# **TEST REPORT**

|                 |                                                                                    | DT&C Co., Ltd.                                                                                                       |                                  |                                     |  |
|-----------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|--|
| <b>Dt&amp;C</b> |                                                                                    | 42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042<br>Tel : 031-321-2664, Fax : 031-321-1664 |                                  |                                     |  |
|                 |                                                                                    | 19                                                                                                                   |                                  |                                     |  |
| 1. Report N     | o: DRTFCC1812-027                                                                  | 0                                                                                                                    |                                  |                                     |  |
| 2. Custome      | r                                                                                  | c.                                                                                                                   |                                  |                                     |  |
|                 | FCC): Nolangroup S.p.,<br>IC): NOLANGROUP S.                                       |                                                                                                                      | nico                             |                                     |  |
|                 | s (FCC) : Nolangroup S. <sub> </sub><br>s (IC) : Via G. Terzi di S.                |                                                                                                                      |                                  | ate di sopra (BG) – Italia<br>Italy |  |
| 3. Use of Re    | eport : FCC & IC Origina                                                           | al Grant                                                                                                             |                                  |                                     |  |
|                 | Name / Model Name : N<br>Y6MNCOM19 / IC : 94                                       |                                                                                                                      | 601 S                            |                                     |  |
|                 | hod Used : ANSI C63.1<br>cification : FCC Part 15<br>RSS-247 Iss                   | Subpart C.247                                                                                                        | RSS-GEN Issue 5 (201             | 8-04)                               |  |
| 6. Date of T    | est : 2018.11.07 ~ 2018                                                            | 3.12.03                                                                                                              |                                  |                                     |  |
| 7. Testing E    | nvironment : See appe                                                              | nded test report.                                                                                                    |                                  |                                     |  |
| 8. Test Res     | ult : Refer to the attache                                                         | ed test result.                                                                                                      |                                  |                                     |  |
|                 |                                                                                    |                                                                                                                      |                                  |                                     |  |
| Affirmation     | Tested by<br>Name : Myunghoon Lee                                                  | (sighter)                                                                                                            | Reviewed by<br>Name : GeunKi Son | (Signature)                         |  |
|                 | esults presented in this te<br>f this test report is inhibite<br>except in full, w | d other than its pur                                                                                                 |                                  | Il not be reproduced                |  |
|                 |                                                                                    | 2018 . 12 .                                                                                                          | . 04 .                           | ,                                   |  |
|                 |                                                                                    | DT&C Co                                                                                                              | Ltd.                             | , <b>A</b>                          |  |

If this report is required to confirmation of authenticity, please contact to report@dtnc.net



## **Test Report Version**

| Test Report No. | Date          | Description   |
|-----------------|---------------|---------------|
| DRTFCC1812-0270 | Dec. 04, 2018 | Initial issue |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |



## **Table of Contents**

| 1. General Information                                                     |    |
|----------------------------------------------------------------------------|----|
| 1.1 Testing Laboratory                                                     | 4  |
| 1.2 Testing Environment                                                    | 4  |
| 1.3 Measurement Uncertainty                                                | 4  |
| 1.4 Details of Applicant                                                   | 5  |
| 1.5 Description of EUT                                                     | 5  |
| 1.6 Declaration by the applicant / manufacturer                            |    |
| 1.7 Information about the FHSS characteristics                             |    |
| 1.8 Test Equipment List                                                    |    |
| 1.9 Summary of Test Results                                                |    |
| 1.10 Conclusion of worst-case and operation mode                           |    |
| 2. Maximum Peak Output Power Measurement                                   |    |
| 2.1 Test Setup                                                             |    |
| 2.2 Limit                                                                  |    |
| 2.3 Test Procedure                                                         |    |
| 2.4 Test Results                                                           |    |
| 3. 20 dB BW & Occupied BW                                                  |    |
| 3.1 Test Setup                                                             |    |
| 3.1 Test Setup                                                             |    |
|                                                                            |    |
| 3.3 Test Procedure                                                         |    |
| 3.4 Test Results                                                           |    |
| 4. Carrier Frequency Separation                                            |    |
| 4.1 Test Setup                                                             |    |
| 4.2 Limit                                                                  |    |
| 4.3 Procedure                                                              | -  |
| 4.4 Test Results                                                           |    |
| 5. Number of Hopping Frequencies                                           |    |
| 5.1 Test Setup                                                             |    |
| 5.2 Limit                                                                  |    |
| 5.3 Procedure                                                              |    |
| 5.4 Test Results                                                           |    |
| 6. Time of Occupancy (Dwell Time)                                          | 34 |
| 6.1 Test Setup                                                             | 34 |
| 6.2 Limit                                                                  |    |
| 6.3 Test Procedure                                                         | 34 |
| 6.4 Test Results                                                           | 34 |
| 7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission | 39 |
| 7.1 Test Setup                                                             | 39 |
| 7.2 Limit                                                                  |    |
| 7.3. Test Procedures                                                       | 40 |
| 7.3.1. Test Procedures for Radiated Spurious Emissions                     |    |
| 7.3.2. Test Procedures for Conducted Spurious Emissions                    |    |
| 7.4. Test Results                                                          |    |
| 7.4.1. Radiated Emissions                                                  |    |
| 7.4.2. Conducted Spurious Emissions                                        |    |
| 8. Transmitter AC Power Line Conducted Emission                            |    |
| 8.1 Test Setup                                                             |    |
| 8.2 Limit                                                                  |    |
| 8.3 Test Procedures                                                        |    |
| 8.3 Test Procedures                                                        |    |
| 9. Antenna Requirement                                                     |    |
| 9. Antenna Requirement                                                     |    |
|                                                                            |    |
|                                                                            | 74 |

### **1. General Information**

### **1.1 Testing Laboratory**

#### DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

#### - FCC MRA Accredited Test Firm No. : KR0034

#### - IC Test site No. : 5740A-4, 5740A-5

| www.dtnc.net |   |                  |
|--------------|---|------------------|
| Telephone    | : | + 82-31-321-2664 |
| FAX          | : | + 82-31-321-1664 |

### **1.2 Testing Environment**

| Ambient Condition                     |                 |  |
|---------------------------------------|-----------------|--|
| Temperature                           | +22 °C ~ +25 °C |  |
| <ul> <li>Relative Humidity</li> </ul> | 43 % ~ 48 %     |  |

### **1.3 Measurement Uncertainty**

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

| Test items                                     | Measurement uncertainty                               |  |
|------------------------------------------------|-------------------------------------------------------|--|
| Transmitter Output Power                       | 0.9 dB (The confidence level is about 95 %, $k = 2$ ) |  |
| Conducted spurious emission                    | 0.9 dB (The confidence level is about 95 %, $k = 2$ ) |  |
| AC conducted emission                          | 2.4 dB (The confidence level is about 95 %, $k = 2$ ) |  |
| Radiated spurious emission<br>(1 GHz Below)    | 5.1 dB (The confidence level is about 95 %, $k = 2$ ) |  |
| Radiated spurious emission<br>(1 GHz ~ 18 GHz) | 5.4 dB (The confidence level is about 95 %, $k = 2$ ) |  |
| Radiated spurious emission<br>(18 GHz Above)   | 5.3 dB (The confidence level is about 95 %, $k = 2$ ) |  |

### **1.4 Details of Applicant**

| Applicant(FCC) | : | Nolangroup S.p.A.                                                                  |
|----------------|---|------------------------------------------------------------------------------------|
| Applicant(IC)  | : | NOLANGROUP S.P.A. con Socio Unico                                                  |
| Address(FCC)   | : | Nolangroup S.p.A. , via Terzi di S.Agata 2 24030 - Brembate di sopra (BG) – Italia |
| Address(IC)    | : | Via G. Terzi di S.Agata n.2 24030 Brembate di Sopra (BG) Italy                     |
| Contact person | : | Claudio Corollo                                                                    |

### 1.5 Description of EUT

| EUT                  | N-Com B601 S          |
|----------------------|-----------------------|
| Model Name           | B601 S                |
| Add Model Name       | NA                    |
| Hardware Version     | 1.0                   |
| Software Version     | 1.0                   |
| Serial Number        | Identical prototype   |
| Power Supply         | DC 3.7 V              |
| Frequency Range      | 2402 MHz ~ 2480 MHz   |
| Modulation Technique | GFSK, π/4DQPSK, 8DPSK |
| Number of Channels   | 79                    |
| Antenna Type         | Chip antenna          |
| Antenna Gain         | PK : 0.032 dBi        |

### **1.6 Declaration by the applicant / manufacturer**

- NA

### **1.7 Information about the FHSS characteristics**

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following :
  - A) The hopping sequence is pseudorandom
    - Note 1 : Pseudorandom Frequency Hopping Sequence Table as below:
      - Channel: 08, 24, 40, 56, 42, 54, 72, 09, 01, 11, 33, 41, 34, 42, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 41, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 52, 71, 08, 24, 06, 24, 48, 56, 45, 46, 70, 01, 72, 06, 25, 33, 12, 28, 49, 60, 45, 58, 74, 13, 05, 18, 37, 49 etc

The System receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchroniztation with the transmit ted signals.

- B) All channels are used equally on average
- C) The receiver input bandwidth equals the transmit bandwidth
- D) The receiver hops in sequence with the transmit signal
- 15.247(g) : In accordance with the Bluetooth Industry Standard, the system is designed to comply with all
  of the regulations in Section 15.247 when the transmitter is presented with a continuous data
  (or information) system.
- 15.247(h) : In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection / hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h): The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the number of test channels from 79 channels to a minimum number of 20 channels.

