

FCC PART 90 TEST REPORT

For

SHENZHEN COVALUE COMMUNICATIONS CO.,LTD.

2/F, Bldg.24, XiLi Industrial Park, No.119Xinguang Rd, Xili, Nanshan, Shenzhen, China

FCC ID: Y4GCU500-1

Report Type: Original Report		Product Type: Two way radio	
Test Engineer:	Leon Chen		leon then
Report Number:	R2DG13031800	01-00	
Report Date:	2013-06-06		4
Reviewed By:	Ivan Cao RF Leader		han Cau
Test Laboratory:	No.69 Pulongcu	6858891	one,

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

* This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "*" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
SUMMARY OF TEST RESULTS	7
FCC §1.1307 & §2.1093 - RF EXPOSURE	8
APPLICABLE STANDARD	8
TEST RESULT	8
FCC §2.1046 & §90.205- RF OUTPUT POWER	9
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	9
FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC	11
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	11
FCC §2.1049, §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	17
APPLICABLE STANDARD	17
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	21
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
FCC §2.1055 & §90.213- FREQUENCY STABILITY	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	28

Report No.: R2DG130318001-00

Report No.: R2DG130318001-00

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The SHENZHEN COVALUE COMMUNICATIONS CO.,LTD.'s product, model number: CU500-1 (FCC ID: Y4GCU500-1) the "EUT" in this report is a Two way radio, which was measured approximately: 24.5 cm(H) x 6.3 cm(W) x 3.2 cm(D), rated input voltage: 7.4 V_{DC} from battery.

Report No.: R2DG130318001-00

Note: Models CU500-1 and CU510-1 are electrically identical, and the difference between them please refers to the attached declaration letter.

* All measurement and test data in this report was gathered from production sample serial number: 130318001 (Assigned by BACL, Dongguan). The EUT was received on 2013-03-25.

Objective

This test report is prepared on behalf of *SHENZHEN COVALUE COMMUNICATIONS CO.,LTD.* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA 603-D and ANSI 63.4-2003.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 90 Page 4 of 35

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Report No.: R2DG130318001-00

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Dongguan) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 500069-0).

The current scope of accreditations can be found at http://ts.nist.gov/standards/scopes/5000690.htm

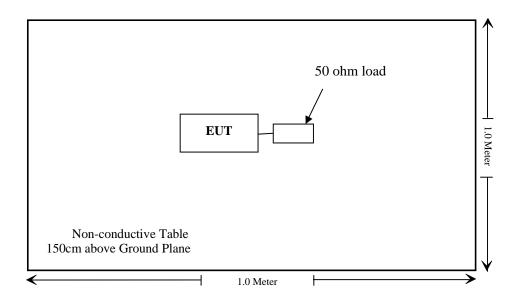
FCC Part 90 Page 5 of 35

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Specfication:


Operating Frequency Band	VHF: 136-174 MHz
Modulation Mode	FM
Channnel separation	12.5 kHz
Conducted Output Power	High: 5 W Low: 1 W

Report No.: R2DG130318001-00

Equipment Modifications

No modifications were made to the unit tested.

Block Diagram of Test Setup

FCC Part 90 Page 6 of 35

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
FCC §1.1307 & §2.1093	RF EXPOSURE	Compliance
§2.1046; §90.205	RF Output Power	Compliance
§2.1047; §90.207	Modulation Characteristic	Compliance
\$2.1049; \$90.209; \$90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051; §90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053; §90.210	Spurious Radiated Emissions	Compliance
§2.1055; §90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

Report No.: R2DG130318001-00

FCC Part 90 Page 7 of 35

FCC §1.1307 & §2.1093 - RF EXPOSURE

Applicable Standard

FCC§1.1307 and §2.1093.

Test Result

Compliance, please refer to the SAR report: R1304226-FCC-SAR.

Report No.: R2DG130318001-00

FCC Part 90 Page 8 of 35

FCC §2.1046 & §90.205- RF OUTPUT POWER

Applicable Standard

FCC §2.1046 and §90.205.

