Circuit Description

1 Frequency configuration

The reference frequency of frequency synthesizer is provided by 16.8MHz crystal oscillator X1 TCXO. The receiver adopts quadric mixing mode. The first IF is 49.95MHz, and the second IF is 450kHz. The first local oscillation signal of the receiver is produced by frequency synthesizer and the second local oscillation signal selects the 4rd harmonics of 16.8MHz of crystal oscillator X1 TCXO. The signal of transmitter is produced by frequency synthesizer directly.

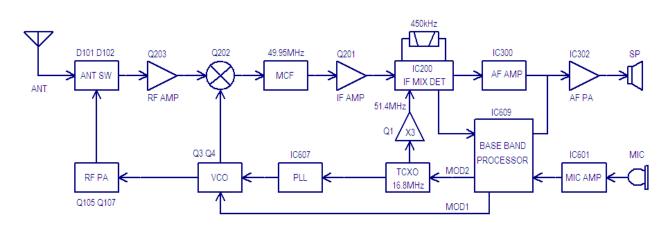


Figure 1 Frequency configuration

2 Receiver (Rx)

The receiver is double conversion superheterodyne, designed to operate in the frequency range of 136 to 174MHz, The frequency configuration in Fig 1.1

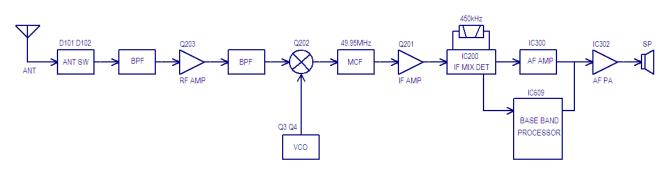


Figure 2 Receiver section configuration

Front End of Receiver

Signals from the antenna are filtered by BPF via RX/TX switch (D101 D102 and D103). After being filtered out the useless out-of-band signals, the signals are amplified by LNA consisting of Q203 and external components.

Signals from LNA are filtered again by BPF before entering the 1st mixer (Q202).

The PWM wave is output by MCU composed of 58 foot and then commutated to adjustable voltage after filtering to change the capacity of varactor diode D905 D203 D202 and D204 to control the center frequency of BPF.

1st mixer

The first IF (49.95MHz) signal is produced after mixing of the receiving signal from LNA and the 1st local oscillation signal from frequency synthesizer. The first IF signal is filtered out adjacent channel and other useless signals by crystal filter (XF201).

IF Circuit

The 1st IF signal from crystal filter is amplified by the first IF amplifier (Q201) before processing of IC in IF(IC200, NJM2591V).

IF IC consists of the 2nd mixer, 2nd local oscillation, IF amplifier, limiter, frequency discriminator and noise amplifier.

Frequency (16.8MHz) produced by TCXO(X1) is amplified and then selects 3rd harmonics (51.4MHZ) as the second local oscillator signal source. The second IF signals (450kHz) are generated after signals mixing of the second local oscillation (51.4MHz) and the first IF (49.95MHz) in IC200. Audio signals are demodulated and outputted by IC200 after the second IF signals are amplified and limited in IC200 and then filtered by ceramic filter(450kHz).

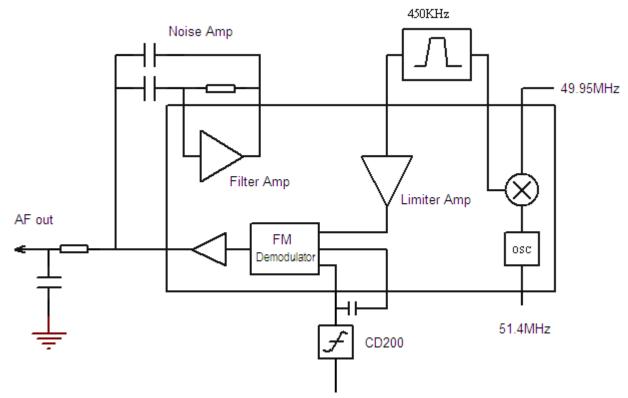


Figure 3 Schematic Diagram for IF System

Receiving Audio Signal Processing:

The audio processing circuit of receiver consists of IC300. Voice signals from IC300 are sent to IC301 (CTCSS signaling filter circuit.