### 1.8 Test Equipment List

| Туре                                   | Manufacturer           | Model                               | Cal.Date<br>(yy/mm/dd) | Next.Cal.Date<br>(yy/mm/dd) | S/N                |
|----------------------------------------|------------------------|-------------------------------------|------------------------|-----------------------------|--------------------|
| Spectrum Analyzer                      | Agilent Technologies   | N9020A                              | 18/07/09               | 19/07/09                    | MY50200834         |
| Spectrum Analyzer                      | Agilent Technologies   | N9020A                              | 17/12/28               | 18/12/28                    | MY50410357         |
| Multimeter                             | FLUKE                  | 17B                                 | 17/12/26               | 18/12/26                    | 26030065WS         |
| Signal Generator                       | Rohde Schwarz          | SMBV100A                            | 17/12/27               | 18/12/27                    | 255571             |
| Signal Generator                       | ANRITSU                | MG3695C                             | 18/02/12               | 19/02/12                    | 173501             |
| Thermohygrometer                       | BODYCOM                | BJ5478                              | 1801/03                | 19/01/03                    | 120612-1           |
| Thermohygrometer                       | BODYCOM                | BJ5478                              | 18/07/09               | 19/07/09                    | N/A                |
| Thermohygrometer                       | BODYCOM                | BJ5478                              | 18/01/02               | 19/01/02                    | 090205-4           |
| HYGROMETER                             | TESTO                  | 608-H1                              | 18/02/10               | 19/02/10                    | 34862883           |
| Loop Antenna                           | Schwarzbeck            | FMZB1513                            | 18/01/30               | 20/01/30                    | 1513-128           |
| BILOG ANTENNA                          | Schwarzbeck            | VULB 9160                           | 18/07/13               | 20/07/13                    | 3359               |
| Horn Antenna                           | ETS-Lindgren           | 3115                                | 17/01/13               | 19/01/13                    | 9202-3820          |
| Horn Antenna                           | Schwarzbeck            | BBHA 9120C                          | 17/12/04               | 19/12/04                    | 9120C-561          |
| Horn Antenna                           | A.H.Systems Inc.       | SAS-574                             | 17/07/31               | 19/07/31                    | 155                |
| PreAmplifier                           | Agilent Technologies   | 8449B                               | 18/07/05               | 19/07/05                    | 3008A02108         |
| PreAmplifier                           | tsj                    | MLA-0118-J01-<br>45                 | 18/02/08               | 19/02/08                    | 17138              |
| PreAmplifier                           | tsj                    | MLA-1840-J02-<br>45                 | 18/07/06               | 19/07/06                    | 16966-10728        |
| PreAmplifier                           | tsj                    | MLA-1840-J02-<br>45                 | 18/07/06               | 19/07/06                    | 16966-10728        |
| Attenuator                             | SMAJK                  | SMAJK-2-3                           | 18/07/02               | 19/07/02                    | 3                  |
| Attenuator                             | Aeroflex/Weinschel     | 56-3                                | 18/07/02               | 19/07/02                    | Y2370              |
| Attenuator                             | SRTechnology           | F01-B0606-01                        | 18/07/02               | 19/07/02                    | 13092403           |
| Attenuator                             | Hefei Shunze           | SS5T2.92-10-40                      | 18/07/03               | 19/07/03                    | 16012202           |
| High Pass Filter                       | Wainwright Instruments | WHNX8.0/26.5-<br>6SS                | 18/07/02               | 19/07/02                    | 3                  |
| High Pass Filter                       | Wainwright Instruments | WHKX12-935-<br>1000-15000-<br>40SS  | 18/07/02               | 19/07/02                    | 8                  |
| High Pass Filter                       | Wainwright Instruments | WHKX10-2838-<br>3300-18000-<br>60SS | 18/07/02               | 19/07/02                    | 1                  |
| Power Meter &<br>Wide Bandwidth Sensor | Anritsu                | ML2495A<br>MA2490A                  | 18/07/04               | 19/07/04                    | 1338003<br>1249304 |
| EMI Test Receiver                      | Rohde Schwarz          | ESR7                                | 18/02/13               | 19/02/13                    | 101061             |
| EMI Test Receiver                      | Rohde Schwarz          | ESCI7                               | 18/02/12               | 19/02/12                    | 100910             |
| PULSE LIMITER                          | Rohde Schwarz          | ESH3-Z2                             | 18/09/27               | 19/09/27                    | 101333             |
| LISN                                   | SCHWARZBECK            | NNLK 8121                           | 18/03/20               | 19/03/20                    | 06183              |
| Cable                                  | Radiall                | TESTPRO3                            | 18/07/06               | 19/07/06                    | M-01               |
| Cable                                  | Junkosha               | MWX315                              | 18/11/19               | 19/11/19                    | M-05               |
| Cable                                  | Junkosha               | MWX221                              | 18/11/19               | 19/11/19                    | M-06               |
| Cable                                  | Junkosha               | MWX241                              | 18/06/25               | 19/06/25                    | G-04               |
| Cable                                  | Junkosha               | MWX241                              | 18/06/25               | 19/06/25                    | G-07               |
| Cable                                  | DT&C                   | Cable                               | 18/07/06               | 19/07/06                    | G-13               |
| Cable                                  | DT&C                   | Cable                               | 18/07/06               | 19/07/06                    | G-14               |
| Cable                                  | HUBER+SUHNER           | SUCOFLEX 104                        | 18/07/06               | 19/07/06                    | G-15               |
| Cable                                  | DT&C                   | Cable                               | 18/07/05               | 19/07/05                    | RF-82              |
| Cable                                  | DT&C                   | Cable                               | 18/06/25               | 19/06/25                    | RF-20              |

Note 1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note 2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.



### 1.9 Summary of Test Results

| FCC Part<br>RSS Std.                                                                                                                                                                                                                                                                                                                         | Parameter                                                                                            | <b>Limit</b><br>(Using in 2400~ 2483.5 MHz)                                                                                                                                                                           | Test<br>Condition    | Status<br>Note 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                              | Carrier Frequency Separation >= 25 kHz or<br>>= Two thirds of the 20 dB BW,<br>whichever is greater. |                                                                                                                                                                                                                       |                      | С                |
| 15.247(a)<br>RSS-247(5.1)                                                                                                                                                                                                                                                                                                                    | Number of Hopping Frequencies >= 15 hops                                                             |                                                                                                                                                                                                                       |                      | С                |
|                                                                                                                                                                                                                                                                                                                                              | 20 dB Bandwidth                                                                                      | N/A                                                                                                                                                                                                                   |                      | С                |
|                                                                                                                                                                                                                                                                                                                                              | Dwell Time                                                                                           | =< 0.4 seconds                                                                                                                                                                                                        |                      | С                |
| 15.247(b)<br>RSS-247(5.4)                                                                                                                                                                                                                                                                                                                    | Transmitter Output Power                                                                             | For FCC<br>=< 1 Watt , if CHs >= 75<br>Others =< 0.125 W<br>For IC<br>if CHs >= 75<br>=< 1 Watt For Conducted Power<br>=< 4 Watt For e.i.r.p,<br>Others<br>=< 0.125 W For Conducted Power.<br>=< 0.5 Watt For e.i.r.p | Conducted            | С                |
| 15.247(d)<br>RSS-247(5.5)                                                                                                                                                                                                                                                                                                                    | Conducted Spurious Emissions                                                                         | The radiated emission to any<br>100 kHz of out-band shall be at<br>least 20 dB below the highest<br>in-band spectral density.                                                                                         |                      | С                |
| RSS Gen(6.7)                                                                                                                                                                                                                                                                                                                                 | Occupied Bandwidth (99 %)                                                                            | N/A                                                                                                                                                                                                                   |                      | С                |
| 15.247(d)<br>15.205 & 209<br>RSS-247(5.5)<br>RSS-Gen<br>(8.9 & 8.10)                                                                                                                                                                                                                                                                         | Radiated Spurious Emissions                                                                          | FCC 15.209 Limits                                                                                                                                                                                                     | Radiated             | C Note3          |
| 15.207<br>RSS-Gen(8.8)                                                                                                                                                                                                                                                                                                                       | AC Conducted Emissions                                                                               | FCC 15.207 Limits                                                                                                                                                                                                     | AC Line<br>Conducted | С                |
| 15.203                                                                                                                                                                                                                                                                                                                                       | Antenna Requirements                                                                                 | FCC 15.203                                                                                                                                                                                                            | -                    | С                |
| Note 1 : C = Comply       NC = Not Comply       NT = Not Tested       NA = Not Applicable         Note 2 : For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.       with OATS.         Note 3 : This test item was performed in each axis and the worst case data was reported. |                                                                                                      |                                                                                                                                                                                                                       |                      |                  |



### 1.10 Conclusion of worst-case and operation mode

The EUT has three types of modulation (GFSK,  $\pi$ /4DQPSK and 8DPSK).

Therefore all applicable requirements were tested with all the modulations.

And packet type was tested at the worst case(DH5).

The field strength of spurious emission was measured in three orthogonal EUT positions (X-axis, Y-axis and Z-axis).

### Tested frequency information,

- Hopping Function : Enable

|              | TX Frequency (MHz) | RX Frequency (MHz) |  |
|--------------|--------------------|--------------------|--|
| Hopping Band | 2402 ~ 2480        | 2402 ~ 2480        |  |

- Hopping Function : Disable

|                 | TX Frequency (MHz) | RX Frequency (MHz) |
|-----------------|--------------------|--------------------|
| Lowest Channel  | 2402               | 2402               |
| Middle Channel  | 2441               | 2441               |
| Highest Channel | 2480               | 2480               |



### 2. Maximum Peak Output Power Measurement

### 2.1 Test Setup

Refer to the APPENDIX I.

### 2.2 Limit

#### FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- §15.247(b)(1), For frequency hopping systems operating in the 2400 2483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725 5805 MHz band : 1 Watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

#### IC Requirements

 RSS-247(5.4) (b), For FHSS operating in the band 2400 - 2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels, the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p shall not exceed 4 W, except as provided in section 5.4(e)

### 2.3 Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using ;

Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge 20 \text{ dB BW}$  $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold

### 2.4 Test Results

| Modulation      | Tested Channel |      | Average<br>t Power | Peak Output Power |      |  |
|-----------------|----------------|------|--------------------|-------------------|------|--|
| Woddiation      | resteu Ghanner | dBm  | mW                 | dBm               | mW   |  |
|                 | Lowest         | 1.76 | 1.50               | 2.79              | 1.90 |  |
| <u>GFSK</u>     | Middle         | 1.64 | 1.46               | 2.68              | 1.85 |  |
|                 | Highest        | 1.45 | 1.40               | 2.68              | 1.85 |  |
|                 | Lowest         | 0.93 | 1.24               | 3.39              | 2.18 |  |
| <u>π/4DQPSK</u> | Middle         | 0.64 | 1.16               | 3.32              | 2.15 |  |
|                 | Highest        | 0.29 | 1.07               | 3.17              | 2.07 |  |
|                 | Lowest         | 0.91 | 1.23               | 3.73              | 2.36 |  |
| <u>8DPSK</u>    | Middle         | 0.67 | 1.17               | 3.66              | 2.32 |  |
|                 | Highest        | 0.28 | 1.07               | 3.29              | 2.13 |  |

Note 1 : The Frame average output power was tested using an average power meter for reference only. Note 2 : See next pages for actual measured spectrum plots.



### Peak Output Power

### Lowest Channel & Modulation : GFSK



#### **Peak Output Power**

### Middle Channel & Modulation : GFSK

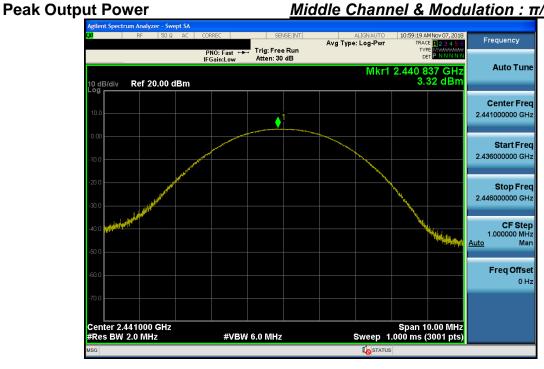




### Peak Output Power <u>Highest Channel & Modulation : GFSK</u>



**I**STATUS


#### **Peak Output Power**

### Lowest Channel & Modulation : π/4DQPSK





### Middle Channel & Modulation : π/4DQPSK



#### **Peak Output Power**

### Highest Channel & Modulation : π/4DQPSK





### Peak Output Power

### Lowest Channel & Modulation : 8DPSK



#### **Peak Output Power**

### Middle Channel & Modulation : 8DPSK





### **Peak Output Power**

### Highest Channel & Modulation : 8DPSK



### 3. 20 dB BW & Occupied BW

### 3.1 Test Setup

Refer to the APPENDIX I.