Test Procedure

Conducted RF Output Power:

TIA-603-D section 2.2.1

Radiated method:

TIA 603-D section 2.2.17

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Report No.: R2DG130318001-00

Spectrum Analyzer setting:

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	ESPI	100337	2012-11-10	2013-11-9

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.6 °C	
Relative Humidity:	66%	
ATM Pressure:	100.3 kPa	

The testing was performed by Leon Chen on 2013-06-06.

FCC Part 90 Page 9 of 35

Test Mode: Transmitting

Test Result: Compliance.

Please refer to following table.

Frequency Spacing	Frequency	High Power Level	Low Power Level	
kHz	MHz	dBm	dBm	
12.5	136.025	36.92	30.18	
12.5	155	37.09	30.04	
12.5	173.975	37.03	30.22	

Report No.: R2DG130318001-00

FCC Part 90 Page 10 of 35

FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

FCC§2.1047 & §90.207:

(a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.

Report No.: R2DG130318001-00

(b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Procedure

Test Method: TIA/EIA-603 2.2.3

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
HP Agilent	RF Communication Test Set	8920A	3325U00859	2012-10-19	2013-10-19

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

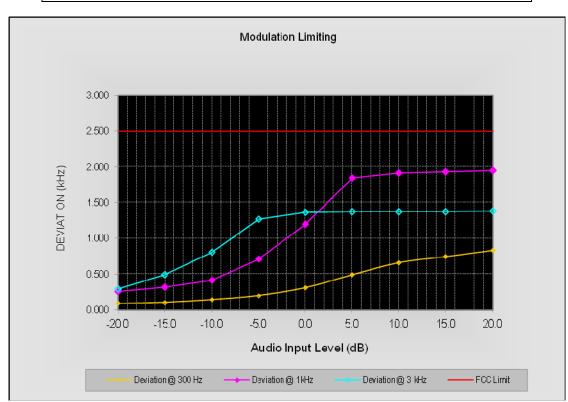
Test Data

Environmental Conditions

Temperature:	24.8 °C	
Relative Humidity:	54%	
ATM Pressure:	100.3 kPa	

The testing was performed by Leon Chen on 2013-04-03.

FCC Part 90 Page 11 of 35

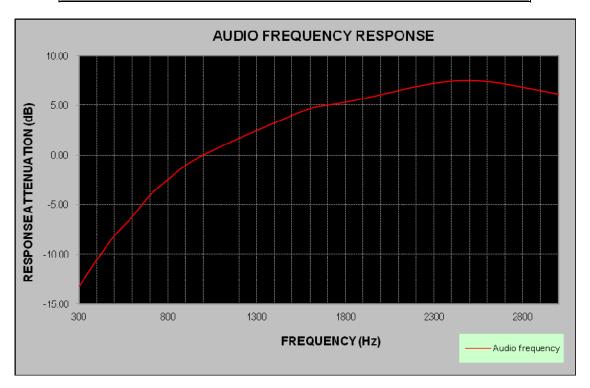

Test Mode: Transmitting

MODULATION LIMITING (high power level)

Report No.: R2DG130318001-00

Carrier Frequency: 155 MHz, Channel Separation = 12.5 kHz

Audio Input	Frequency Deviation (kHz)			FCC Limit
Level [dBm]	@ 300 Hz	@ 1kHz	@ 3 kHz	[kHz]
20.0	0.833	1.951	1.384	2.5
15.0	0.746	1.934	1.377	2.5
10.0	0.663	1.916	1.376	2.5
5.0	0.492	1.846	1.374	2.5
0.0	0.311	1.201	1.368	2.5
-5.0	0.201	0.708	1.267	2.5
-10.0	0.143	0.416	0.809	2.5
-15.0	0.105	0.316	0.490	2.5
-20.0	0.089	0.255	0.295	2.5

