPSK</u>


Peak Output Power

Middle Channel & Modulation : π/4DQPSK

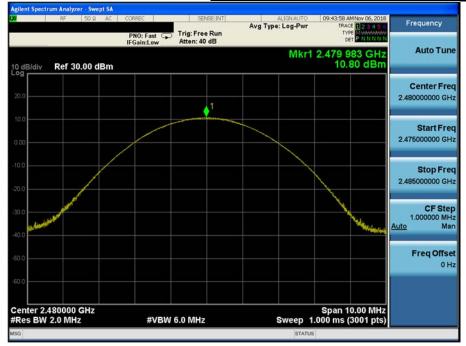
Peak Output Power

Highest Channel & Modulation : π/4DQPSK

Peak Output Power

Lowest Channel & Modulation: 8DPSK

Peak Output Power


Middle Channel & Modulation: 8DPSK

TDt&C

Peak Output Power

Highest Channel & Modulation: 8DPSK

3. 20 dB BW & Occupied BW

3.1 Test Setup

Refer to the APPENDIX I.

3.2 Limit

Limit: Not Applicable

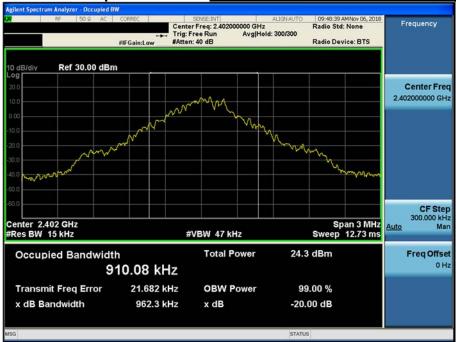
3.3 Test Procedure

- 1. The 20 dB bandwidth & Occupied bandwidth were measured with a spectrum analyzer connected to RF antenna Connector(conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting:
 RBW = 1% to 5% of the 20 dB BW & Occupied BW

VBW ≥ 3 × RBW

Span = between two times and five times the 20 dB bandwidth & Occupied BW

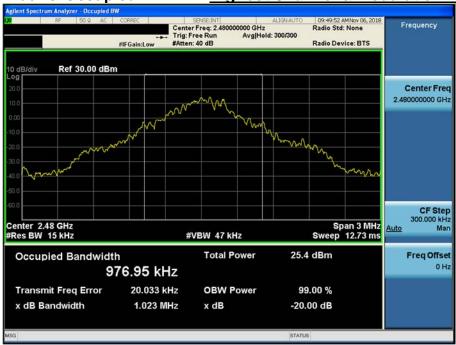
Sweep = auto


Detector function = peak

Trace = max hold

3.4 Test Results

Modulation	Tested Channel 20 dB BW (MHz)		Occupied BW (MHz)	
	Lowest	0.962	0.910	
<u>GFSK</u>	Middle	0.966	0.916	
	Highest	1.023	0.977	
	Lowest	1.240	1.167	
<u>π/4DQPSK</u>	Middle	1.237	1.172	
	Highest	1.255	1.175	
	Lowest	1.262	1.163	
<u>8DPSK</u>	Middle	1.254	1.170	
	Highest	1.252	1.170	


20 dB Bandwidth & Occupied BW Lowest Channel & Modulation : GFSK

20 dB Bandwidth & Occupied BW <u>Middle Channel & Modulation : GFSK</u>

20 dB Bandwidth & Occupied BW Highest Channel & Modulation : GFSK

20 dB Bandwidth & Occupied BW <u>Lowest Channel & Modulation : π/4DQPSK</u>

20 dB Bandwidth & Occupied BW <u>Middle Channel & Modulation : π/4DQPSK</u>

20 dB Bandwidth & Occupied BW Highest Channel & Modulation : π/4DQPSK

20 dB Bandwidth & Occupied BW <u>Lowest Channel & Modulation : 8DPSK</u>

20 dB Bandwidth & Occupied BW <u>Middle Channel & Modulation : 8DPSK</u>

20 dB Bandwidth & Occupied BW Highest Channel & Modulation : 8DPSK

4. Carrier Frequency Separation

4.1 Test Setup

Refer to the APPENDIX I.

4.2 Limit

Limit: ≥ 25 kHz or ≥ Two-Thirds of the 20 dB BW whichever is greater.