### 3.2 Limit

Limit : Not Applicable

### 3.3 Test Procedure

- 1. The 20 dB bandwidth & Occupied bandwidth were measured with a spectrum analyzer connected to RF antenna Connector(conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting:
  - RBW = 1% to 5% of the 20 dB BW & Occupied BW
  - $VBW \ge 3 \times RBW$

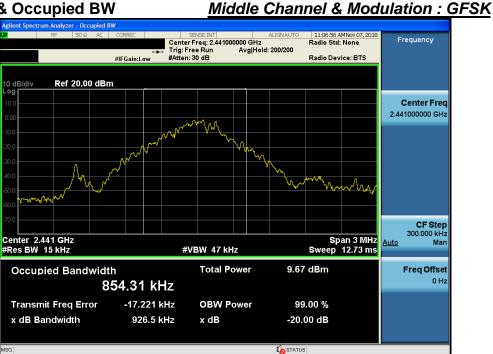
Span = between two times and five times the 20 dB bandwidth & Occupied BW

Sweep = auto

Detector function = peak

Trace = max hold

### 3.4 Test Results


| Modulation      | Tested Channel | 20 dB BW (MHz) | Occupied BW (MHz) |
|-----------------|----------------|----------------|-------------------|
|                 | Lowest         | 0.932          | 0.860             |
| <u>GFSK</u>     | Middle         | 0.927          | 0.854             |
|                 | Highest        | 0.924          | 0.857             |
|                 | Lowest         | 1.235          | 1.169             |
| <u>π/4DQPSK</u> | Middle         | 1.259          | 1.170             |
|                 | Highest        | 1.261          | 1.172             |
|                 | Lowest         | 1.249          | 1.175             |
| <u>8DPSK</u>    | Middle         | 1.249          | 1.182             |
|                 | Highest        | 1.251          | 1.176             |







### 20 dB BW & Occupied BW







### 20 dB BW & Occupied BW

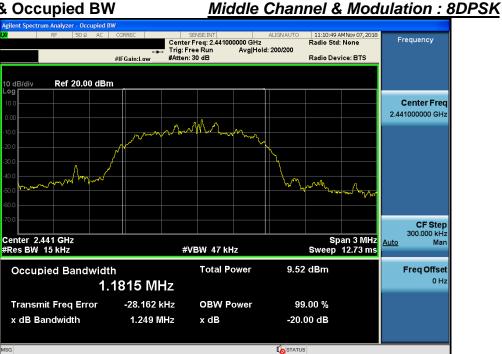
### Lowest Channel & Modulation : π/4DQPSK



### Middle Channel & Modulation : π/4DQPSK



### 20 dB BW & Occupied BW


### Highest Channel & Modulation : π/4DQPSK







### 20 dB BW & Occupied BW









### 4. Carrier Frequency Separation

### 4.1 Test Setup

Refer to the APPENDIX I.

### 4.2 Limit

Limit :  $\geq$  25 kHz or  $\geq$  Two-Thirds of the 20 dB BW whichever is greater.

### 4.3 Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the markerdelta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

### 4.4 Test Results

#### FH mode

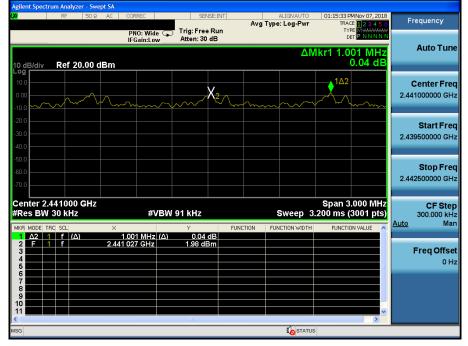
| Hopping<br>Mode | Modulation | Peak of center<br>channel<br>(MHz) | Peak of adjacent<br>Channel<br>(MHz) | Test Result<br>(MHz) |
|-----------------|------------|------------------------------------|--------------------------------------|----------------------|
|                 | GFSK       | 2441.012                           | 2442.013                             | 1.001                |
| Enable          | π/4DQPSK   | 2441.027                           | 2442.028                             | 1.001                |
|                 | 8DPSK      | 2441.028                           | 2442.029                             | 1.001                |

#### AFH mode

| Hopping<br>Mode | Modulation | Modulation Peak of center<br>(MHz) |          | Test Result<br>(MHz) |
|-----------------|------------|------------------------------------|----------|----------------------|
|                 | GFSK       | 2411.015                           | 2412.016 | 1.001                |
| Enable          | π/4DQPSK   | 2411.028                           | 2412.029 | 1.001                |
|                 | 8DPSK      | 2411.035                           | 2412.035 | 1.000                |

Note 1 : See next pages for actual measured spectrum

#### - Minimum Standard :


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 - 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW **Carrier Frequency Separation (FH)** 





### **Carrier Frequency Separation (FH)**

Hopping mode : Enable & π/4DQPSK





### Carrier Frequency Separation (FH)

### Hopping mode : Enable & 8DPSK





### Carrier Frequency Separation (AFH) <u>Hopping mode : Enable & GFSK</u>



### Carrier Frequency Separation (AFH) <u>Hopping mode : Enable & $\pi/4DQPSK$ </u>



Carrier Frequency Separation (AFH) Hopping mode : Enable & 8DPSK



### 5. Number of Hopping Frequencies

### 5.1 Test Setup

Refer to the APPENDIX I.

### 5.2 Limit

Limit : >= 15 hops

### 5.3 Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 2400 ~ 2483.5 MHz were examined.

The spectrum analyzer is set to :

| Span for FH mode = 50 MHz  | Start Frequency = 2391.5 MHz,                                                                                                                        | Stop Frequency = 2441.5 MHz |  |  |  |  |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|
|                            | Start Frequency = 2441.5 MHz,                                                                                                                        | Stop Frequency = 2491.5 MHz |  |  |  |  |  |  |
| Span for AFH mode = 30 MHz | Start Frequency = 2396.0 MHz,                                                                                                                        | Stop Frequency = 2426.0 MHz |  |  |  |  |  |  |
|                            | RBW = To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. |                             |  |  |  |  |  |  |
| VBW ≥ RBW                  | Sweep = auto                                                                                                                                         |                             |  |  |  |  |  |  |
| Detector function = peak   | Trace = max hold                                                                                                                                     |                             |  |  |  |  |  |  |

### 5.4 Test Results

#### FH mode

| Hopping mode | Modulation | Test Result (Total Hops) |
|--------------|------------|--------------------------|
|              | GFSK       | 79                       |
| Enable       | π/4DQPSK   | 79                       |
|              | 8DPSK      | 79                       |

#### AFH mode

| Hopping mode | Modulation | Test Result (Total Hops) |
|--------------|------------|--------------------------|
|              | GFSK       | 20                       |
| Enable       | π/4DQPSK   | 20                       |
|              | 8DPSK      | 20                       |


Note 1 : See next pages for actual measured spectrum plots.

#### - Minimum Standard :

At least 15 hopes

### Number of Hopping Frequencies 1(FH)

### Hopping mode : Enable & GFSK

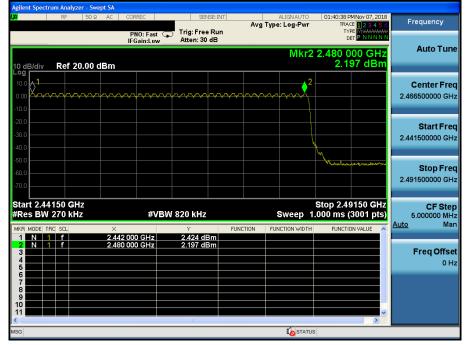


Number of <u>Hopping Frequencies</u> 2(FH)








### Number of Hopping Frequencies 1(FH)

### Hopping mode : Enable & π/4DQPSK

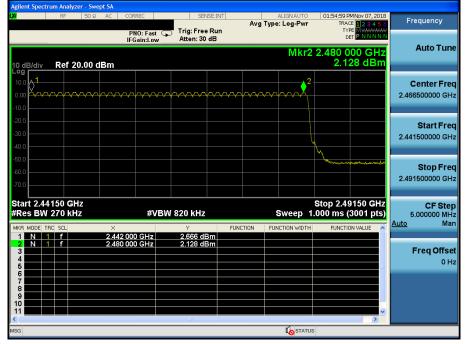
| LXI                     | n spech u                                 | RF     |       | Ω AC   |                   | RREC     |     |      | SENSE    | INT | 0      |      | ALIGNAUTO<br>: Log-Pwr |         | PM Nov 07, 2018<br>CE <b>1 2 3 4 5</b> ( |      | requency                           |
|-------------------------|-------------------------------------------|--------|-------|--------|-------------------|----------|-----|------|----------|-----|--------|------|------------------------|---------|------------------------------------------|------|------------------------------------|
|                         |                                           |        |       |        |                   | NO: Fas  |     |      | Free F   |     | Avg    | Type | : Log-Pwr              | T)      |                                          |      |                                    |
| 10 d                    | B/div                                     | Ref    | 20.00 | ) dBm  |                   | Gain:Lov | w   | Atte | n: 30 di | •   |        |      | Mkr2                   | 2.441 ( | )00 GHz<br>89 dBm                        |      | Auto Tune                          |
| Log<br>10.0<br>0.00     |                                           |        |       |        | <del>م</del> ېمېم | ᢆᡊᠵᡊᡔ    | ᢣᢇᠵ | ~~~  | ~~~~~    | ᠕᠕᠕ | ᡝᢇᡘ    | ᢣᠬᢊ  | ᡊᡊᡘ                    | ᠬᡊᡊᡢ    |                                          |      | <b>Center Freq</b><br>16500000 GHz |
| -20.0<br>-30.0<br>-40.0 |                                           |        | لهم   | r<br>- |                   |          |     |      |          |     |        |      |                        |         |                                          | 2.39 | Start Freq<br>91500000 GHz         |
| -50.0<br>-60.0<br>-70.0 | un en | rythen | w.    |        |                   |          |     |      |          |     |        |      |                        |         |                                          | 2.44 | Stop Freq<br>41500000 GHz          |
| #Re                     | t 2.391<br>s BW 2                         | 270    |       |        |                   | #\       | /BW | 820  | kHz      |     |        |      |                        | .000 ms | 4150 GHz<br>(3001 pts)                   |      | CF Step<br>5.000000 MHz<br>Man     |
| MKR                     | MODE TRO                                  | SCL    |       |        | 402 00            | 0 GHz    |     |      | 31 dBn   | 1   | ICTION | FUN  | ICTION WIDTH           | FUNCT   | ION VALUE                                |      |                                    |
| 2<br>3<br>4<br>5        | N 1                                       | f      |       | 2.4    | 441 00            | 0 GHz    |     | 2.68 | 39 dBn   | n   |        |      |                        |         |                                          |      | Freq Offset<br>0 Hz                |
| 6<br>7<br>8<br>9<br>10  |                                           |        |       |        |                   |          |     |      |          |     |        |      |                        |         |                                          |      |                                    |
| <                       |                                           |        |       |        |                   |          |     |      | 11       |     |        |      | 2                      |         | >                                        |      |                                    |
| MSG                     |                                           |        |       |        |                   |          |     |      |          |     |        |      |                        | 6       |                                          |      |                                    |

Number of Hopping Frequencies 2(FH)