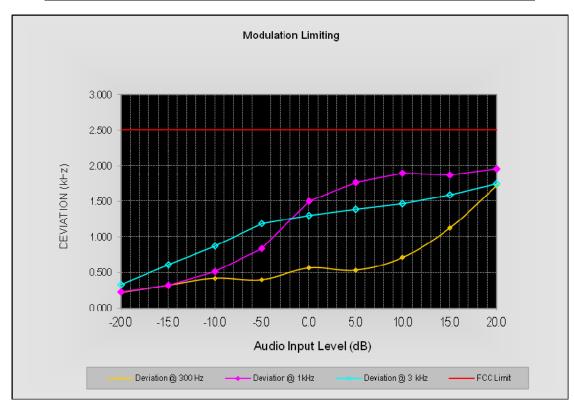

FCC Part 90 Page 12 of 35

Audio Frequency Response (high power level)

Report No.: R2DG130318001-00

Carrier Frequency: 155 MHz, Channel Separation = 12.5 kHz

Audio Frequency (Hz)	Response Attenuation (dB)
300	-13.28
400	-10.57
500	-8.14
600	-6.22
700	-4.03
800	-2.47
900	-1.03
1000	0.00
1200	1.69
1400	3.24
1600	4.68
1800	5.33
2000	6.09
2200	6.91
2400	7.46
2600	7.42
2800	6.83
3000	6.15

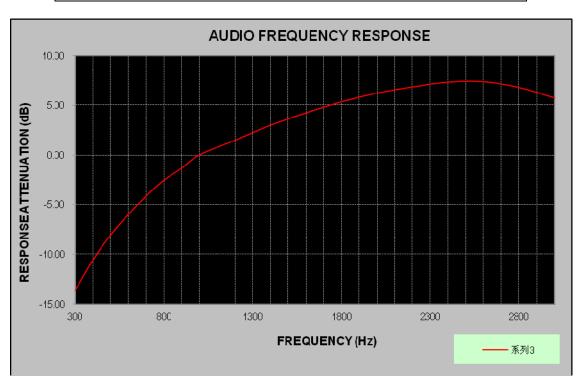

FCC Part 90 Page 13 of 35

MODULATION LIMITING (low power level)

Report No.: R2DG130318001-00

Carrier Frequency: 155 MHz, Channel Separation = 12.5 kHz

Audio Input	Frequency Deviation (kHz)			FCC Limit
Level [dBm]	@ 300 Hz	@ 1kHz	@ 3 kHz	[kHz]
20.0	1.721	1.954	1.745	2.5
15.0	1.124	1.873	1.589	2.5
10.0	0.712	1.897	1.468	2.5
5.0	0.532	1.765	1.385	2.5
0.0	0.565	1.500	1.298	2.5
-5.0	0.398	0.834	1.185	2.5
-10.0	0.421	0.515	0.876	2.5
-15.0	0.321	0.323	0.612	2.5
-20.0	0.215	0.224	0.326	2.5

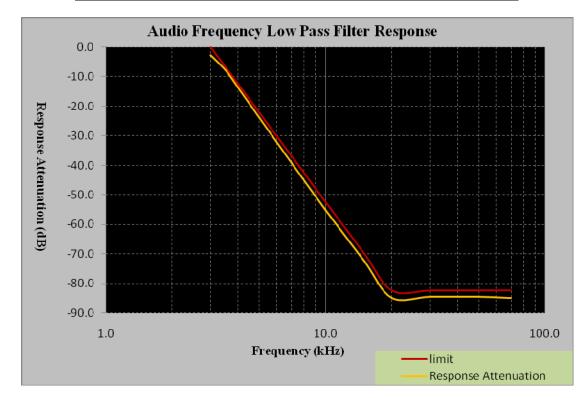

FCC Part 90 Page 14 of 35

Audio Frequency Response (low power level)

Report No.: R2DG130318001-00

Carrier Frequency: 155 MHz, Channel Separation = 12.5 kHz

Audio Frequency (Hz)	Response Attenuation (dB)
300	-13.64
400	-10.57
500	-8.05
600	-5.99
700	-4.12
800	-2.55
900	-1.33
1000	0.00
1200	1.47
1400	2.98
1600	4.23
1800	5.34
2000	6.22
2200	6.84
2400	7.32
2600	7.37
2800	6.79
3000	5.73