Squelch Circuit

Part of the AF signal from the IC200 enters the FM IC again, and the noise component is amplified and rectified by a filter and an amplifier to produce a DC voltage corresponding to the noise level.

The DC signal from the FM IC goes to the analog port of the microprocessor(IC403).IC403 determines whether to output sounds from the speaker by checking whether the input voltage is higher or lower than the preset value.

To output sounds from the speaker, IC403 sends a high signal to the MUTE and AFCO lines and turns IC302 on through Q302 Q304 and Q305.

Audio Power Amplification

The audio power amplifying circuit consists of IC302 and the peripheral components. The signals are amplified by audio power amplifier to drive the speaker after collecting the receiving audio signals, voice signals and warning tone signals. The warning tone has no volume limitation.

When AFCO is high level, Q304 is on, IC302 begins to work and the speaker sounds. Speaker Impedance: 16ohm

CTCSS Signal filtering

The audio signals after demodulation in IC200 may contain CTCSS (continuous tone control squelch system) or DCS (digital squelch) signals. The spectrum component of CTCSS/DCS is 67 to 250Hz. The filtering circuit composed of IC301 can filter out signals except CTCSS/DCS spectrum, which makes MCU decode the CTCSS/DCS more accurately.

3 Transmitter (Tx)

Transmitter Power Amplifier

Figure 4 Schematic Diagram for Power Amplifier and Antenna Switch

The modulated RF signals from VCO are amplified by Q101 and Q105 before the power amplification in Q107.

Gate bias of Q105 and Q107 is controlled by APC circuit, so the output power of transmitter can be controlled conveniently by changing the gate bias voltage.

APC (Automatic Power Control)

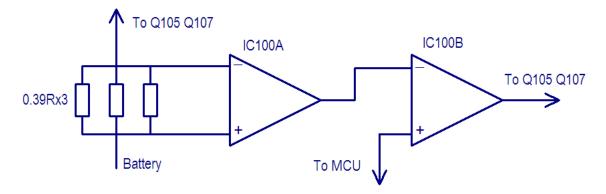


Figure 5 Schematic Diagram for APC Circuit

R130 R131 and R132 are power amplification current detector, IC100A is power amplification current sampling amplifier and IC00B is power comparison amplifier.

The power amplification current and IC100A output will increase with oversized output power of transmitter. When the output voltage of IC100B decreases, the bias voltage of Q105 and Q107 will decrease, finally the output power of transmitter will decrease or vice versa. Thus, the output power of transmitter will keep stable under any different working condition.

MCU can set the power by changing the voltage input to IC100B.

Audio Signal Processing of Transmitter

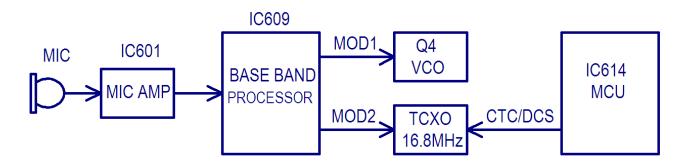
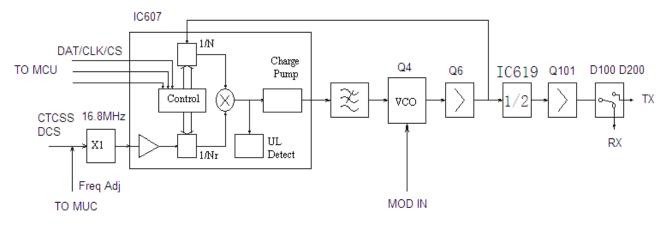


Figure 6 Schematic Diagram for Audit Circuit of Receiver

The audio signal processing circuit of Transmitter consists of IC601 and IC609. Voice signals from MIC are sent to VCO for modulation together with CTCSS/DCS after amplification, limitation and filtering.


IC609 is a bais band processor.

AGC circuit consists of D601, D602 and Q602,Q603. The signal amplitude is reduced to ensure no distortion in case of oversized MIC signal.

Q601, the power switch of voice processing circuit, controlled by MCU, will give power supply to IC601 only during transmission.

J501 is the socket for external MIC, and the internal MIC will disconnect automatically when using

external MIC, but the internal PTT is still effective.

4 PLL Frequency Synthesizer

Figure 7 Schematic Diagram for Frequency Synthesizer

The DR6000-2 adopts PLL frequency synthesizer.