### Hopping mode : Enable & π/4DQPSK



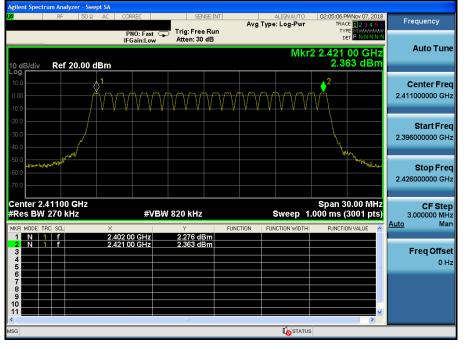



### Number of <u>Hopping Frequencies 1(FH)</u>

### Hopping mode : Enable & 8DPSK

| Agilent Spectrum Analyzer - Sw        |                              |                  |           |                                                    |            |                                      |                         |
|---------------------------------------|------------------------------|------------------|-----------|----------------------------------------------------|------------|--------------------------------------|-------------------------|
| <mark>ເXI</mark> RF 50 ຜ              | AC CORREC                    | SE               | NSE:INT   | ALIGNAUTO                                          |            | Nov 07, 2018                         | Frequency               |
|                                       | DNA                          | Fast 😱 Trig: Fre |           | g type: Log-Pwr                                    | TYPE       | 123456<br>M <del>WWWWW</del>         |                         |
|                                       | IFGain                       |                  |           |                                                    | DE         | PNNNN                                |                         |
|                                       |                              |                  |           | Mkr1                                               | 2.402 0    |                                      | Auto Tune               |
|                                       |                              |                  |           | WINT                                               |            | 2 dBm                                |                         |
| 10 dB/div Ref 20.00                   | dBm                          |                  |           |                                                    | 2.10       |                                      |                         |
| 10.0                                  | 1                            |                  |           |                                                    |            | 2                                    | Conton From             |
|                                       |                              | ~~~~~~           |           |                                                    |            |                                      | Center Freq             |
| 0.00                                  | Landand                      | ~~~~~            | ¥ŸŸŸŸŶŶŶŶ | $\gamma \gamma \phi \phi \phi \phi \phi \phi \phi$ | wv wvvvy   | $\gamma \gamma \gamma \gamma \gamma$ | 2.416500000 GHz         |
| -10.0                                 | 1                            |                  |           |                                                    |            |                                      |                         |
| -20.0                                 |                              |                  |           |                                                    |            |                                      |                         |
| -30.0                                 |                              |                  |           |                                                    |            |                                      | Start Freq              |
| · · · · · · · · · · · · · · · · · · · |                              |                  |           |                                                    |            |                                      | 2.391500000 GHz         |
| -40.0                                 |                              |                  |           |                                                    |            |                                      |                         |
| -50.0                                 |                              |                  |           |                                                    |            |                                      |                         |
| -60.0                                 |                              |                  |           |                                                    |            |                                      | Stop Freq               |
| -70.0                                 |                              |                  |           |                                                    |            |                                      | 2.441500000 GHz         |
| -70.0                                 |                              |                  |           |                                                    |            |                                      |                         |
| Start 2.39150 GHz                     |                              |                  |           |                                                    | Stop 2.44  | 150 CHz                              | 05.04                   |
| #Res BW 270 kHz                       |                              | #VBW 820 kHz     |           | Sweep 1                                            | .000 ms (3 |                                      | CF Step<br>5.000000 MHz |
|                                       |                              |                  |           |                                                    |            |                                      | Auto Man                |
| MKR MODE TRC SCL                      | ×                            | Y                | FUNCTION  | FUNCTION WIDTH                                     | FUNCTION   | N VALUE                              | - mar                   |
| 1 N 1 f<br>2 N 1 f                    | 2.402 000 GI<br>2.441 000 GI |                  |           |                                                    |            |                                      |                         |
| 3                                     | 2.441 000 01                 | 2.412.0          |           |                                                    |            |                                      | Freq Offset             |
| 4                                     |                              |                  |           |                                                    |            |                                      | 0 Hz                    |
| 5                                     |                              |                  |           |                                                    |            | =                                    |                         |
| 7                                     |                              |                  |           |                                                    |            |                                      |                         |
| 8                                     |                              |                  |           |                                                    |            |                                      |                         |
| 9                                     |                              |                  |           |                                                    |            |                                      |                         |
| 11                                    |                              |                  |           |                                                    |            | ~                                    |                         |
| <                                     |                              |                  |           |                                                    |            | >                                    |                         |
| MSG                                   |                              |                  |           | Ko STATU:                                          | S          |                                      |                         |
|                                       |                              |                  |           |                                                    |            |                                      |                         |

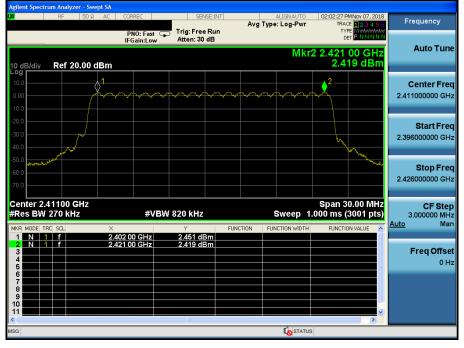
### Number of Hopping Frequencies 2(FH)


### Hopping mode : Enable & 8DPSK



### Number of Hopping Frequencies 1(AFH)

### Hopping mode : Enable & GFSK


Hopping mode : Enable & π/4DQPSK



#### Number of Hopping Frequencies 1(AFH)



### Number of Hopping Frequencies 1(AFH) Hopping mode : Enable & 8DPSK





### 6. Time of Occupancy (Dwell Time)

### 6.1 Test Setup

Refer to the APPENDIX I.

### 6.2 Limit

The maximum permissible time of occupancy is 400 ms within a period of 400 ms multiplied by the number of hopping channels employed.

### 6.3 Test Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to : Center frequency = 2441 MHz

Span = zero

RBW = 1 MHz (RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)

VBW ≥ RBW

Detector function = peak

Trace = max hold

### 6.4 Test Results

#### FH mode

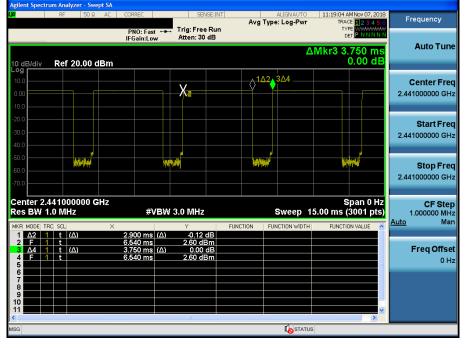
| Hopping<br>mode | Packet<br>Type | Number of hopping<br>Channels | Burst<br>On Time<br>(ms) | Period<br>(ms) | Test Result<br>(sec) |
|-----------------|----------------|-------------------------------|--------------------------|----------------|----------------------|
|                 | DH 5           | 79                            | 2.900                    | 3.750          | 0.309                |
| Enable          | 2 DH 5         | 79                            | 2.910                    | 3.750          | 0.310                |
|                 | 3 DH 5         | 79                            | 2.910                    | 3.750          | 0.310                |

#### AFH mode

| Hopping<br>mode | Packet<br>Type | Number of hopping<br>Channels | Burst<br>On Time<br>(ms) | Period<br>(ms) | Test Result<br>(sec) |
|-----------------|----------------|-------------------------------|--------------------------|----------------|----------------------|
|                 | DH 5           | 20                            | 2.900                    | 3.750          | 0.155                |
| Enable          | 2 DH 5         | 20                            | 2.910                    | 3.750          | 0.155                |
|                 | 3 DH 5         | 20                            | 2.910                    | 3.750          | 0.155                |

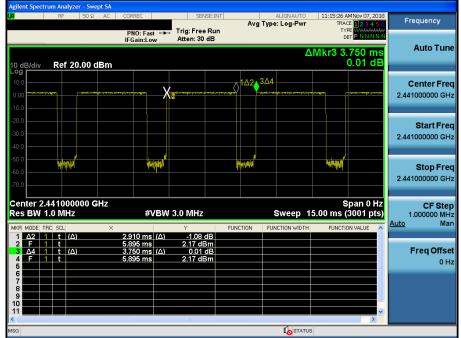
Note 1 : Dwell Time = 0.4 × Hopping channel × Burst ON time ×

((Hopping rate ÷ Time slots) ÷ Hopping channel)


- Time slots for DH5 = 6 slots (TX = 5 slot / RX = 1 slot)
- Hopping Rate = 1600 for FH mode & 800 for AFH mode

Note 2 : See next pages for actual measured spectrum plots.

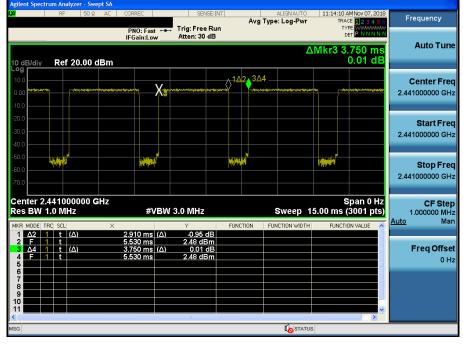



### Hopping mode : Enable & DH5

### Time of Occupancy (FH)



### Time of Occupancy (FH)

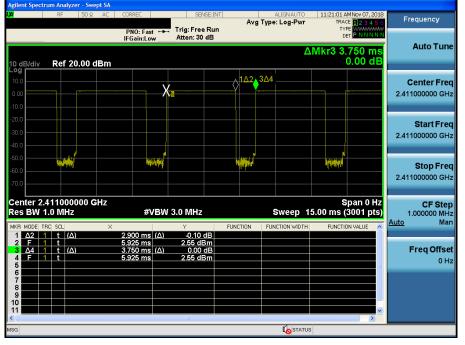

### Hopping mode : Enable & 2-DH5





### Hopping mode : Enable & 3-DH5

### Time of Occupancy (FH)



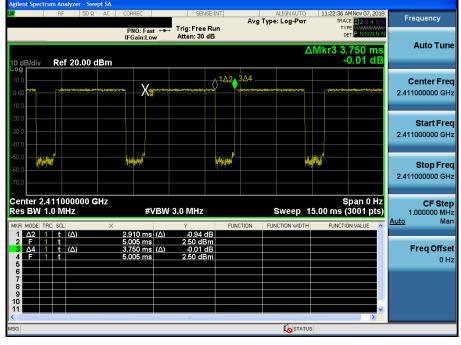



# Hopping mode : Enable & DH5

# Time of Occupancy (AFH)

Time of Occupancy (AFH)




# Hopping mode : Enable & 2-DH5

#### Frequency Avg Type: Log-Pwr Trig: Free Run Atten: 30 dB TYPE DE1 PNO: Fast +++ Auto Tune ΔMkr3 3.750 ms -0.01 dE Ref 20.00 dBm B/div ∆<sup>1∆2</sup> 3∆4 **Center Freq** X 2.411000000 GHz Start Freq 2.411000000 GHz 1994 A Stop Freq 2.411000000 GHz Center 2.411000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 15.00 ms (3001 pts) CF Step 1.000000 MHz Man #VBW 3.0 MHz Auto FUNCTION Δ2 1 t (Δ) 1 2 s (A) 2.2 -0.01 dB 2.25 dBm Freq Offset (A) 0 Hz **I**STATUS



# Hopping mode : Enable & 3-DH5

# Time of Occupancy (AFH)





# 7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

# 7.1 Test Setup

Refer to the APPENDIX I.

# 7.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

| Frequency (MHz) | Limit (uV/m)  | Measurement Distance (meter) |
|-----------------|---------------|------------------------------|
| 0.009 ~ 0.490   | 2400/F (kHz)  | 300                          |
| 0.490 ~ 1705    | 24000/F (kHz) | 30                           |
| 1705 ~ 30.0     | 30            | 30                           |
| 30 ~ 88         | 100 **        | 3                            |
| 88 ~ 216        | 150 **        | 3                            |
| 216 ~ 960       | 200 **        | 3                            |
| Above 960       | 500           | 3                            |

\*\* Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below :

| MHz                 | MHz                   | MHz             | GHz           |
|---------------------|-----------------------|-----------------|---------------|
| 0.009 ~ 0.110       | 16.42 ~ 16.423        | 399.90 ~ 410    | 4.5 ~ 5.15    |
| 0.495 ~ 0.505       | 16.69475 ~ 16.69525   | 608 ~ 614       | 5.35 ~ 5.46   |
| 2.1735 ~ 2.1905     | 16.80425 ~ 16.80475   | 960 ~ 1240      | 7.25 ~ 7.75   |
| 4.125 ~ 4.128       | 25.5 ~ 25.67          | 1300 ~ 1427     | 8.025 ~ 8.5   |
| 4.17725 ~ 4.17775   | 37.5 ~ 38.25          | 1435 ~ 1626.5   | 9.0 ~ 9.2     |
| 4.20725 ~ 4.20775   | 73 ~ 74.6             | 1645.5 ~ 1646.5 | 9.3 ~ 9.5     |
| 6.215 ~ 6.218       | 74.8 ~ 75.2           | 1660 ~ 1710     | 10.6 ~ 12.7   |
| 6.26775 ~ 6.26825   | 108 ~ 121.94          | 1718.8 ~ 1722.2 | 13.25 ~ 13.4  |
| 6.31175 ~ 6.31225   | 123 ~ 138             | 2200 ~ 2300     | 14.47 ~ 14.5  |
| 8.291 ~ 8.294       | 149.9 ~ 150.05        | 2310 ~ 2390     | 15.35 ~ 16.2  |
| 8.362 ~ 8.366       | 156.52475 ~ 156.52525 | 2483.5 ~ 2500   | 17.7 ~ 21.4   |
| 8.37625 ~ 8.38675   | 156.7 ~ 156.9         | 2690 ~ 2900     | 22.01 ~ 23.12 |
| 8.41425 ~ 8.41475   | 162.0125 ~ 167.17     | 3260 ~ 3267     | 23.6 ~ 24.0   |
| 12.29 ~ 12.293      | 167.72 ~ 173.2        | 3332 ~ 3339     | 31.2 ~ 31.8   |
| 12.51975 ~ 12.52025 | 240 ~ 285             | 3345.8 ~ 3358   | 36.43 ~ 36.5  |
| 12.57675 ~ 12.57725 | 322 ~ 335.4           | 3600 ~ 4400     | Above 38.6    |
| 13.36 ~ 13.41       |                       |                 |               |

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

# 7.3. Test Procedures

#### 7.3.1. Test Procedures for Radiated Spurious Emissions

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### **Measurement Instrument Setting**

- 1. Frequency Range Below 1GHz RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak
- 2. Frequency Range Range > 1 GHz Peak Measurement RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes Average Measurement> 1GHz RBW = 1MHz, VBW ≥ 1/T, Detector = Peak, Sweep Time = Auto, Trace Mode = Max Hold until the trace stabilizes



#### 7.3.2. Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

Frequency range : 9 kHz ~ 30 MHz RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

Frequency range : 30 MHz ~ 10 GHz, 10 GHz ~ 26.5 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.