FCC Part 90 Page 15 of 35

Audio Frequency Response

Report No.: R2DG130318001-00

Carrier Frequency: 155 MHz, Channel Separation = 12.5 kHz

Audio Frequency	Response Attenuation	Limit
kHz	dB	dB
3.0	-2.7	0.0
3.5	-7.8	-6.7
4.0	-13.6	-12.5
5.0	-23.8	-22.2
7.0	-39.2	-36.8
10.0	-54.9	-52.3
15.0	-72.6	-69.9
20.0	-84.9	-82.5
30.0	-84.5	-82.5
50.0	-84.6	-82.5
70.0	-84.9	-82.5

FCC Part 90 Page 16 of 35

FCC §2.1049, §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Report No.: R2DG130318001-00

Applicable Standard

FCC §2.1049, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least: 50+10logP

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	ESPI	100337	2012-11-10	2013-11-9

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 300 Hz and the spectrum was recorded in the frequency band ± 35 kHz from the carrier frequency.

Test Data

Environmental Conditions

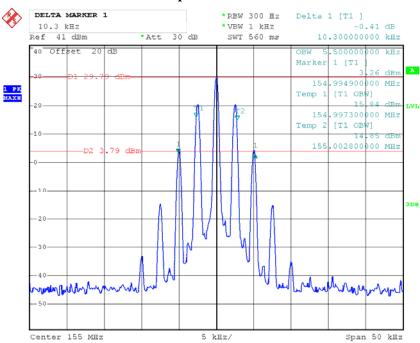
Temperature:	27.6 °C
Relative Humidity:	66%
ATM Pressure:	100.3 kPa

The testing was performed by Leon Chen on 2013-06-06.

FCC Part 90 Page 17 of 35

Frequency (MHz)	99% Occupied Bandwidth(kHz)	26 dB Bandwidth(kHz)	Emission power
155	5.50	10.30	Low power level
155	5.50	10.40	High power level

Report No.: R2DG130318001-00


Please refer to the emission mask hereinafter plots.

FCC Part 90 Page 18 of 35

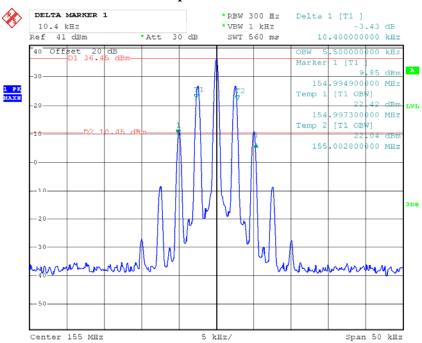
Low power level:

Occupied Bandwidth

Report No.: R2DG130318001-00

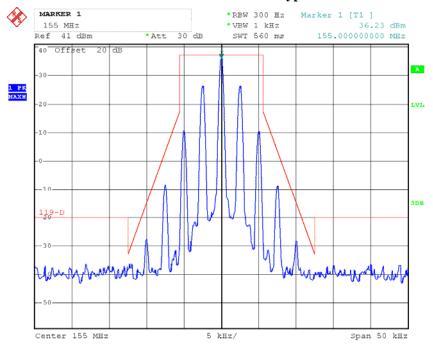
Date: 6.JUN.2013 11:01:57

Emission Mask- Channel - Type D


Date: 6.JUN.2013 11:05:35

FCC Part 90 Page 19 of 35

High power level:


Occupied Bandwidth

Report No.: R2DG130318001-00

Date: 6.JUN.2013 10:59:42

Emission Mask- Channel - Type D

Date: 6.JUN.2013 11:07:20

FCC Part 90 Page 20 of 35

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

Report No.: R2DG130318001-00

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

50+10logP=50+10log (P) dB

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer FSEM 30		849016/001	2012-9-4	2013-9-3

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

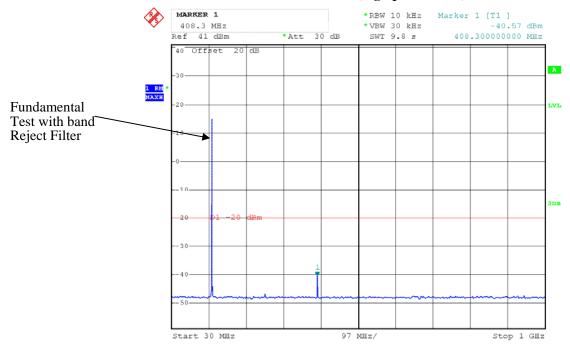
Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Data

Environmental Conditions

Temperature:	27.6 °C
Relative Humidity:	66%
ATM Pressure:	100.3 kPa


The testing was performed by Leon Chen on 2013-06-06.

