

FCC ID: Y4B-3700-SNMP

FCC 15.247 Certification Information

Operational Description

1. Circuit Principle:

The 3700-SNMP product incorporates a Texas Instruments CC1110 system-on-chip radio transceiver. This implements a direct down conversion radio transceiver operating in the 900MHz ISM band. The maximum transmitter output power of this device is 10dBm. The 3700-SNMP device utilizes a wideband digital modulation physical layer with the addition of a carrier sense multiple access (CSMA) medium access control (MAC) layer on each frequency channel. The data transmission rate is set to 100kbps maximum.

Modulation	2-FSK, 240Khz frequency deviation
Radio Type	Low-IF Super heterodyne
Data rate	100kbps
Radio IF Frequency	270.13Khz (fixed)
Signal RF Bandwidth (6db)	540Khz
Maximum transmit power	10dBm
RF transmit frequencies	$908.40 + 1.123*n$ MHz (where $0 \leq n \leq 10$)
RF channel spacing	1123.54Khz
Maximum packet size	1392 bits
MAC protocol	Carrier sense multiple access (CSMA)
PHY protocol	Digital modulation spread spectrum (>500 Khz)

Table 1 Transmitter Details of Operation

Frequency channel	Transmitter Base Channel frequency (MHz)	Receiver Base Channel frequency (MHz)	Frequency channel	Transmitter Base Channel frequency (MHz)	Receiver Base Channel frequency (MHz)
1	908.40	908.40	6	914.02	914.02
2	909.52	909.52	7	915.14	915.14
3	910.65	910.65	8	916.26	916.26
4	911.77	911.77	9	917.39	917.39
5	912.89	912.89	10	918.51	918.51
			11	919.65	919.65

Table 2 Radio Frequency Channels

2. Radio Signal Flow and Baseband Operations:

The Radio is based on the Texas Instrument CC1110 system-on-chip (SoC) module. The CC1110 features a low-IF receiver. The received RF signal is amplified by the low noise amplifier (LNA) and down-converted in quadrature (I and Q) to the intermediate frequency (IF). At IF, the I/Q signals are digitized by the ADCs. Automatic gain control (AGC), fine channel filtering, demodulation, and bit/packet synchronization is performed digitally.

The transmitter part of the CC1110 is based on direct synthesis of the RF frequency. The frequency synthesizer includes a complete on-chip LC VCO and a 90 degrees phase shifter for generating the I and Q signals to the down-conversion.

3. Antenna:

The external antenna is attached via a reverse polarity SMA connector.