TEST REPORT

(1) Dt\&C

DT\&C Co., Ltd.

42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No: DREFCC1708-0221
2. Customer

- Name : Nolangroup S.p.A.
- Address : Nolangroup S.p.A., via Terzi di S.Agata 224030 - Brembate di sopra (BG) - Italia

3. Product Name / Model Name : Nolan Communication System (B6V03) / B901 S
4. Test Method Used : ANSI C 63.4:2014

FCC Part 15 Subpart B (All other devices)
ICES-003:2016
CAN/CSA-CISPR 22-10
5. Date of Test : 2017-08-02 ~ 2017-08-07
6. Testing Environment : Temperature (21~22) ${ }^{\circ} \mathrm{C}$, Humidity (43~47) \% R.H.
7. Test Result : Refer to the attached Test Result

| Affirmation | Tested by

 Name: JunSeo Park | Technical Manager
 Name: HyunSuk Ko |
| :--- | :--- | :--- | :--- | :--- |

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose.
This test report shall not be reproduced except in full, without the written approval of DT\&C Co., Ltd.
2017. 08. 28.

DT\&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

CONTENTS

1. General Remarks 3
2. Test Laboratory 3
3. General Information of EUT 4
4. Test Summary 5
4.1 Applied standards and test results 5
4.2 Test environment and conditions 5
5. Test Set-up and operation mode. 6
5.1 Principle of Configuration Selection 6
5.2 Test Operation Mode 6
5.3 Support Equipment Used 6
6. Test Results : Emission 7
6.1 Conducted Disturbance 7
6.2 Radiated Disturbance 10
Appendix 1 18
List of Test and Measurement Instruments 18
Appendix 2 20
Photographs of the Test Configurations 20
Appendix 3 24
Photographs of EUT 24
Appendix 4 27
Report Revision History 27

1. General Remarks

This report contains the result of tests performed by:

DT\&C Co., Ltd.

Address : 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042
http://www.dtnc.net
Tel: +82-31-321-2664 Fax: +82-31-321-1664

2. Test Laboratory

DT\&C Co., Ltd. has been accredited / filed / authorized by the agencies listed in the following table;

Certificate	Nation	Agency	Code	Mark
Accreditation	Korea	KOLAS	393	ISO/IEC 17025
Site Filing	USA	FCC	KR0034 101842 678747,596748, 804488,165783	Accredited 2.948 Listed
	Canada	IC	$\begin{aligned} & \hline 5740 \mathrm{~A}-1 \\ & 5740 \mathrm{~A}-2 \end{aligned}$	Registered
	Japan	VCCI	$\begin{gathered} \mathrm{C}-1427 \\ \mathrm{R}-1364, \mathrm{R}-3385, \\ \mathrm{R}-4076, \mathrm{R}-4180, \\ \mathrm{~T}-1442, \\ \mathrm{G}-10338, \mathrm{G}-754, \\ \mathrm{G}-815 \end{gathered}$	Registered
Certification	Korea	KC	KR0034	Designation
	Germany	TUV	$\begin{gathered} \hline \text { CARAT } 1701 \\ 89112004 \end{gathered}$	ISO/IEC 17025

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

3. General Information of EUT

Kind of Equipment	Nolan Communication System (B6V03)
Model Name	B901 S
Add Model Name	None
Serial No.	None
Type of Sample Tested	Pre-Production
Supplied Power for Test	AC 120 V, 60 Hz
Clock Frequency	240 MHz
Applicant	Nolangroup S.p.A. Nolangroup S.p.A., via Terzi di S.Agata 2 24030 - Brembate di sopra (BG) - Italia
Manufacturer	Nolangroup S.p.A. Nolangroup S.p.A., via Terzi di S.Agata 2 24030 - Brembate di sopra (BG) - Italia

Related Submittal(s) / Grant(s)

Original submittal only.

4. Test Summary

4.1 Applied standards and test results

Test Items	Applied Standards	Results
Conducted Disturbance	ANSI C 63.4:2014 CAN/CSA-CISPR 22-10	C
Radiated Disturbance	ANSI C 63.4:2014 CAN/CSA-CISPR 22-10	
C=Comply		N/C=Not Comply
N/T=Not Tested \quad N/A=Not Applicable		

The data in this test report are traceable to the national or international standards.