# 7.4. Test Results

#### 7.4.1. Radiated Emissions

#### 9 kHz ~ 25 GHz Data (Modulation : GFSK)

Lowest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|---------------|---------------|----------------------------|--------------------|-------------------|----------------|
| 2384.60            | Н          | Х                         | PK               | 53.13             | 2.67          | N/A           | N/A                        | 55.80              | 74.00             | 18.20          |
| 2389.81            | Н          | Х                         | AV               | 41.54             | 2.70          | N/A           | N/A                        | 44.24              | 54.00             | 9.76           |
| 4803.84            | Н          | Z                         | PK               | 50.62             | 1.44          | N/A           | N/A                        | 52.06              | 74.00             | 21.94          |
| 4804.23            | Н          | Z                         | AV               | 39.40             | 1.44          | N/A           | N/A                        | 40.84              | 54.00             | 13.16          |

#### Middle Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|---------------|---------------|----------------------------|--------------------|-------------------|----------------|
| 4881.26            | Н          | Z                         | PK               | 50.36             | 1.63          | N/A           | N/A                        | 51.99              | 74.00             | 22.01          |
| 4881.92            | Н          | Z                         | AV               | 39.12             | 1.63          | N/A           | N/A                        | 40.75              | 54.00             | 13.25          |

#### Highest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|---------------|---------------|----------------------------|--------------------|-------------------|----------------|
| 2484.10            | V          | Z                         | PK               | 52.81             | 3.10          | N/A           | N/A                        | 55.91              | 74.00             | 18.09          |
| 2485.15            | V          | Z                         | AV               | 41.32             | 3.10          | N/A           | N/A                        | 44.42              | 54.00             | 9.58           |
| 4959.47            | Н          | Z                         | PK               | 51.53             | 1.87          | N/A           | N/A                        | 53.40              | 74.00             | 20.60          |
| 4960.10            | Н          | Z                         | AV               | 43.43             | 1.87          | N/A           | N/A                        | 45.30              | 54.00             | 8.70           |

#### Note.

1. The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log( applied distance / required distance ) = 20 log( 1 m / 3 m ) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

#### 3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AGWhere, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain.



#### 9 kHz ~ 25 GHz Data (Modulation : $\pi$ /4DQPSK)

#### Lowest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|---------------|---------------|----------------------------|--------------------|-------------------|----------------|
| 2389.67            | Н          | Х                         | PK               | 51.82             | 2.70          | N/A           | N/A                        | 54.52              | 74.00             | 19.48          |
| 2388.08            | Н          | Х                         | AV               | 41.54             | 2.69          | N/A           | N/A                        | 44.23              | 54.00             | 9.77           |
| 4803.46            | Н          | Z                         | PK               | 49.79             | 1.44          | N/A           | N/A                        | 51.23              | 74.00             | 22.77          |
| 4805.61            | Н          | Z                         | AV               | 39.19             | 1.44          | N/A           | N/A                        | 40.63              | 54.00             | 13.37          |

#### Middle Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|---------------|---------------|----------------------------|--------------------|-------------------|----------------|
| 4882.79            | Н          | Z                         | PK               | 50.22             | 1.64          | N/A           | N/A                        | 51.86              | 74.00             | 22.14          |
| 4879.83            | Н          | Z                         | AV               | 39.03             | 1.63          | N/A           | N/A                        | 40.66              | 54.00             | 13.34          |

#### Highest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|---------------|---------------|----------------------------|--------------------|-------------------|----------------|
| 2486.43            | V          | Z                         | PK               | 51.70             | 3.10          | N/A           | N/A                        | 54.80              | 74.00             | 19.20          |
| 2483.55            | V          | Z                         | AV               | 41.51             | 3.10          | N/A           | N/A                        | 44.61              | 54.00             | 9.39           |
| 4960.38            | Н          | Z                         | PK               | 50.62             | 1.87          | N/A           | N/A                        | 52.49              | 74.00             | 21.51          |
| 4959.51            | Н          | Z                         | AV               | 38.84             | 1.87          | N/A           | N/A                        | 40.71              | 54.00             | 13.29          |

#### Note.

1. The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log( applied distance / required distance ) = 20 log( 1 m / 3 m ) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

#### 3. Sample Calculation.

 $\label{eq:margin} \begin{array}{ll} \mathsf{Margin} = \mathsf{Limit} - \mathsf{Result} & / & \mathsf{Result} = \mathsf{Reading} + \mathsf{T.F} + \mathsf{D.C.F} & / & \mathsf{T.F} = \mathsf{AF} + \mathsf{CL} - \mathsf{AG} \\ \\ \mathsf{Where, T.F} = \mathsf{Total Factor,} & \mathsf{AF} = \mathsf{Antenna Factor,} & \mathsf{CL} = \mathsf{Cable Loss,} & \mathsf{AG} = \mathsf{Amplifier Gain.} \\ \end{array}$ 



#### 9 kHz ~ 25 GHz Data (Modulation : <u>8DPSK</u>)

#### Lowest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|---------------|---------------|----------------------------|--------------------|-------------------|----------------|
| 2388.08            | Н          | Х                         | PK               | 52.29             | 2.69          | N/A           | N/A                        | 54.98              | 74.00             | 19.02          |
| 2387.72            | Н          | Х                         | AV               | 41.60             | 2.69          | N/A           | N/A                        | 44.29              | 54.00             | 9.71           |
| 4804.60            | Н          | Z                         | PK               | 50.04             | 1.44          | N/A           | N/A                        | 51.48              | 74.00             | 22.52          |
| 4805.94            | Н          | Z                         | AV               | 39.09             | 1.44          | N/A           | N/A                        | 40.53              | 54.00             | 13.47          |

#### Middle Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|---------------|---------------|----------------------------|--------------------|-------------------|----------------|
| 4881.40            | Н          | Z                         | PK               | 50.35             | 1.63          | N/A           | N/A                        | 51.98              | 74.00             | 22.02          |
| 4880.17            | Н          | Z                         | AV               | 39.09             | 1.63          | N/A           | N/A                        | 40.72              | 54.00             | 13.28          |

#### Highest Channel

| Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | D.C.F<br>(dB) | Distance<br>Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|------------|---------------------------|------------------|-------------------|---------------|---------------|----------------------------|--------------------|-------------------|----------------|
| 2484.98            | V          | Z                         | PK               | 52.57             | 3.10          | N/A           | N/A                        | 55.67              | 74.00             | 18.33          |
| 2484.73            | V          | Z                         | AV               | 41.29             | 3.10          | N/A           | N/A                        | 44.39              | 54.00             | 9.61           |
| 4959.98            | Н          | Z                         | PK               | 50.61             | 1.87          | N/A           | N/A                        | 52.48              | 74.00             | 21.52          |
| 4959.74            | Н          | Z                         | AV               | 38.73             | 1.87          | N/A           | N/A                        | 40.60              | 54.00             | 13.40          |

#### Note.

1. The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log( applied distance / required distance ) = 20 log( 1 m / 3 m ) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

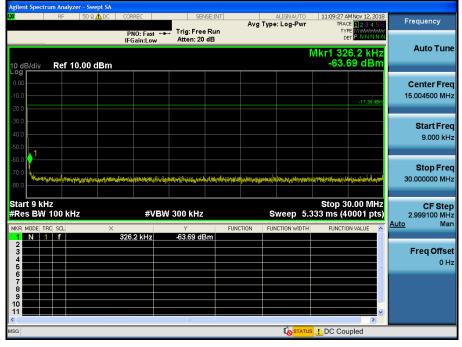
#### 3. Sample Calculation.



### Low Band-edge



#### Lowest Channel & Modulation : GFSK


#### Low Band-edge

# Hopping mode & Modulation : GFSK





# Lowest Channel & Modulation : GFSK

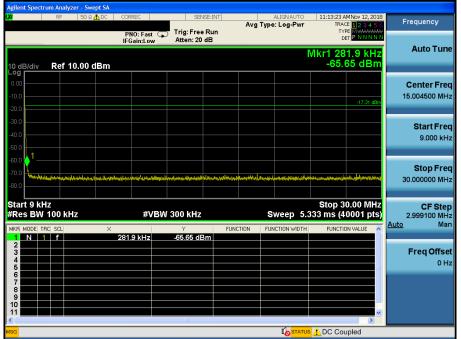


| Agilent Spectro       |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                           |
|-----------------------|-----------|-----------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|---------------------------|
| L <mark>XI</mark>     | RF 50     | Ω AC                  | CORREC                                                                                                         | SENS                              | E:INT |         | ALIGNAUTO<br>: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRAC                | MNov 12, 2018<br>E 1 2 3 4 5 6 | Frequency                 |
|                       |           |                       | PNO: Fast ←<br>IFGain:Low                                                                                      | Trig: Free I<br>Atten: 20 d       |       |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TYF                 |                                |                           |
|                       |           |                       | IFGain:Low                                                                                                     | Atten: 20 C                       |       |         | Mke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 3.224             | 20 CH-                         | Auto Tune                 |
| 10 dB/div<br>Log      | Ref 10.00 |                       |                                                                                                                |                                   |       |         | IVINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | 51 dBm                         |                           |
| 0.00                  |           | Q1                    |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                | Center Freq               |
| -10.0                 |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                | 5.015000000 GHz           |
| -20.0                 |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | -17.36 dBm                     |                           |
| -30.0                 |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                           |
| -40.0                 | ,         |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                | Start Freq                |
| -50.0                 |           |                       | 3 4                                                                                                            |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                | 30.000000 MHz             |
| -60.0                 |           | and the second second | The second s | ng Possibility and a state of the |       |         | A DESCRIPTION OF THE PARTY OF T |                     | Provide Balance                |                           |
| -70.0                 |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                | Stop Freq                 |
| -80.0                 |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                | 10.00000000 GHz           |
|                       |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                           |
| Start 30 N<br>#Res BW |           |                       | #VB                                                                                                            | W 3.0 MHz                         |       | S       | weep 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 10<br>67 ms (4 | .000 GHz<br>0001 pts)          | CF Step<br>997.000000 MHz |
| MKR MODE TR           |           | ×                     |                                                                                                                | Y                                 | FUNCT | ION FUN | ICTION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FUNCTIO             | IN VALUE                       | <u>Auto</u> Man           |
| 1 N 1<br>2 N 1        | f         |                       | 2 36 GHz<br>2 27 GHz                                                                                           | 2.61 dB<br>-50.65 dBr             |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                           |
| 3 N 1                 | f         | 2.64                  | 0 40 GHz<br>4 39 GHz                                                                                           | -54.05 dBr<br>-53.51 dBr          | m     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                | Freq Offset               |
| 5                     |           | 3.22                  | 4 39 GHZ                                                                                                       | -00.01 001                        |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | =                              | 0 Hz                      |
| 6                     |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                           |
| 8                     |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                           |
| 10                    |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                           |
| 11                    |           |                       |                                                                                                                | Ш                                 |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | >                              |                           |
| MSG                   |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                   |                                |                           |
|                       |           |                       |                                                                                                                |                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                           |