4.3 Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the markerdelta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

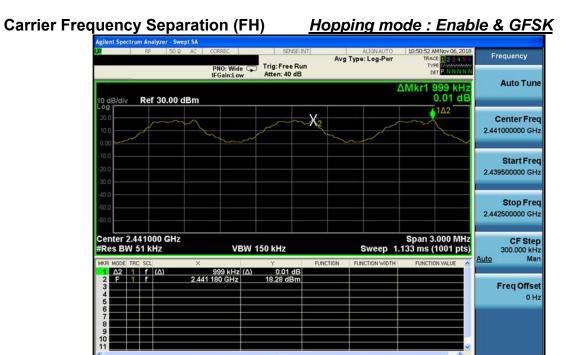
VBW ≥ RBW Sweep = auto
Detector function = peak Trace = max hold

4.4 Test Results

FH mode

Hopping Mode	Modulation	Peak of center channel (MHz)	Peak of adjacent Channel (MHz)	Test Result (MHz)
	GFSK	2441.180	2442.179	0.999
Enable	π/4-DQPSK	2441.021	2442.023	1.002
	8DPSK	2441.021	2442.020	0.999

AFH mode

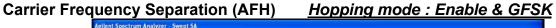

Hopping Mode	Modulation	Peak of center channel (MHz)	Peak of adjacent Channel (MHz)	Test Result (MHz)
Enable	GFSK	2441.180	2442.182	1.002
	π/4-DQPSK	2441.021	2442.020	0.999
	8DPSK	2441.021	2442.020	0.999

Note 1 : See next pages for actual measured spectrum plots.

- Minimum Standard:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400 - 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW


Carrier Frequency Separation (FH) <u>Hopping mode : Enable & π/4DQPSK</u>

Carrier Frequency Separation (AFH) <u>Hopping mode : Enable & π/4DQPSK</u>

5. Number of Hopping Frequencies

5.1 Test Setup

Refer to the APPENDIX I.

5.2 Limit

Limit: >= 15 hops

5.3 Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 2400 ~ 2483.5 MHz were examined.

The spectrum analyzer is set to:

Span for FH mode = 50 MHz Start Frequency = 2391.5 MHz, Stop Frequency = 2441.5 MHz

Start Frequency = 2441.5 MHz, Stop Frequency = 2491.5 MHz

Span for AFH mode = 40 MHz Start Frequency = 2421.0 MHz, Stop Frequency = 2461.0 MHz

RBW = To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing

or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

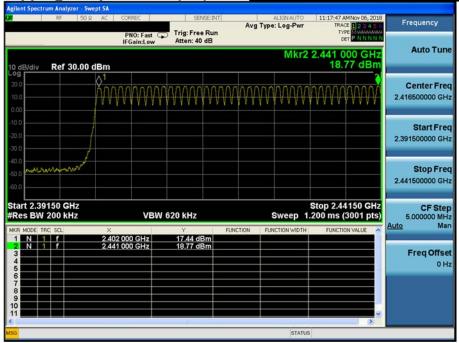
5.4 Test Results

FH mode

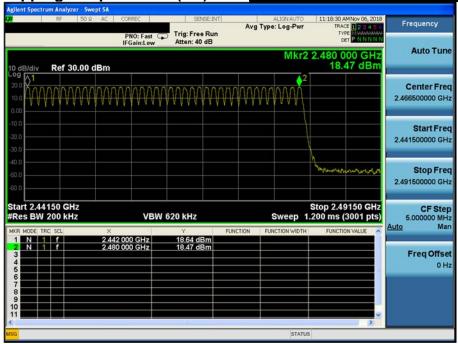
Hopping mode	Modulation	Test Result (Total Hops)
Enable	GFSK	79
	π/4-DQPSK	79
	8DPSK	79

AFH mode

Hopping mode	Modulation	Test Result (Total Hops)
Enable	GFSK	20
	π/4-DQPSK	20
	8DPSK	20


Note 1: See next pages for actual measured spectrum plots.