4.2 Test environment and conditions

Test Items	Test date (YYYY-MM-DD)	Temp ($\left.{ }^{\circ} \mathrm{C}\right)$	Humidity (\% R.H.)
Conducted Disturbance	$2017-08-02$	22	47
Radiated Disturbance	$2017-08-07$	21	43

5. Test Set-up and operation mode

5.1 Principle of Configuration Selection

Emission : The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the instructions for use.

5.2 Test Operation Mode

- EUT was connected BT to mobile phone play 1 kHz source.

5.3 Support Equipment Used

Unit	Model No.	Serial No.	Manufacturer	CABLE			Backshell	FCC ID
				Connect type	Length (m)	Shield		
Mobile Phone	-	-	-	-	-	-	-	-

NOTE

- See "APPENDIX 2 Photographs" for actual system test setup

6. Test Results : Emission

6.1 Conducted Disturbance

6.1.1 Measurement Procedure

In the range of 0.15 MHz to 30 MHz , the conducted disturbance was measured and set-up was made accordance with ANSI C 63.4 and CAN/CSA-CISPR 22.
If the EUT is table top equipment, it was placed on a wooden table with a height of 0.8 m above the reference ground plane and 0.4 m from the conducting wall of the shielded room.
Also if the EUT is floor-standing equipment, it was placed on a non-conducted support with a height up to 0.15 m above the reference ground plane.
Connect the EUT's power source lines to the appropriate power mains / peripherals through the LISN. All the other peripherals are connected to the $2^{\text {nd }}$ LISN, if any.
Unused measuring port of the LISN was resistively terminated by 50 ohm terminator.
The measuring port of the LISN for EUT was connected to spectrum analyzer.
Using conducted emission test software, the emissions were scanned with peak detector mode.
After scanning over the frequency range, suspected emissions were selected to perform final measurement. When performing final measurement, the receiver was used which has Quasi-Peak detector and Average detector.
By varying the configuration of the test sample and the cable routing it was attempted to maximize the emission.
For further description of the configuration refer to the picture of the test set-up.

6.1.2 Limit for Conducted Disturbance

(1) Conducted disturbance at mains ports.

Frequency range (MHz)	Limits $\mathbf{~ B B}(\boldsymbol{\mu V})$			
	Quasi-peak		Average	
	Class A	Class B	Class A	Class B
0.15 to 0.50	79	66 to 56	66	56 to 46
0.50 to 5	73	56	60	46
5 to 30		60		50

Note 1 The lower limit shall apply at the transition frequencies.
Note 2 The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz .

Note) 1. Emission Level = Reading Value + Correction Factor.
2. Correction Factor = Cable Loss + Insertion Loss of LISN
3. Margin $=$ Limit - Emission level

Results of Conducted Emission

DT\&C
Date : 2017-08-02
Order No.
Power Supply
Temp/Humi.
Test Condition
Memo
LIMIT : CISPR32_B QP CISPR32_B AV

Results of Conducted Emission
DT\&C
Date : 2017-08-02

Order No.	\vdots
Power Supply	\vdots
Temp/Humi.	\vdots
Test Condition	\vdots
Memo	
LIMIT : CISPR32_B QP	
CISPR32_B AV	

No	$\begin{gathered} \text { FREQ } \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{gathered} \text { READING } \\ \text { QP } \quad \mathrm{CAV} \\ {[\mathrm{dBuV}][\mathrm{dBuV}]} \end{gathered}$	C. FACTOR [dB]	$\begin{gathered} \text { RESULT } \\ Q \mathrm{CP} \mathrm{CAV} \\ {[\mathrm{dBuV}][\mathrm{dBuV}]} \end{gathered}$	$\begin{gathered} \mathrm{LIM} \\ Q \mathrm{P} \\ {[\mathrm{dBuV}]} \end{gathered}$	IT CAV [dBuV]	$\begin{gathered} \text { MARGIN } \\ Q \mathrm{CP} \quad \mathrm{CAV} \\ {[\mathrm{dBuV}][\mathrm{dBuV}]} \end{gathered}$	PHASE
1	0.17748	35.8113 .43	9.98	45.7923 .41	64.60	54.60	18.8131 .19	N
2	0.22717	30.8111 .54	9.98	40.7921 .52	62.55	52.55	21.7631 .03	N
3	0.28621	31.6812 .74	9.98	41.6622 .72	60.63	50.63	18.9727 .91	N
4	0.40150	26.2712 .27	10.00	36.2722 .27	57.82	47.82	21.5525 .55	N
5	0.49450	23.1017 .08	10.00	33.1027 .08	56.09	46.09	22.9919 .01	N
6	18.61759	5.06-0.23	10.51	15.5710 .28	60.00	50.00	44.4339 .72	N
7	0.17550	34.3911 .52	9.98	44.3721 .50	64.70	54.70	20.3333 .20	L1
8	0.22250	$29.74 \quad 9.84$	9.98	39.7219 .82	62.72	52.72	23.0032 .90	L1
9	0.28432	27.048 .61	9.98	37.0218 .59	60.69	50.69	23.6732 .10	L1
10	0.39999	16.029 .23	9.99	26.0119 .22	57.85	47.85	31.8428 .63	L1
11	0.49950	22.2214 .37	10.00	32.2224 .37	56.01	46.01	23.7921 .64	L1
12	18.62309	$5.07 \quad 0.24$	10.49	15.5610 .73	60.00	50.00	44.4439 .27	L1