Frequency synthesizer consists of reference oscillator, voltage controlled oscillator (VCO), programmable frequency divider (PFD), phase comparator and low pass filter (LPF).

RX VCO Unit consists of Q3 D1 D3 L13 C34 C38 C39 and C42.

TX VCO Unit consists of Q4 D2 D4 L14 C35 C41 C44 and C45,D5 is the modulation circuit of VCO.

IC607 (SKY72310) is PLL integrated circuit and contains programmable parametric frequency divider (PPFD), programmable frequency divider (PFD), phase comparator and charge pump, etc.

Low pass filter consists of R5 R7 R9 R10 C12 C15 and C18.

Reference frequency is provided by X1 (TCXO, 16.8MHz).

Reference frequency of TCXO (Temperature-controlled Crystal Oscillator) is divided by PPFD in IC607 to produce reference frequency of 5kHz or 6.25kHz (controlled by MCU based on the set channel frequency).

The oscillation frequency of VCO is compared with reference frequency to produce error signal after divided by PFD in IC607. The error signal is filtered by low pass filter before changing the VCO frequency to the set value in VCO (it is locking).

$$\begin{split} N = F_{VCO}/F_R \\ N: & \text{Division Frequency} \\ F_{VCO}: & \text{VCO Oscillation Frequency} \\ F_R: & \text{Reference Frequency} \end{split}$$

Lock lost detection: When PLL is out of lock, IC pin4 will output low level signal to MCU, and then MCU prohibit transmitter from transmitting with a warning tone.

Q8, the power filter, can provide PLL with more purified power to reduce the noise of frequency

synthesizer.

5 Base Band Processor

HR_C5000-1 (IC609) is a low power high performance base band processor supporting Tier 1 and Tier 2 of the DMR protocol. it completes the entire physical layer and data link layer, and voice processing part of the call control layer of DMR compliant with ETSI TS 102 361.

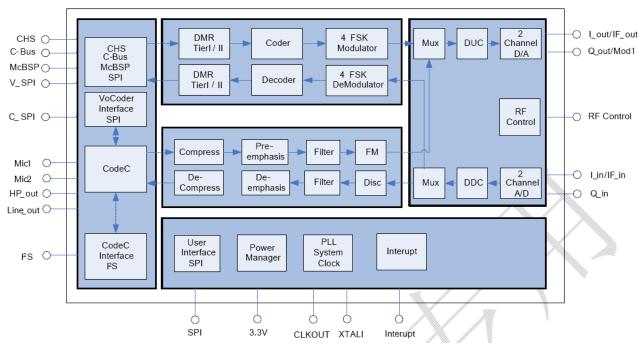


Figure 8 Base Band Processor

6 Voice Circuit:

The station is equipped with Voice Prompt Function, which is very useful during night or under dark condition.

The speaker will voice the current channel number when changing the channel every time because of the voice memory chip (IC613), which stores channel voice prompts. It will repeat the current channel number once pressing "Voice Prompts".

The speaker will voice the current channel number under standby state if the Voice Prompt Function is set. Press "Voice Prompts" for reset to switch voice types. Press "Voice Prompts" repeatedly for power connection, then the voice types will be switched in circle in the order of "Chinese male voice—English male voice—Chinese female voice—English female voice—no prompts".

7 Power Supply:

The station use lithium battery (7.4V, 1700mAh), while transmitter amplifier circuit (Q105 Q107) and receiver audio amplifier (IC302) use battery directly for power supply, and other circuits use regulated voltage (5V and 3.3V).

IC602: 5C (controlled by MCU) (5V LDO) IC603: 5M 5R (controlled by MCU) (5V LDO) IC604: 5T (controlled by MCU) (5V LDO) IC605: 3.3V DC/DC IC618: 3.3V LDO, is the supply power of frequency synthesizer