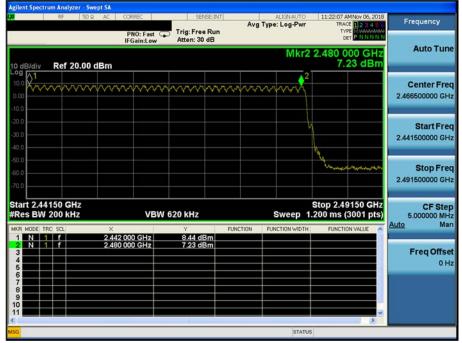
- Minimum Standard:


Λt	laact	15	hopes
ΑL	ieasi	าอ	nobes

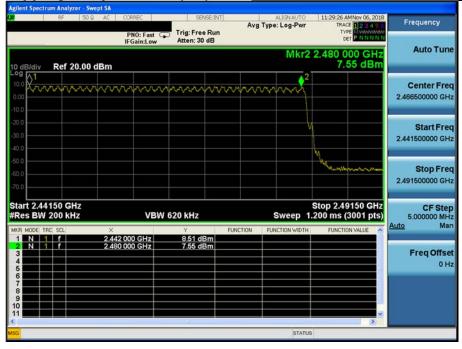
Number of Hopping Frequencies 1(FH) <u>Hopping mode : Enable & GFSK</u>

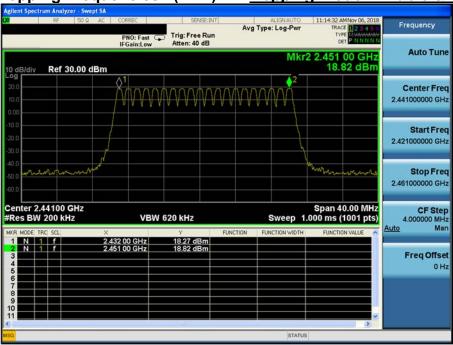


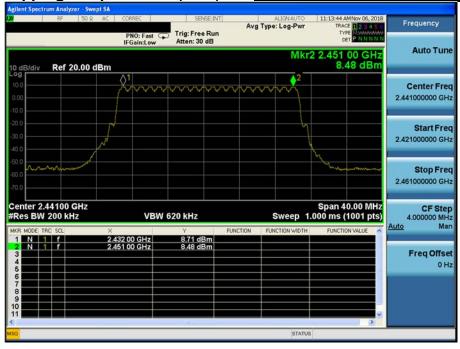
Number of Hopping Frequencies 2(FH) <u>Hopping mode : Enable & GFSK</u>

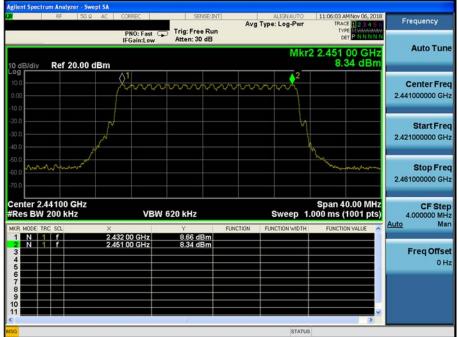


Number of Hopping Frequencies 1(FH) Hopping mode : Enable & π/4DQPSK


Number of Hopping Frequencies 2(FH) Hopping mode : Enable & π/4DQPSK




Number of Hopping Frequencies 2(FH) Hopping mode : Enable & 8DPSK


Number of Hopping Frequencies 1(AFH) Hopping mode : Enable & GFSK

Number of Hopping Frequencies 1(AFH) Hopping mode : Enable & π/4DQPSK

Number of Hopping Frequencies 1(AFH) Hopping mode : Enable & 8DPSK

6. Time of Occupancy (Dwell Time)

6.1 Test Setup

Refer to the APPENDIX I.

6.2 Limit

The maximum permissible time of occupancy is 400 ms within a period of 400 ms multiplied by the number of hopping channels employed.

6.3 Test Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

Center frequency = 2441 MHz

Span = zero

RBW = 1 MHz (RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)

VBW ≥ RBW

Detector function = peak

Trace = max hold

6.4 Test Results

FH mode

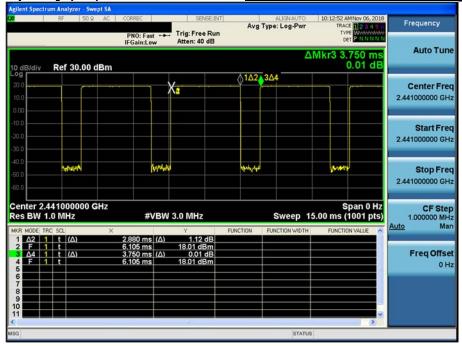
Hopping mode	Packet Type	Number of hopping Channels	Burst On Time (ms)	Period (ms)	Test Result (sec)
Enable	DH 5	79	2.880	3.750	0.307
	2 DH 5	79	2.880	3.750	0.307
	3 DH 5	79	2.880	3.750	0.307