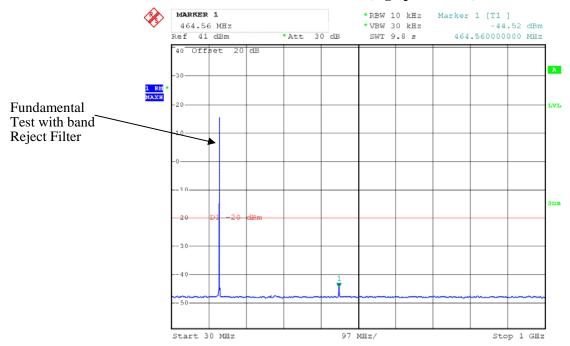
Please refer to the following plots.

FCC Part 90 Page 21 of 35

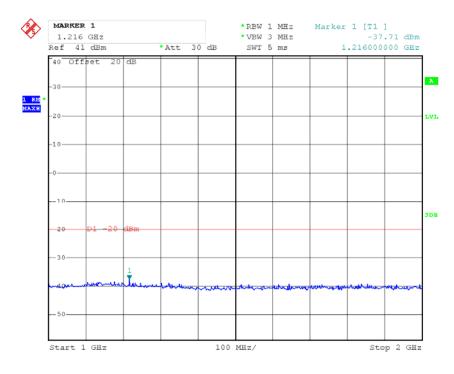
VHF - low channel (high power level)

Report No.: R2DG130318001-00

Date: 6.JUN.2013 11:12:14



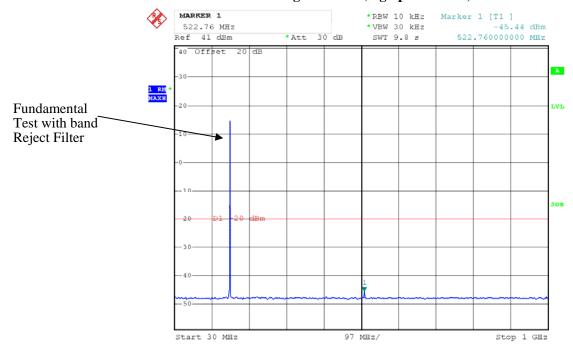
Date: 6.JUN.2013 11:11:28


FCC Part 90 Page 22 of 35

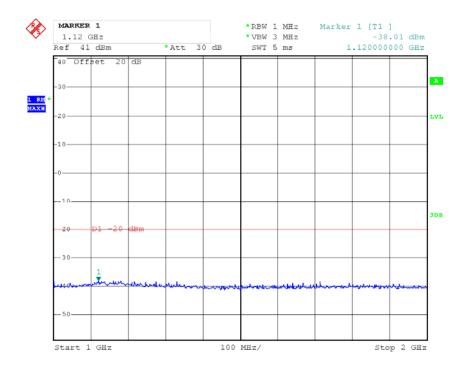
VHF - Middle channel (high power level)

Report No.: R2DG130318001-00

Date: 6.JUN.2013 11:09:44



Date: 6.JUN.2013 11:10:30


FCC Part 90 Page 23 of 35

VHF - high channel (high power level)