8 MCU Unit:

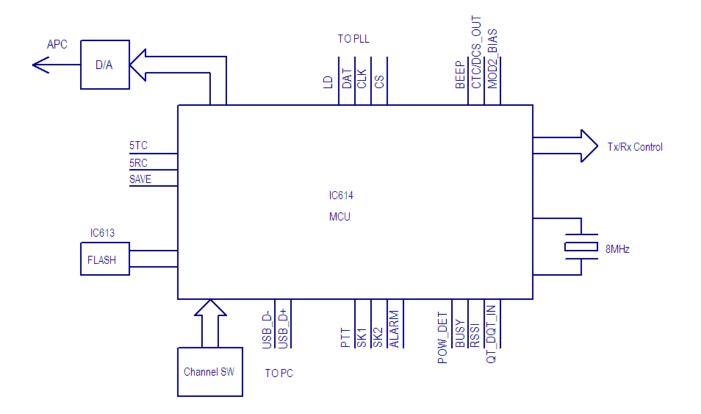


Figure 9 Schematic Diagram for MCU Unit

MCU Unit controls the operation of every unit to realize all functions of the DR6000-2.

Communication with external PC

State data access

Control PLL for the generation, receiving and transmitting of local oscillation frequency

Access to the current channel state

Control LED status indicator

Control power supplied condition of every unit

Detect action of every function key

Produce CTCSS signal

Produce DCS signal

Produce power controlled signal

Finish CTCSS decoding

Finish DCS decoding

Squelch detection and control

Control voice prompt content

Memory (FLASH)

Channel data, CTCSS/DCS data and other function setting data and parameter adjustment data.

CTCSS/DCS signal coding and decoding:

CTCSS/DCS signals from MCU are sent to TCXO for modulation respectively .

CTCSS/DCS signals from receiver are sent to MCU(pin 25) for decoding, and then MCU test if there are CTCSS/DCS signals with the same setting of the station to decide whether open the speaker or not.

CTCSS (continuous tone control squelch system, hereinafter referred to as CTCSS), is a kind of squelch control system with modulation on carrier and continuous sub-audio signals as pilot tone. If CTCSS function is set, the call is available only at the same CTCSS frequency of both receiving and transmitting parties to avoid the disturbance of other signals.

The station has 39 groups of standard CTCSS frequency for your selection, such as Table 1. CTCSS signals produced by MCU are sent to TCXO for modulation.

No.	Frequency	No.	Frequency	No.	Frequency	No.	Frequency
	[Hz]		[Hz]		[Hz]		[Hz]
1	67.0	11	94.8	21	131.8	31	186.2
2	69.3	12	97.4	22	136.5	32	192.8
3	71.9	13	100.0	23	141.3	33	203.5
4	74.4	14	103.5	24	146.2	34	210.7
5	77.0	15	107.2	25	151.4	35	218.1
6	79.7	16	110.9	26	156.7	36	225.7
7	82.5	17	114.8	27	162.2	37	233.6
8	85.4	18	118.8	28	167.9	38	241.8
9	88.5	19	123.0	29	173.8	39	250.3
10	91.5	20	127.3	30	179.9		

Table 1 CTCSS Frequency Table

DCS signaling:

DCS (Digital code squelch), is a kind of continuous digital code modulated on carrier with voice signal and used for squelch control. If DCS function is set, the speaker is available only when receiving the same DCS code to avoid the disturbance of useless signals.

The station has 83 kinds of standard codes including positive and inverse code for your selection, such as Table 2.

DCS signals produced by MCU (PWM waveform) are sent to TCXO for modulation.

CTCSS/DCS signals from receiver are sent to MCU for decoding, and then MCU test if there are DCS codes with the same setting of the station to decide whether open the speaker or not.

Table 2DCS Coding Schedule

023	114	174	315	445	631
-----	-----	-----	-----	-----	-----

025	115	205	331	464	632
026	116	223	343	465	654
031	125	226	346	466	662
032	131	243	351	503	664
043	132	244	364	506	703
047	134	245	365	516	712
051	143	251	371	532	723
054	152	261	411	546	731
065	155	263	412	565	732
071	156	265	413	606	734
072	162	271	423	612	743
073	165	306	431	624	754
074	172	311	432	627	

9 Description of Semiconductor Devices

The distribution of each pin goes as the table 3. Table 3---Definition of CPU Base Pin:

Pin	Туре	Pin Name	Port Name	Function
1	0	PE2	FLASH_CS	SPI Flash Chip Select
2	2 O PE3	DEO	FLASH_SCLK/	SPI Flash Serial Clock/
2		FES	LCD_DB6	LCD_DB6(multiplexing)
3	I	PE4	FLASH_SDO	SPI Flash Serial Data
4	0	PE5	FLASH_SDI/	SPI Flash Serial Data Output(MCU)/
4	0	FED	LCD_DB7	LCD_DB7(multiplexing)
5	0	PE6	DMR_SLEEP	DMR POWERDOWN(High Active)
6	S	VBAT	VBAT	Connected to VDD
7	0	PC13	TX_LED	TX_LED(High Active)
8	0	PC14	RX_LED	RX LED(High Active)
9	0	PC15	LAMP	Keyboard Lamp(High Active)
10	S	VSS_5	VSS_5	Connected to VSSA.
11	S	VDD_5	VDD_5	Connected to 3.3V.
12	I	OSC_IN	OSC_IN	8MHz Crystal Input
13	0	OSC_OUT	OSC_OUT	8MHz Crystal Output
14	I	RESET	RESET	Reset Input(Low Active)
15	I	PC0/EXTI0	TIME_SLOT_INTE R	DMR TIME_SLOT Interrupt
16	I	PC1/EXTI1	SYS_INTER	DMR SYS Interrupt
17	I	PC2/EXTI2	RF_TX_INTER	DMR RF_TX中 Interrupt
18	I	PC3/EXTI3/	RF_RX_INTER	DMR RF_RX Interrupt
19	S	AD123_IN13 VDD	VDD	Connected to 3.3V。

20	S	VSS	VSS	Connected to VSSA
21	S	VREF+	VREF+	Connected to 3.3V.
22	S	VDDA	VDDA	Connected to 3.3V.
23	I	PA0/ ADC123_IN0	MANDOWN	MANDOWN Input;
24	I	PA1/ ADC123_IN1	BATT	Battery Input;
25	I	PA2/ ADC123_IN2	QT/DQT_IN	CTCSS/DCS Input
26	Ι	PA3/ ADC123_IN3	VOX	VOX Input
27	S	VSS_4	VSS_4	Connected to VSSA
28	S	VDD_4	VDD_4	Connected to 3.3V.
29	0	PA4/ DAC_OUT1	APC/TV	APC/TV D/A Output
30	0	PA5/ DAC_OUT2	MOD2_BIAS	TCXO Frequency D/A Adjust
31	I	PA6/ ADC12_IN6	POWER_DET	Power Detect(High Active)
32	0	PA7	POWER_C	Power Control(High Active)
33	0	PC4	RF_APC_SW	RF Amplifier Switch(High Active)
34	0	PC5	5TC	5T Power Control(High Active)
35	Ι	PB0/ ADC12_IN8	RSSI	RSSI Detect Input
36	Ι	PB1/ ADC12_IN9	BUSY	Carrier Detect Input
37	I/O	PB2/BOOT1	FM_SW	FM Receive IF Switch(High Active)
38	0	PE7	FM_MUTE	FM RX Mute(High Active)
39	0	PE8	VCOVCC_SW	RXVCO/TXVCO Control(High for RX)
40	0	PE9	DMR_SW	DMR Receive IF Switch(High Active)
41	I	PE10	VOL_MAX	Max Volume Control(High Active)
42	0	PE11	EXT_PTT	Ext PTT Input
43	I	PE12	PTT_KEY	PTT Input
44	I	PE13	ALARM_KEY	Top Key Input
45	I	PE14	ENCODE_IN0	Channel Encode IN0
46	I	PE15	ENCODE_IN1	Channel Encode IN1
47	I	PB10	ENCODE_IN2	Channel Encode IN2
48	I	PB11	ENCODE_IN3	Channel Encode IN3
49	S	VCAP_1	VCAP_1	Connect a Capacitor to Ground
50	S	VDD_1	VDD_1	Connected to 3.3V。
51	0	PB12/ SPI2_NSS	DMR_CS	C5000 Chip Select