AFH mode

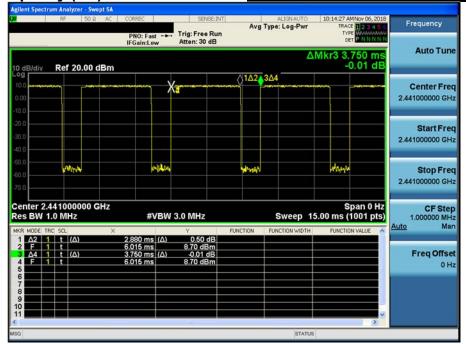
Hopping mode	Packet Type	Number of hopping Channels	Burst On Time (ms)	Period (ms)	Test Result (sec)
Enable	DH 5	20	2.880	3.750	0.154
	2 DH 5	20	2.880	3.750	0.154
	3 DH 5	20	2.880	3.750	0.154

Note 1 : Dwell Time = 0.4 × Hopping channel × Burst ON time ×

((Hopping rate ÷ Time slots) ÷ Hopping channel)

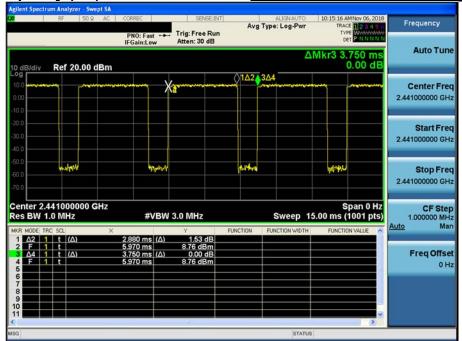

- Time slots for DH5 = 6 slots (TX = 5 slot / RX = 1 slot)
- Hopping Rate = 1600 for FH mode & 800 for AFH mode

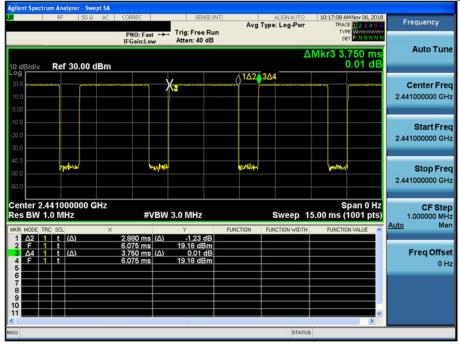
Note 2: See next pages for actual measured spectrum plots.


Time of Occupancy (FH)

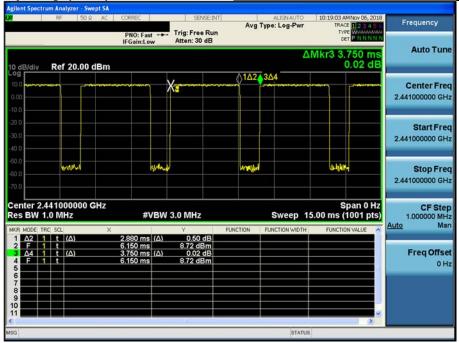
Hopping mode : Enable & DH5

Time of Occupancy (FH)

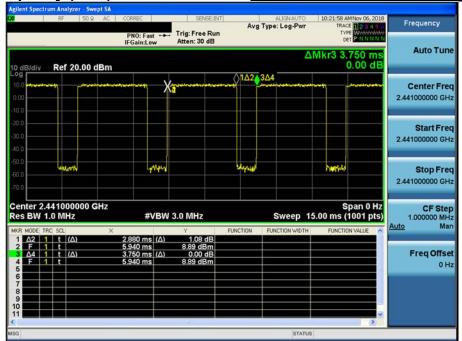



Time of Occupancy (FH)

Hopping mode: Enable & 3-DH5



Time of Occupancy (AFH) <u>Hopping mode : Enable & DH5</u>


Time of Occupancy (AFH) <u>Hopping mode : Enable & 2-DH5</u>

Time of Occupancy (AFH)

Hopping mode: Enable & 3-DH5