Report No.: R2DG130318001-00

Date: 6.JUN.2013 11:13:32

Date: 6.JUN.2013 11:14:02

FCC Part 90 Page 24 of 35

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSEM 30	849016/001	2012-9-4	2013-9-3
Sunol Sciences	Antenna	JB3	A060611-1	2012-9-6	2015-9-5
TDK RF	horn antenna	HRN-0118	130 084	2012-9-6	2015-9-5
EMCO	Adjustable dipole antenna	3121C	9109-753	N/A	N/A
ETS LINDGREN	horn antenna	3115	000 527 35	2012-9-6	2015-9-5
HP	Signal Generator	8648A	3426A00831	2012-11-29	2013-11-28
Giga	Signal Generator	1026	320408	2013-3-15	2014-3-14
HP	HP AMPLIFIER	8447E	2434A02181	N/A	N/A
Mini-Circuit	Amplifier	ZVA-213-S+	54201245	N/A	N/A
R&S	EMI TEST RECIEVER	ESCI	100224	2012-5-14	2013-5-13

Report No.: R2DG130318001-00

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB = $43+10 \ Log_{10}$ (power out in Watts) Spurious attenuation limit in dB = $50+10 \ Log_{10}$ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

FCC Part 90 Page 25 of 35

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24.2 °C
Relative Humidity:	68%
ATM Pressure:	100.3 kPa

The testing was performed by Leon Chen on 2013-04-03.

Report No.: R2DG130318001-00

FCC Part 90 Page 26 of 35

High power level:

TX mode:

-	D 1	S.A.	S.G.	Antenna	Cable	Absolute	T	3.5
Frequency	Polar	Reading	Level	Gain	Loss	Level	Limit	Margin
MHz	H/V	dΒμV	dBm	dBd/dBi	dB	dBm	dBm	dB
	•		f _{c =}	136.025MH	z			
272.050	Н	59.63	-48.2	0.0	0.4	-48.6	-20.0	28.6
272.050	V	47.74	-57.7	0.0	0.4	-58.1	-20.0	38.1
408.075	Н	34.12	-60.7	0.0	0.5	-61.2	-20.0	41.2
408.075	V	27.54	-64.7	0.0	0.5	-65.2	-20.0	45.2
544.100	Н	36.33	-54.1	0.0	0.5	-54.6	-20.0	34.6
544.100	V	32.62	-55.1	0.0	0.5	-55.6	-20.0	35.6
680.125	Н	27.08	-62.5	0.0	0.6	-63.1	-20.0	43.1
680.125	V	26.32	-61.2	0.0	0.6	-61.8	-20.0	41.8
816.150	Н	32.19	-59.7	0.0	0.8	-60.5	-20.0	40.5
816.150	V	28.37	-60.8	0.0	0.8	-61.6	-20.0	41.6
952.175	Н	42.48	-44.5	0.0	0.9	-45.4	-20.0	25.4
952.175	V	36.13	-48.4	0.0	0.9	-49.3	-20.0	29.3
1088.200	Н	38.56	-61.6	7.5	1.2	-55.3	-20.0	35.3
1088.200	V	39.13	-61	7.5	1.2	-54.7	-20.0	34.7
	$f_{c} = 155.000 MHz$							•
310.000	Н	49.52	-56.7	0.0	0.4	-57.1	-20.0	37.1
310.000	V	36.84	-66.9	0.0	0.4	-67.3	-20.0	47.3
465.000	Н	38.48	-52.3	0.0	0.5	-52.8	-20.0	32.8
465.000	V	35.49	-53.5	0.0	0.5	-54.0	-20.0	34.0
620.000	Н	26.38	-65.9	0.0	0.5	-66.4	-20.0	46.4
620.000	V	27.52	-60.8	0.0	0.5	-61.3	-20.0	41.3
775.000	Н	36.87	-54.2	0.0	0.8	-55.0	-20.0	35.0
775.000	V	30.24	-58.6	0.0	0.8	-59.4	-20.0	39.4
930.000	Н	44.57	-44.6	0.0	0.8	-45.4	-20.0	25.4
930.000	V	38.26	-47.9	0.0	0.8	-48.7	-20.0	28.7
1085.000	Н	39.24	-60.9	7.5	1.2	-54.6	-20.0	34.6
1085.000	V	38.02	-62.1	7.5	1.2	-55.8	-20.0	35.8
			f _c =	173.975MH	z			
347.950	Н	40.67	-61	0.0	0.4	-61.4	-20.0	41.4
347.950	V	31.15	-67.9	0.0	0.4	-68.3	-20.0	48.3
521.925	Н	40.29	-49.1	0.0	0.5	-49.6	-20.0	29.6
521.925	V	33.14	-54.2	0.0	0.5	-54.7	-20.0	34.7
695.900	Н	31.57	-57.4	0.0	0.6	-58.0	-20.0	38.0
695.900	V	29.98	-57.3	0.0	0.6	-57.9	-20.0	37.9
869.875	Н	44.65	-47.4	0.0	0.7	-48.1	-20.0	28.1
869.875	V	38.53	-50.2	0.0	0.7	-50.9	-20.0	30.9
1043.850	Н	38.17	-62.2	7.7	1.1	-55.6	-20.0	35.6
1043.850	V	40.28	-59.7	7.7	1.1	-53.1	-20.0	33.1