52	0	PB13/ SPI2 SCK	DMR_SCLK	C5000 Serial Clock Output(From MCU)
53	I	PB14/ SPI2_MISO	DMR_SDO	C5000 Serial Data Input
54	0	PB15/ SPI2_MOSI	DMR_SDI	C5000 Serial Data Output
55	I	PD8	PLL_LD	PLL Lock Detect(High Active)
56	0	PD9	PLL_CS	PLL Chip Select
57	0	PD10	PLL_DAT	PLL DATA Output
58	0	PD11	PLL_CLK	PLL Clock Output
59	0	PD12	LCD_RES	LCD_RES
60	0	PD13	LCD_A0	LCD_A0
61	0	PD14	LCD_CS1	LCD_CS1
62	0	PD15	FL_C	Fast Lock Switch Control(High Active)
63	0	PC6/TIM8_C H1	FAST_LOCK	Fast Lock PWM Output
64	0	PC7/TIM8_C H2	CTC/DCS_OUT	CTCSS/DCS TCXO Output
65	0	PC8/TIM8_C H3	BEEP	BEEP/ALARM/DTMF Output
66	0	PC9	5RC	5R Power Switch Control(High Active)
67	0	PA8	SAVE	5C Power Switch Control(High Active)
68	I	PA9/ USART1_TX	SD1_KEY	Side Key 1 Input
69	Ι	PA10/ USART1_RX	SD2_KEY	Side Key 2 Input
70	I/O	PA11/USBD M	USBD-	USB DM
71	I/O	PA12/USBD P	USBD+	USB DP
72	I/O	JTMS-SWDI O/ PA13	SWDIO/ WORN_SW	Wide/Narrow Band Control(High for Wide)
73	S	VCAP_2	VCAP_2	Connect a Capacitor to Ground
74	S	VSS_2	VSS_2	Connect to Ground
75	S	VDD_2	 VDD_2	Connect to 3.3V。
76	I/O	JTCK-SWCL K/ PA14		MANDOWN Power Switch(High Active)
77	0	PA15/ I2S3_WS	I2S_FS	DMR I2S_FS
78	0	PC10/ I2S3_CK	I2S_CK	DMR I2S_CK
79	0	PC11/	I2S_RX	DMR I2S_RX

		I2S3ext_SD		
80	I	PC12/ I2S3_SD	I2S_TX	DMR I2S_TX
81	I/O	PD0	K2	Key Board K2 Input
82	I/O	PD1	K3	Key Board K3 Input
83	I/O	PD2	K4	Key Board K4 Input
84	I/O	PD3	K5	Key Board K5 Input
85	I/O	PD4	K6	Key Board K6 Input
86	I/O	PD5	K7	Key Board K7 Input
87	I/O	PD6	K8	Key Board K8 Input
88	0	PD7	V_CS	DMR V_CS
89	0	PB3/ SPI3_SCK	V_SCLK	DMR V_SCLK
90	I	PB4/ SPI3_MISO	V_SDO	DMR V_SDO
91	0	PB5/ SPI3_MOSI	V_SDI	DMR V_SDI
92	0	PB6	SPK_C	Speaker Output Control(High Active)
93	0	PB7	AFCO	Audio Amplifier Control(High Active)
94	I	BOOT0	BOOT0	Connect a 10K resistor to Ground
95	0	PB8/ I2C1_SCL	SCL	Software Control Watch Dog Serial Clock
96	0	PB9/ I2C1_SDA	SDA	Software Control Watch Dog Serial Data
97	0	PE0	MICPWR_C	MIC Power Switch(High Active)
98	0	PE1	K1	Key Board K2 Input
99	S	VSS_3	VSS_3	Connect to Ground
100	S	VDD_3	VDD_3	Connect to 3.3V _o

Table 4 Functional description of semiconductor device

Item	Model	Function Description
IC1	SKY72310	Frequency Synthesizer
IC100	NJM2904	APC, Voltage Comparison, Driving
IC200	NJM2591V	Receiver 2 nd Local Oscillation, 2 nd IF Amplification, Limitation, Demodulation, Noise
		Amplification
IC300	NJM2902V	Receiver demodulated signal Amplification, Filtering
IC601	TA75W01FU	MIC Amplification
IC302	TDA2822D	Audio Frequency Power Amplification
IC613	W25Q80	FLASH, Channel Frequency Data Storage, Function Setting Parameter, Debug

		Mode Parameter
IC614	STM32F405VGT6	MCU
IC615	PST9124NR	MCU Reset Circuit
IC609	HR_C5000-1	Base Band Processor
IC619	UPB1509BV	UPB1509GV is a divide by 2, 4, 8 prescaler IC for portable radio or cellular
		telephone applications.