6.2 Radiated Disturbance

6.2.1 Measurement Procedure

The radiated disturbance was measured and set-up was made accordance with ANSI C 63.4 and CAN/CSA-CISPR 22.
If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 m above the reference ground plane and 3 m or 10 m away from the interference receiving antenna in the $\mathbf{3 ~ m}$ semi-anechoic chamber.
Also if the EUT is floor-standing equipment, it was placed on a non-conducted support with a height up to 0.15 m above the reference ground plane.
Rotate the EUT from $(0-360)^{\circ}$ and position the receiving antenna at heights from (1-4) m above the reference ground plane continuously to determine associated with higher emission levels and record them.
The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.
For below 1 GHz frequency range, Quasi-Peak detector with 120 kHz RBW was used.
Also Peak and Average detector with 1 MHz RBW were used for above 1 GHz frequency range. For further description of the configuration refer to the picture of the test set-up.

6.2.2 Limit for Radiated Disturbance

- The test frequency range of Radiated Disturbance measurements are listed below.

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 108	1000
$108-500$	2000
$500-1000$	5000
Above 1000	$5^{\text {th }}$ harmonic of the highest frequency or 40 GHz,
whichever is lower	

(1) Limit for Radiated Emission below 1000 MHz

Frequency range (MHz)	Class A Equipment (10 m distance)	Class B Equipment (3 m distance)
	Quasi-peak ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Quasi-peak ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)
30 to 88	39.1	40
88 to 216	43.5	43.5
216 to 960	46.4	46
960 to 1000	49.5	54
Note 1 The lower limit shall apply at the transition frequency. Note 2 Additional provisions may be required for cases where interference occurs. Note 3 According to $15.109(\mathrm{~g})$, as an alternative to the radiated emission limit shown above, digital devices may be shown to comply with the standards(CISPR), Pub. 22 shown as below.		
Frequency range (MHz)	Class A Equipment (10 m distance)	Class B Equipment (10 m distance)
	Quasi-peak ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Quasi-peak ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)
30 to 230	40	30
230 to 1000	47	37

(2) Limits for Radiated Emission above 1000 MHz at a measuring distance of 3 m

Frequency (GHz)	Class A Equipment		Class B Equipment	
	Peak $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Average $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Peak $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Average $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$
1 to 40	80	60	74	54

Note) 1. Emission Level = Reading Value + loss - gain + Ant Factor
2. Margin $=$ Limit - Emission level
3. loss $=$ Cable loss, gain $=$ Amp gain, Ant Factor $=$ Antenna Factor

RADIATED EMISSION

Order No.
Power Supply
Temp/Humi
Test Condition
Memo
LIMIT : Class B (10m) MARGIN: 3 dB

RADIATED EMISSION

$<(1 \sim 18) G H z ~$ Peak $>$

RADIATED EMISSION

Date : 2017-08-07

Order No.
Power Supply
Temp/Humi
Test Condition

DTNC1707-05429,05430
120 V 60 Hz
21 'C 43 \% R.H

LIMIT : FCC_CLASS A_PK_1-18G
FCC_CLASS A_AV_- $1-18 \mathrm{G}$

RADIATED EMISSION

$<(1 \sim 18) G H z ~ A v e r a g e>$

RADIATED EMISSION

Date : 2017-08-07

Order No.
Power Supply
Temp/Humi
Test Condition

DTNC1707-05429,05430
120 V 60 Hz
21 'C 43% R.H

LIMIT : FCC Part15 Subpart.B Class B (3m) - 18G(Avg) FCC Part15 Subpart. B Class B (3m) - 18G (Peak)