### Lowest Channel & Modulation : GFSK






**Reference for limit** 

# Middle Channel & Modulation : GFSK



#### Conducted Spurious Emissions <u>Middle Channel & Modulation : GFSK</u>









| Agilent Spectr   |        |               |                     |                      |          |                      |        |      |      |     |                   |           |               |                 |
|------------------|--------|---------------|---------------------|----------------------|----------|----------------------|--------|------|------|-----|-------------------|-----------|---------------|-----------------|
| LXI              | RF     | 50 Ω          | AC                  | CORREC               |          | SE                   | NSE:IN | IT   | Avg  |     | LIGNAUTO          | TRA       | MNov 07, 2018 | Frequency       |
|                  |        |               |                     | PNO: I<br>IFGain:    | ast 🔾    | Trig: Fre            |        | י    | Ū    |     |                   | TI        |               |                 |
|                  |        |               |                     | IFGain:              | LUW      | Accent: 20           |        |      |      |     | Miles             | 4 4 9 5 7 | 0 5 GHz       | Auto Tun        |
| 10 dB/div<br>Log | Ref 1  | 10.00 dl      | Bm                  |                      |          |                      |        |      |      |     | IVINI             |           | 14 dBm        |                 |
| 0.00             |        |               |                     |                      |          |                      |        |      |      |     |                   |           |               | Center Fre      |
| -10.0            |        |               |                     |                      |          |                      |        |      |      |     |                   |           |               | 18.250000000 GH |
| -20.0            |        |               |                     |                      |          |                      |        |      |      |     |                   |           | -17.31 dBm    |                 |
| -30.0            |        |               |                     |                      |          |                      |        |      |      |     |                   | <u>^2</u> | 1             | Start Fre       |
| -40.0            |        |               |                     |                      |          |                      |        |      |      |     | {\} <sup>3</sup>  |           |               | 10.000000000 GH |
| -50.0            |        | م ويطاع به ما |                     |                      |          |                      |        |      |      |     |                   |           |               |                 |
| -60.0            |        |               | a a constituent of  |                      |          |                      |        |      |      |     |                   |           |               | Stop Fre        |
| -70.0            |        |               |                     |                      |          |                      |        |      |      |     |                   |           |               | 26.50000000 GH  |
| -80.0            |        |               |                     |                      |          |                      |        |      |      |     |                   |           |               |                 |
| Start 10.0       | 00 GH  | z             |                     |                      |          |                      |        |      |      |     |                   | Stop 26   | 6.500 GHz     | CF Ster         |
| #Res BW          | 1.0 Mł | IZ            |                     |                      | #VBW     | / 3.0 MHz            |        |      |      | S١  | weep 42           | .67 ms (4 | 0001 pts)     | 1.650000000 GH  |
| MKR MODE TH      | RC SCL |               | ×                   |                      |          | Y                    |        | FUNC | TION | FUN | CTION WIDTH       | FUNCT     | ON VALUE      | Auto Ma         |
| 1 N 1<br>2 N 1   | f      |               | 24.2                | 535 8 GI<br>212 3 GI | ١z       | -40.63 d<br>-40.81 d | Bm     |      |      |     |                   |           |               |                 |
| 3 N 1<br>4 N 1   | f<br>f |               | <u>22.2</u><br>18.5 | 205 5 GI<br>570 5 GI | Hz<br>Hz | -44.55 d<br>-46.14 d |        |      |      |     |                   |           |               | Freq Offse      |
| 5                |        |               |                     |                      |          |                      |        |      |      |     |                   |           | =             | UN UN           |
| 7                |        |               |                     |                      |          |                      |        |      |      |     |                   |           |               |                 |
| 9                |        |               |                     |                      |          |                      |        |      |      |     |                   |           |               |                 |
| 10               |        |               |                     |                      |          |                      |        |      |      |     |                   |           | ~             |                 |
| <                |        |               |                     |                      |          |                      |        |      |      |     | <b>1</b> -070-000 |           | >             |                 |
| MSG              |        |               |                     |                      |          |                      |        |      |      |     |                   | ·         |               |                 |

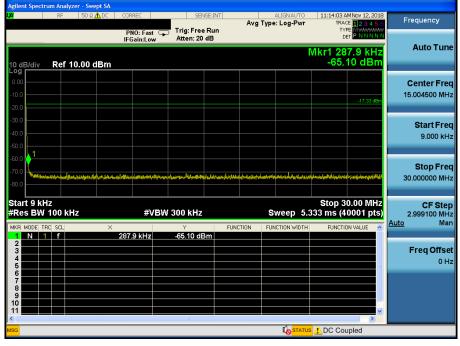


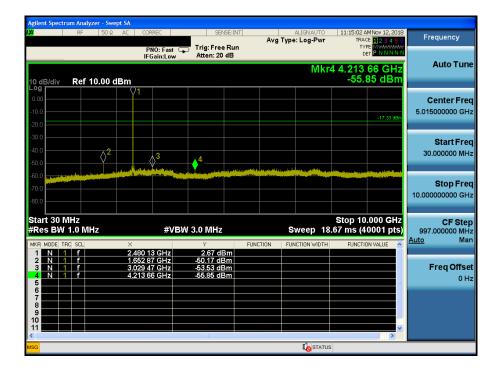
# High Band-edge

# Highest Channel & Modulation : GFSK



### **High Band-edge**


# Hopping mode & Modulation : GFSK






### Conducted Spurious Emissions <u>Highest C</u>

### Highest Channel & Modulation : GFSK





# Conducted Spurious Emissions <u>H</u>

# Highest Channel & Modulation : GFSK

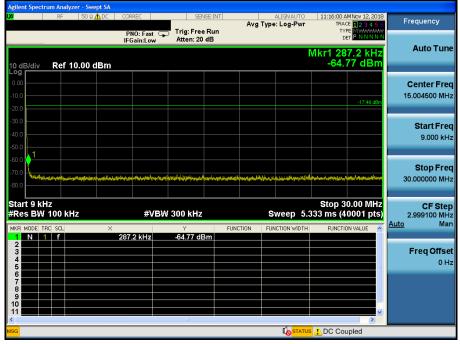




#### Low Band-edge

# Lowest Channel & Modulation : π/4DQPSK




#### Low Band-edge

# Hopping mode & Modulation : π/4DQPSK





# Conducted Spurious Emissions <u>Lowest Channel & Modulation : π/4DQPSK</u>

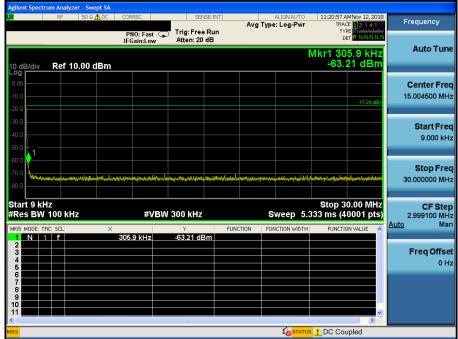


|                 |       | RF  | 50 Ω             | AC      | CORREC                  | SE                   | NSE:INT |            | ALIGNAUTO        | 11:17:27 A | MNov 12, 2018          | -                          |
|-----------------|-------|-----|------------------|---------|-------------------------|----------------------|---------|------------|------------------|------------|------------------------|----------------------------|
|                 |       |     |                  |         |                         | Trig: Fre            | e Dun   | Avg Typ    | e: Log-Pwr       | TRAC       | CE 123456<br>PE MWWWWW | Frequency                  |
|                 |       |     |                  |         | PNO: Fast<br>IFGain:Lov |                      |         |            |                  | D          | ET P N N N N N         |                            |
|                 |       |     |                  |         |                         |                      |         |            | Mkr              | 4 6.315    | 59 GHz                 | Auto Tune                  |
| 0 dB/di         | v     | Ref | 10.00 d          | Bm      |                         |                      |         |            |                  |            | 18 dBm                 |                            |
| .og<br>0.00     |       |     |                  | _ Ŷ1    |                         |                      |         |            |                  |            |                        |                            |
|                 |       |     |                  |         |                         |                      |         |            |                  |            |                        | Center Fre                 |
| 10.0            |       |     |                  |         |                         |                      |         |            |                  |            | -17.46 dBm             | 5.015000000 GH             |
| 20.0            |       |     |                  |         |                         |                      |         |            |                  |            |                        |                            |
| 30.0            |       |     | ^2               |         |                         |                      |         |            |                  |            |                        | Start Fre                  |
| 10.0            |       |     | _\$_             |         | 3                       |                      |         | . 4        |                  |            |                        | 30.000000 MH               |
| 50.0            |       |     |                  |         |                         |                      |         |            | and the state of | u.         |                        |                            |
| 0.0             |       |     | Company Spectrum |         | A                       |                      |         |            |                  |            |                        | 04                         |
| '0.0 <b></b>    |       |     |                  |         |                         |                      |         |            |                  |            |                        | Stop Fre<br>10.00000000 GH |
| 0.0             |       |     |                  |         |                         |                      |         |            |                  |            |                        | 10.00000000 GF             |
|                 |       |     |                  |         |                         |                      |         |            |                  |            |                        |                            |
| tart 3<br>Res B |       |     | 47               |         | #\V                     | BW 3.0 MHz           |         |            | Sweep 18         |            | .000 GHz               | CF Ste<br>997.000000 MH    |
|                 |       |     | 112              |         | 77.9                    |                      |         |            |                  | · ·        |                        | Auto Ma                    |
| KR MODE         | 1 TRC | SCL |                  | ×<br>24 | 02 11 GHz               | ү<br>3.23 d          |         | JNCTION FL | INCTION WIDTH    | FUNCTIO    | ON VALUE               | _                          |
| 2 N             | 1     | f   |                  | 1.6     | 02 27 GHz               | -45.88 d             | Bm      |            |                  |            |                        | Eren Offer                 |
| 3 N<br>4 N      | 1     | f   |                  |         | 87 00 GHz<br>15 59 GHz  | -53.27 d<br>-54.18 d |         |            |                  |            |                        | Freq Offse<br>0 ⊢          |
| 5               |       |     |                  |         |                         |                      |         |            |                  |            | 8                      | UF                         |
| 6<br>7          |       |     |                  |         |                         |                      |         |            |                  |            |                        |                            |
| 8               |       |     |                  |         |                         |                      |         |            |                  |            |                        |                            |
| 9               |       |     |                  |         |                         |                      |         |            |                  |            |                        |                            |
|                 |       |     |                  |         |                         |                      |         |            |                  |            |                        |                            |
| 9<br>10<br>1    |       |     |                  |         |                         | Ш                    |         |            |                  |            | ~                      |                            |

### Conducted Spurious Emissions Lowest Chann

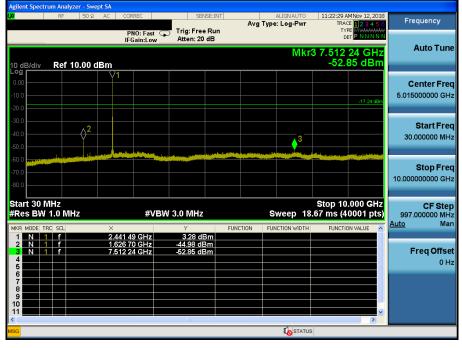
# Lowest Channel & Modulation : π/4DQPSK