Report No.: R2DG130318001-00

Note: The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.

FCC Part 90 Page 27 of 35

FCC §2.1055 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 & §90.213

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSEM 30	849016/001	2012-9-4	2013-9-3
Dongzhixu	Humidity tester	DP1000	201105083-3	2012-7-3	2013-7-2

Report No.: R2DG130318001-00

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to DC or AC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The power leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

The frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

Test Data

Environmental Conditions

Temperature:	27.6 °C
Relative Humidity:	66%
ATM Pressure:	100.3 kPa

The testing was performed by Leon Chen on 2013-06-06.

FCC Part 90 Page 28 of 35

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Mode: Transmitting

Reference Frequency: 155MHz, Limit: 2.5 ppm					
Temerature	Voltage	Reading Frequency Er			
င	V_{DC}	MHz	ppm		
-30	7.4	155.00007688	0.50		
-20	7.4	155.00007122	0.46		
-10	7.4	155.00007238	0.47		
0	7.4	155.00007159	0.46		
10	7.4	155.00007351	0.47		
20	7.4	155.00007200	0.46		
30	7.4	155.00007453	0.48		
40	7.4	155.00007365	0.48		
50	7.4	155.00007638	0.49		
60	7.4	155.00007679	0.50		
25	5.92	155.00007322	0.47		

Report No.: R2DG130318001-00

Note: the battery operating end point was specified by the manufacturer.

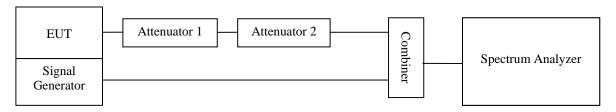
FCC Part 90 Page 29 of 35

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214

Test method: ANSI/TIA-603-D 2010, section 2.2.19.3


Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSEM 30	849016/001	2012-9-4	2013-9-3
HP	Signal Generator	8648A	3426A00831	2012-11-29	2013-11-28

Report No.: R2DG130318001-00

Test Procedure

- a) Connect the EUT and test equipment as shown on the following block diagram.
- b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P₀.
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P₀. This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ± 4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .
- k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

FCC Part 90 Page 30 of 35

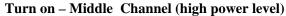
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