RADIATED EMISSION

Order No.	$:$	DTNC1707-05429,05430
Power Supply	\vdots	$120 \mathrm{~V} \quad 60 \mathrm{~Hz}$
Temp/Humi	\vdots	$21^{\mathrm{C}} \mathrm{C} \quad 43 \%$ R.H.
Test Condition	$:$	

LIMIT : FCC Part15 Subpart.B Class B (3m) - 18G(Avg) FCC Part15 Subpart. B Class B (3m) - 18G(Peak)

| No. FREQ | READINGANT
 AV | LOSS | GACTOR | | | RESULT | LIMIT | MARGIN | ANTENNA |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | TABLE

----- Horizontal ------

1	4442.131	35.2	33.7	5.1	37.7	36.3	54.0	17.7	100	324
2	14469.780	32.3	39.2	11.0	35.6	46.9	54.0	7.1	100	128
3	16896.570	31.0	41.8	11.1	35.4	48.5	54.0	5.5	100	96
Vertical										
4	4682.253	35.1	33.8	5.6	37.6	36.9	54.0	17.1	100	113
5	14511.220	32.2	39.3	11.1	35.7	46.9	54.0	7.1	100	0
6	17016.130	30.8	41.7	11.0	35.2	48.2	54.0	5.8	100	0

Appendix 1

List of Test and Measurement Instruments

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment is identified by the Test Laboratory.

1. Conducted Disturbance

Name of Instrument		Model No.	Manufacturer	Serial No.	Cal. Date	Next Cal. Date
\searrow	MEASUREMENT SOFTWARE	EMI-C VER. 2.00.0143	TSJ	N/A	N/A	N/A
\searrow	EMI TEST RECEIVER	ESR	ROHDE\&SCHWARZ	101767	2017.01 .03	2018.01 .03
\searrow	LISN	NNLK8121	SCHWARZBECK	NNLK8121-580	2017.07 .27	2018.07 .27
\varnothing	PULSE LIMITER	ESH3-Z2	ROHDE\&SCHWARZ	101334	2017.01 .03	2018.01 .03
\varnothing	50 OHM TERMINATOR	CT-01	TME	N/A	2017.01 .03	2018.01 .03

2. Radiated Disturbance

Name of Instrument		Model No.	Manufacturer	Serial No.	Cal. Date	Next Cal. Date
\searrow	MEASUREMENT SOFTWARE	EMI-R VER. 2.00.0121	TSJ	N/A	N/A	N/A
\searrow	EMI TEST RECEIVER	ESU	ROHDE \& SCHWARZ	100014	2016.12 .23	2017.12 .23
\searrow	HORN ANTENNA	BBHA9120A	SCHWARZBECK	322	2016.05 .13	2018.05 .13
\varnothing	PREAMPLIFIER	$8449 B$	AGILENT TECHNOLOGIES	$3008 A 01590$	2017.02 .20	2018.02 .20
\searrow	EMI TEST RECEIVER	ESR7	ROHDE\&SCHWARZ	101061	2017.02 .16	2018.02 .16
\searrow	TRILOG BROADBAND TEST-ANTENNA	VULB9160	SCHWARZBECK	$9160-3362$	2016.08 .05	2018.08 .05
\searrow	LOW NOISE PRE AMPLIFIER	MLA-010K01-B01-27	TSJ	1844538	2017.03 .06	2018.03 .06

Appendix 2

Photographs of the Test Configurations

1. Conducted Disturbance

2. Radiated Disturbance

(1) Dt\&C

A2-1. Conducted Disturbance

(1) Dt\&C

A2-2. Radiated Disturbance

< $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ >

$<(1 \sim 18) \mathrm{GHz}>$

Photographs of EUT

(1) Dt\&C

A3-1. EUT

1. Front View of Product

2. Rear View of Product

(1) Dt\&C

A3-2. EUT

3. Inside View of Product

Appendix 4

Report Revision History

Revision Date	Description	Revised By	Revision Reviewed By
None	Original	N/A	N/A