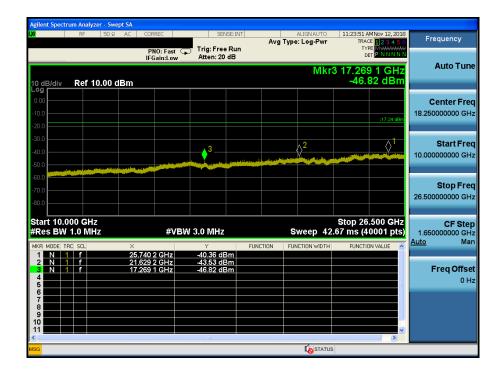





### Reference for limit

# Middle Channel & Modulation : π/4DQPSK





#### Conducted Spurious Emissions <u>Middle Channel & Modulation : π/4DQPSK</u>





### Middle Channel & Modulation : π/4DQPSK



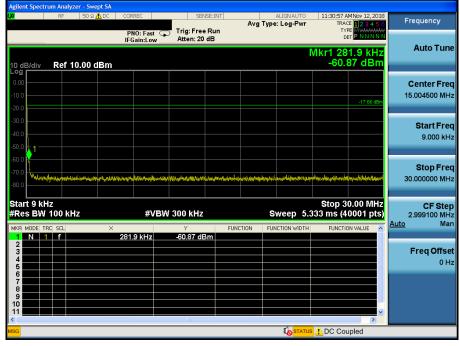


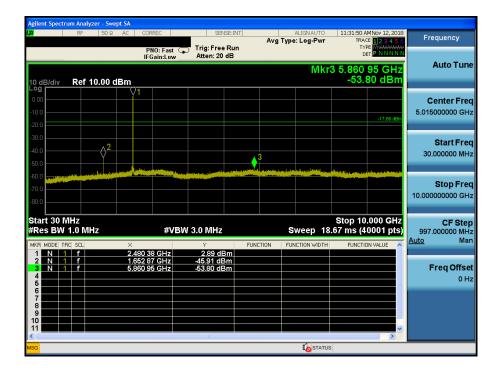


### **High Band-edge**

# Highest Channel & Modulation : π/4DQPSK




# High Band-edge


# Hopping mode & Modulation : π/4DQPSK





# Highest Channel & Modulation : π/4DQPSK







# Highest Channel & Modulation : π/4DQPSK

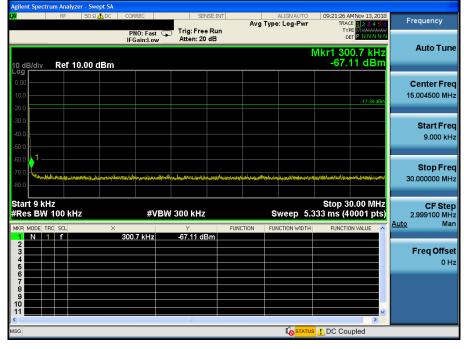




#### Low Band-edge

# Lowest Channel & Modulation : 8DPSK




# Low Band-edge

# Hopping mode & Modulation : 8DPSK





# Lowest Channel & Modulation : 8DPSK

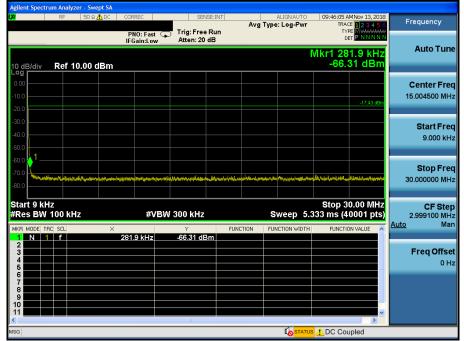


| Agilent Spectrum Analyzer - Swe |                              |                                |                                |                                              |                              |
|---------------------------------|------------------------------|--------------------------------|--------------------------------|----------------------------------------------|------------------------------|
| <b>ιXI</b> RF 50 Ω              | AC CORREC                    | SENSE:INT                      | ALIGNAUTO<br>Avg Type: Log-Pwr | 09:22:27 AMNov 13, 2018<br>TRACE 1 2 3 4 5 6 | Frequency                    |
|                                 | PNO: Fast<br>IFGain:Low      | Trig: Free Run<br>Atten: 20 dB |                                | TYPE MWWWWWW<br>DET P N N N N N              |                              |
|                                 |                              |                                | Mkr                            | 4 5.995 30 GHz                               | Auto Tune                    |
| 10 dB/div Ref 10.00 d           | Bm<br>01                     |                                |                                | -54.25 dBm                                   |                              |
| 0.00                            |                              |                                |                                |                                              | Center Freq                  |
| -10.0                           |                              |                                |                                |                                              | 5.015000000 GHz              |
| -20.0                           |                              |                                |                                | -17.39 dBm                                   |                              |
| -30.0                           |                              |                                |                                |                                              | Start Fred                   |
| -40.02                          |                              |                                |                                |                                              | 30.000000 MHz                |
| -50.0                           | ♦                            |                                |                                |                                              |                              |
| -60.0                           |                              |                                |                                |                                              |                              |
| -70.0                           |                              |                                |                                |                                              | Stop Fred<br>10.00000000 GHz |
| -80.0                           |                              |                                |                                |                                              | 10.00000000 GH2              |
| Start 30 MHz                    |                              |                                |                                | Stop 10.000 GHz                              | 05.04.0                      |
| #Res BW 1.0 MHz                 | #VE                          | W 3.0 MHz                      | Sweep 18                       | .67 ms (40001 pts)                           | CF Step<br>997.000000 MHz    |
| MKR MODE TRC SCL                | X                            | Y                              | FUNCTION FUNCTION WIDTH        | FUNCTION VALUE                               | <u>Auto</u> Man              |
| 1 N 1 f                         | 2.402 11 GHz<br>1.602 02 GHz | 1.54 dBm<br>-47.34 dBm         |                                |                                              |                              |
| 3 N 1 f                         | 3.191 99 GHz                 | -53.72 dBm                     |                                |                                              | Freq Offset                  |
| 4 N 1 f                         | 5.995 30 GHz                 | -54.25 dBm                     |                                | =                                            | 0 Hz                         |
| 6                               |                              |                                |                                |                                              |                              |
| 8                               |                              |                                |                                |                                              |                              |
| 10                              |                              |                                |                                |                                              |                              |
| 11                              |                              |                                |                                | ×                                            |                              |
| MSG                             |                              |                                | <b>I</b> STATUS                |                                              |                              |



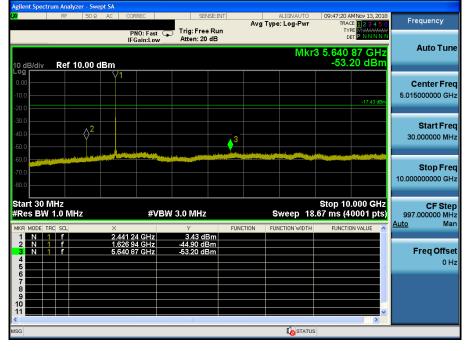
# Lowest Channel & Modulation : 8DPSK

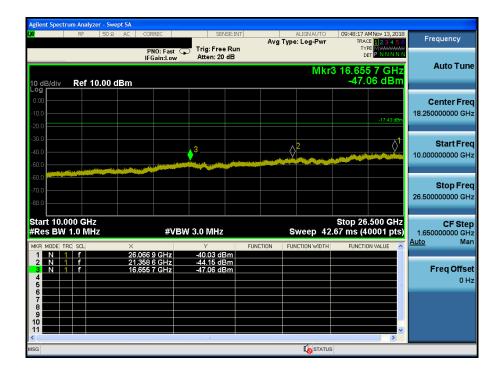





### Reference for limit

# Middle Channel & Modulation : 8DPSK





#### Conducted Spurious Emissions <u>Middle Channel & Modulation : 8DPSK</u>





### Middle Channel & Modulation : 8DPSK



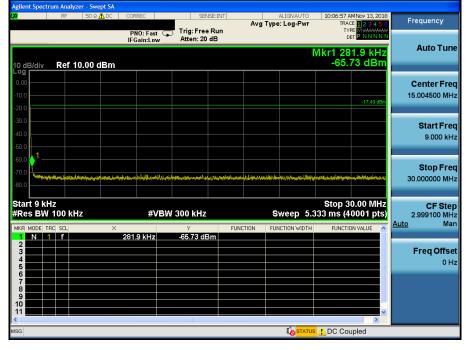


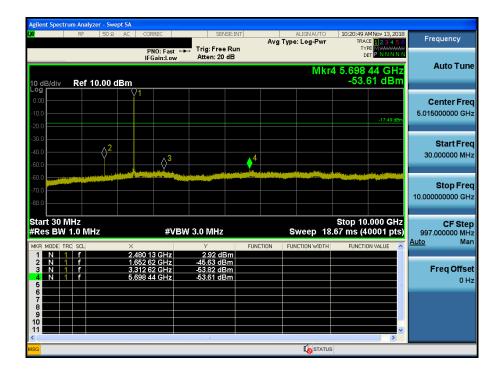


#### **High Band-edge**

# Highest Channel & Modulation : 8DPSK




# High Band-edge


### Hopping mode & Modulation : 8DPSK





# Highest Channel & Modulation : 8DPSK







# Highest Channel & Modulation : 8DPSK





# 8. Transmitter AC Power Line Conducted Emission

# 8.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

### 8.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

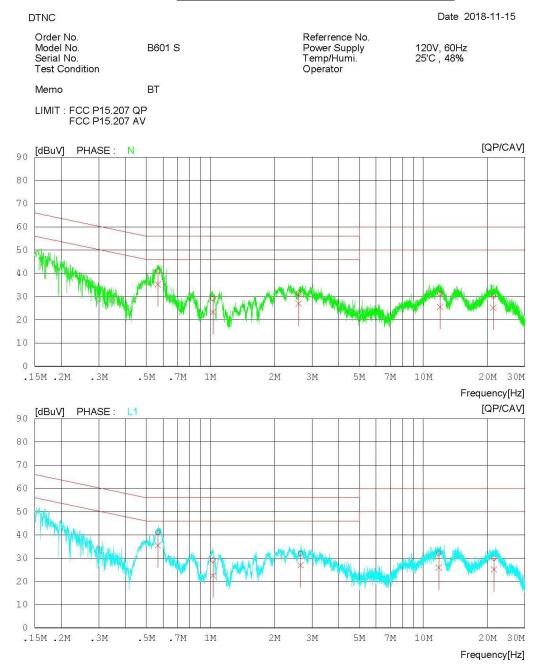
Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

| Frequency Range (MHz)  | Conducted Limit (dBuV) |            |  |  |  |  |
|------------------------|------------------------|------------|--|--|--|--|
| Trequency Range (wriz) | Quasi-Peak             | Average    |  |  |  |  |
| 0.15 ~ 0.5             | 66 to 56 *             | 56 to 46 * |  |  |  |  |
| 0.5 ~ 5                | 56                     | 46         |  |  |  |  |
| 5 ~ 30                 | 60                     | 50         |  |  |  |  |

\* Decreases with the logarithm of the frequency

# 8.3 Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10.


- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.