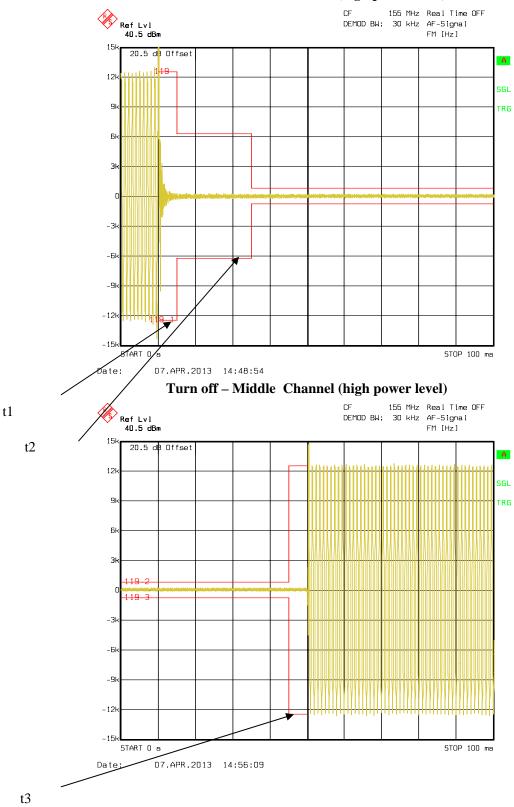
Test Data

Environmental Conditions

Temperature:	23.6 °C	
Relative Humidity:	47%	
ATM Pressure:	100.9 kPa	

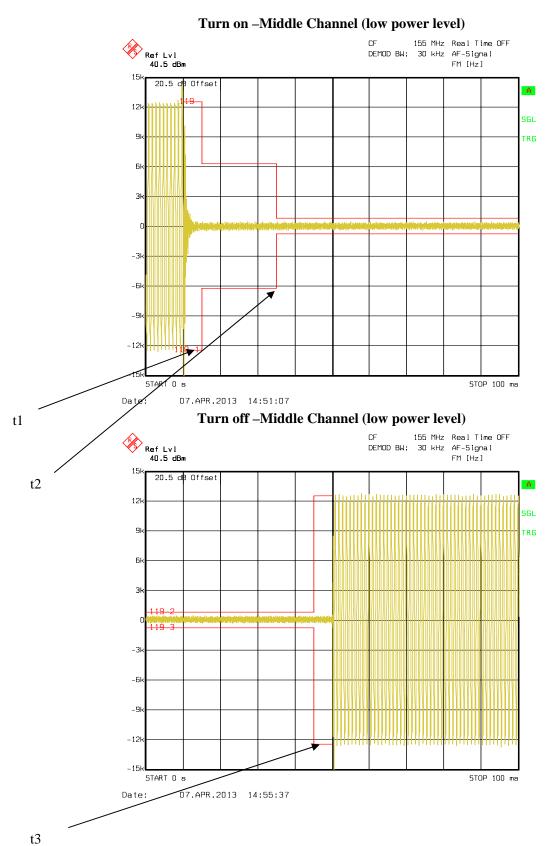
The testing was performed by Leon Chen on 2013-04-07.


Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result	
12.5	<5 (t1)	±12.5 kHz		
	<20 (t2)	±6.25 kHz	Pass	
	<5 (t3)	±12.5 kHz		


Report No.: R2DG130318001-00

Please refer to the following plots.

FCC Part 90 Page 31 of 35



FCC Part 90 Page 32 of 35

Report No.: R2DG130318001-00

FCC Part 90 Page 33 of 35

DECLARATION OF SIMILARITY

SHENZHEN COVALUE COMMUNICATIONS CO., LTD.

Add: 2/F., Bldg. 24, XiLi Industrial Park, No.119 Xinguang Rd, Xili, Nanshan, Shenzhen, China Tel: 0755-86345789 Fax: 0755-86345790

DECLARATION OF SIMILARITY

Report No.: R2DG130318001-00

Date: 2013-6-6

To:

Bay Area Compliance Labs Corp.(Dongguan) 69# Pulongcun, Puxinhu Industrial Zone Tangxia Town, Dongguan, Guangdong, China

Dear Sir or Madam:

We, SHENZHEN COVALUE COMMUNICATIONS CO., LTD., hereby declare that product: Two way radio, model: CU510-1 is electrically identical with the same electromagnetic emissions and electromagnetic compatibility characteristics as model name: CU500-1 that was tested by BACL, the results of which are featured in BACL project.

A description of the differences between the tested model and those that are declared similar areas follows:

CU510-1 and CU500-1 just have different shell shape with the same material . CU510-1 has a button on the top which is used for alarm and different model name.

Please contact me should there be need for any additional clarification or information.

Best Regards,

Shu, Chengtao

Research & Development Department Manager

强力 沙路.

FCC Part 90 Page 34 of 35

Attachment:

*****END OF REPORT****

Report No.: R2DG130318001-00

FCC Part 90 Page 35 of 35