# 8.4 Test Results

# AC Line Conducted Emissions (Graph) = Modulation : <u>8DPSK</u>

**Results of Conducted Emission** 



# AC Line Conducted Emissions (List) = Modulation : <u>8DPSK</u>

# Results of Conducted Emission

| DTNC                                                                         |                                                          |                                                                                                                                   |                                                                                                                                                                                      | Date 2018-11-15                                            |
|------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Order No.<br>Model No.<br>Serial No.<br>Test Condition                       | B601 S                                                   | Referrenc<br>Power Su<br>Temp/Hui<br>Operator                                                                                     | pply 120                                                                                                                                                                             | V, 60Hz<br>C, 48%                                          |
| Memo                                                                         | BT                                                       |                                                                                                                                   |                                                                                                                                                                                      |                                                            |
| LIMIT : FCC P15<br>FCC P15                                                   |                                                          |                                                                                                                                   |                                                                                                                                                                                      |                                                            |
| NO FREQ<br>[MHz]                                                             | READING C.FACTO<br>QP CAV<br>[dBuV][dBuV] [dB]           | QP CAV QP                                                                                                                         | CAV QP                                                                                                                                                                               | RGIN PHASE<br>CAV<br>[dBuV]                                |
| 2 1.02980<br>3 2.59960<br>4 12.00260<br>5 21.33280<br>6 0.56808<br>7 1.03060 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$     | 40.9335.3056.00<br>29.1623.4656.00<br>31.5026.9956.00<br>31.3525.5860.00<br>30.2125.2160.00<br>41.0835.4356.00<br>29.1322.4456.00 | $\begin{array}{ccccccc} 46.00 & 15.071 \\ 46.00 & 26.842 \\ 46.00 & 24.501 \\ 50.00 & 28.652 \\ 50.00 & 29.792 \\ 46.00 & 14.921 \\ 46.00 & 26.872 \\ 46.00 & 24.001 \\ \end{array}$ | 2.54 N<br>9.01 N<br>4.42 N<br>4.79 N<br>0.57 L1<br>3.56 L1 |
| 9 11.82700                                                                   | 21.8116.80 10.10<br>21.7015.58 10.37<br>19.4714.59 10.55 | 31.9126.90 56.00<br>32.0725.95 60.00<br>30.0225.14 60.00                                                                          | 46.00 24.091<br>50.00 27.932<br>50.00 29.982                                                                                                                                         | 4.05 L1                                                    |



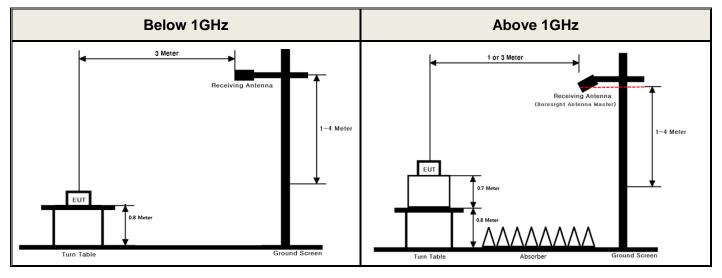
# 9. Antenna Requirement

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

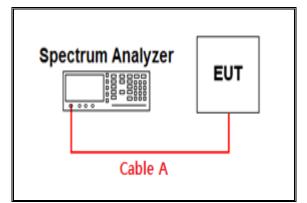
#### Conclusion: Comply

The antenna is permanently attached. (Refer to Internal Photo file.) Therefore this EUT complies with the requirement of §15.203.

#### - Minimum Standard :


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.




# **APPENDIX I**

# Test set up diagrams

#### Radiated Measurement



#### Conducted Measurement



#### Path loss information

| Frequency (GHz)       | Path Loss<br>(dB) | Frequency (GHz) | Path Loss<br>(dB) |
|-----------------------|-------------------|-----------------|-------------------|
| 0.03                  | 0.61              | 15              | 5.29              |
| 1                     | 1.17              | 20              | 7.19              |
| 2.402 & 2.440 & 2.480 | 1.92              | 25              | 7.69              |
| 5                     | 2.83              | -               | -                 |
| 10                    | 4.01              | -               | -                 |

Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.


Path loss (S/A's Correction factor) = Cable A



# **APPENDIX II**

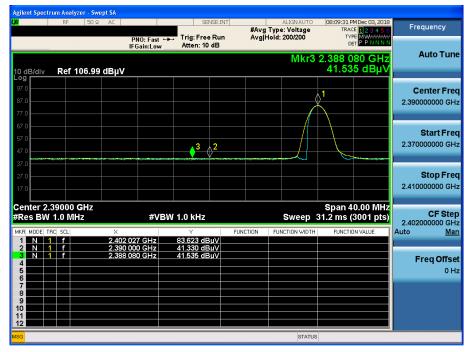
# **Unwanted Emissions (Radiated) Test Plot**

#### GFSK & Lowest & X & Hor



#### **Detector Mode : AV**

#### **Detector Mode : AV**


#### GFSK & Highest & Z & Ver

| RF 50 Ω             | AC                             | SENSE:INT                  | ALIGNAUTO                               | 08:44:24 PM Dec 03, 2018         | Frequency      |
|---------------------|--------------------------------|----------------------------|-----------------------------------------|----------------------------------|----------------|
|                     |                                | Trig: Free Run             | #Avg Type: Voltage<br>Avg Hold: 200/200 | TRACE 123456<br>TYPE MWANAAAA    | Frequency      |
|                     | PNO: Fast<br>IFGain:Low        |                            |                                         | TYPE MWAAAAAA<br>DET P P N N N N |                |
|                     |                                |                            | Mkr3                                    | 2.485 153 GHz                    | Auto Tun       |
| 0 dB/div Ref 106.99 | dBµV                           |                            |                                         | 41.320 dBµV                      |                |
| og                  |                                |                            |                                         |                                  |                |
| 97.0                |                                | 1                          |                                         |                                  | Center Fre     |
| 37.0                |                                |                            |                                         |                                  | 2.483500000 GH |
| 7.0                 |                                |                            |                                         |                                  |                |
| 57.0                |                                |                            |                                         |                                  | Start Fre      |
| 57.0                |                                |                            |                                         |                                  | 2.463500000 GI |
| 17.0                | <u> </u>                       | /                          |                                         |                                  | 2.463500000 Gi |
| 37.0                |                                |                            |                                         |                                  |                |
| 27.0                |                                |                            |                                         |                                  | Stop Fre       |
| 7.0                 |                                |                            |                                         |                                  | 2.503500000 GI |
|                     |                                |                            |                                         |                                  |                |
| enter 2.48350 GHz   |                                |                            | _                                       | Span 40.00 MHz                   | CF Ste         |
| Res BW 1.0 MHz      | #V                             | BW 1.0 kHz                 | Sweep                                   | 31.2 ms (3001 pts)               | 2.402000000 G  |
| KR MODE TRC SCL     | Х                              |                            | FUNCTION FUNCTION WIDTH                 | FUNCTION VALUE                   | Auto <u>M</u>  |
| 1 N 1 f<br>2 N 1 f  | 2.480 007 GHz<br>2.483 500 GHz | 83.684 dBµV<br>41.280 dBµV |                                         |                                  |                |
| 3 N 1 f             | 2.485 153 GHz                  | 41.320 dBµV                |                                         |                                  | Freq Offs      |
| 4                   |                                |                            |                                         |                                  | 0              |
| 6                   |                                |                            |                                         |                                  |                |
| 8                   |                                |                            |                                         |                                  |                |
| 9                   |                                |                            |                                         |                                  |                |
| 1                   |                                |                            |                                         |                                  |                |
| 2                   |                                |                            |                                         |                                  |                |
| G                   |                                |                            | STATUS                                  |                                  |                |

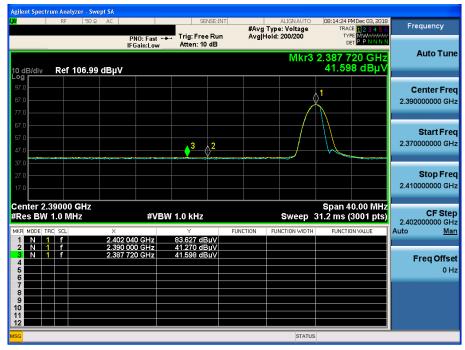


### **Detector Mode : AV**

### $\pi/4DQPSK$ & Lowest & X & Hor



#### π/4DQPSK & Highest & Z & Ver


#### gilent Spectrum Analyzer - Swept SA Frequency #Avg Type: Voltage Avg|Hold: 200/200 KA TYF DE Trig: Free Run Atten: 10 dB PNO: Fast 🔸 Auto Tune Mkr3 2.483 553 GHz 41.508 dBµV Ref 106.99 dBµV div 10 c Log **Center Freq** $\partial^1$ 2.483500000 GHz Start Freq 2.463500000 GHz Stop Freq 2.503500000 GHz Center 2.48350 GHz #Res BW 1.0 MHz Span 40.00 MHz 31.2 ms (3001 pts) CF Step 2.40200000 GHz uto Man #VBW 1.0 kHz Sweep FUNCTION Auto 2.480 0 41.213 dBµ\ 41.508 dBu\ Freq Offset 0 Hz STATUS

#### **Detector Mode : AV**



### **Detector Mode : AV**

#### 8DPSK & Lowest & X & Hor



#### **Detector Mode : AV**

#### 8DPSK & Highest & Z & Ver





#### GFSK & Highest & Z & Hor



#### π/4DQPSK & Highest & Z & Hor

#### gilent Spectrum Analyzer - Swept SA Frequency #Avg Type: Voltage Avg|Hold: 300/300 PNO: Fast →→→ Trig: Free Run IFGain:High #Atten: 0 dB PPNN TYPI DE Mkr1 4.959 506 7 GHz 38.837 dBµV Auto Tune 10 dB/div Ref 86.99 dBµV **Center Freq** 4.96000000 GHz Start Freq 4.957500000 GHz 1 Stop Freq 4.962500000 GHz CF Step 2.480000000 GHz uto <u>Man</u> Auto Freq Offset 0 Hz Span 5.000 MHz Sweep 4.00 ms (3001 pts) Center 4.960000 GHz #Res BW 1.0 MHz #VBW 1.0 kHz

#### **Detector Mode : AV**



#### **Detector Mode : AV**

### 8DPSK & Middle & Z & Hor

|                    | RF     | 50 Ω  | AC  |                         |        | SE                   | NSE:INT | ALIGN AUTO               |                       | Nov 15, 2018        |                                                  |
|--------------------|--------|-------|-----|-------------------------|--------|----------------------|---------|--------------------------|-----------------------|---------------------|--------------------------------------------------|
|                    |        |       |     | PNO: Fast<br>IFGain:Hig |        | rig: Fre<br>Atten: 0 |         | e: Voltage<br>I: 300/300 | TYPE                  | 123456<br>MW        | Frequency                                        |
| 0 dB/div           | Ref 86 | .99 d | ΒμV |                         |        |                      |         | Mkr1 4.                  | 880 168<br>39.093     | 3 GHz<br>3 dBµV     | Auto Tun                                         |
| 7.0                |        |       |     |                         |        |                      |         |                          |                       |                     | Center Fre<br>4.882000000 GH                     |
| 7.0                |        |       |     |                         |        |                      |         |                          |                       |                     | <b>Start Fre</b><br>4.879500000 Gi               |
| 7.0                |        | 1     |     |                         |        |                      |         | <br>                     |                       |                     | <b>Stop Fr</b><br>4.884500000 G                  |
| 7.0                |        |       |     |                         |        |                      |         |                          |                       |                     | <b>CF St</b> e<br>2.441000000 G<br>Auto <u>M</u> |
| .99                |        |       |     |                         |        |                      |         |                          |                       |                     | Freq Offs<br>0                                   |
| enter 4.           |        |       |     |                         |        | 0.1411-              |         | 0                        | Span 5.               | 000 MHz             |                                                  |
| enter 4.<br>Res BW |        |       |     | #V                      | 'BW 1. | 0 kHz                |         | Sweep 4                  | Span 5.<br>1.00 ms (3 | 000 MHz<br>001 pts) |                                                  |