

Report: EMC_SL16072901-SPC-007_FCC15B

EMC TEST REPORT

Report: EMC_SL16072901-SPC-007_FCC15B **Supersedes**: None

Applicant Name:	SpiderCloud Wireless, Inc.
Product Name:	SpiderCould Radio Node
Model Name:	SCRN-310-0205
Test Standard:	FCC 15 Subpart B (Class A)
Test Method:	ANSI C63.4: 2014
Date of Test:	2016-09-19; 2016-10-10/11/13
Report Issue Date:	2016-10-17
Test Result: Image: Pass Image: Fail Equipment complied with the specifications: Image: Pass Equipment did not comply with the specifications: Image: Pass This test report is issued under the authority of: Image: Pass	
BiSn	Mike sales
Full Name: Bryan Smith	Full Name: Michael R. Gates
Title: JR EMC Test Engineer	Title: Lead Lab Engineer nay be reproduced in full only.

Test result presented in this test report is applicable to the tested sample only.

ISSUED BY: SIEMIC Laboratories 775 Montague Expressway, Milpitas, CA 95035 USA

Report: EMC_SL16072901-SPC-007_FCC15B

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Country/Region	Accreditation Body	Scope
USA	FCC, A2LA	EMC, RF/Wireless, Telecom
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom, Safety
Hong Kong	OFTA, NIST	RF/Wireless, Telecom
Australia	NATA, NIST	EMC, RF, Telecom, Safety
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom
Europe	A2LA, NIST	EMC, RF, Telecom, Safety
Israel	MOC, NIST	EMC, RF, Telecom, Safety

Accreditations for conformity assessment

Accreditations for conformity assessment

Country/Region	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

Table of Contents

1.	Report revision history	4
2.	Executive summary	4
3.	Customer information	4
4.	Test site information	4
5.	Modification	5
6.	Test software version	5
7.	EUT Information	6
7	7.1. EUT Description	6
7	7.2. EUT Test modes / Configuration description	7
7	7.2.1. EUT Test modes: Pre-test mode	7
7	7.2.2. EUT Test modes: Final test mode	7
7	7.3. EUT Photos External	8
7	7.4. EUT Photos Internal	9
7	7.5. EUT Photos Test setup	10
8.	Supporting equipment / Software / Cabling information	11
8	3.1. Support equipment	11
8	3.2. I/O Ports	12
8	3.3. Test software description	12
8	3.4. System setup block diagram	13
9.	Test summary	14
10.	Measurement uncertainty	14
11.	Frequency Range of Radiated Measurements	15
12.	Guideline for interference allowed	16
1	2.1. AC Conducted emissions (Class A)	16
1	2.2. Radiated Spurious Emissions Below 1GHz (Class A)	22
13.	Annex A Test instruments and method	29
14.	Annex B SIEMIC Accreditation	31

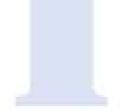
1. Report revision history

Report No.	Version No.	Description	Issue Date
EMC_SL16072901-SPC-007_FCC15B	Original	FCC15B Class A Report	2016-10-17

2. Executive summary

The purpose of this test program was to demonstrate compliance of following product:

Company:	SpiderCloud Wireless, Inc.
Product:	SpiderCould Radio Node
Model:	SCRN-310-0205


against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

3. Customer information

Applicant Name:	SpiderCloud Wireless, Inc.
Applicant Address:	475 Sycamore Dr, Milpitas, CA 95035
Manufacturer Name:	SpiderCloud Wireless, Inc.
Manufacturer Address:	475 Sycamore Dr, Milpitas, CA 95035

4. Test site information

Lab Performing Tests:	SIEMIC Laboratories
Lab Address:	775 Montague Expressway, Milpitas, CA 95035
FCC Test Site No:	881796
IC Test Site No:	4842D-2

Report: EMC_SL16072901-SPC-007_FCC15B

5. Modification

Index	Item	Description	Note
N/A	N/A	N/A	N/A

6. Test software version

Test Item	Vendor	Software	Version
Radiated Emission	EMISoft	EMISoft Vasona	V6.013
Conducted Emission	EMISoft	EMISoft Vasona	V5.095

7. EUT Information

7.1. EUT Description

Product Name:	SpiderCloud Radio Node	
Model No.:	SCRN-310-0205 (with Band 2 LTE - 1960MHz & Band 5 LTE/UMTS - 881.5MHz)	
Trade Name:	SpiderCloud Wireless	
Serial No.:	EUT # 1 - Band 2 LTE - 1960MHz & Band 5 UMTS - 881.5MHz: 16238X21747 EUT # 2 - Band 2 LTE - 1960MHz & Band 5 LTE - 881.5MHz: 16238X21742	
Input Power:	+56VDC	
Power Adapter Manu/Model:	PoE - Phihong / POE36U-1AT-R REV. D	
Power Adapter SN:	P13801913D1	
Hardware version:	02283-01	
Software version:	SCOC 5.2.0	
Date of EUT received:	9/19/2016	
Equipment Class/ Category:	Class A / ITE	
Highest frequency generated or used in the device or on which the device operates or tunes:	EUT # 1 – Band 2 LTE 1960MHz / Band 5 UMTS 881.5MHz EUT # 2 – Band 2 LTE 1960MHz / Band 5 LTE 881.5MHz	
Port/Connectors:	RJ45	
Remark:	2 separate EUTs were used for testing in this report with 2 separate test configurations. EUT #1 was configured for Band 5 UMTS (881.5MHz) and EUT #2 was configured for Band 5 LTE (881.5MHz). Each EUT was tested individually with the tested EUT configured as the Master and non-tested EUT used for support equipment configured as the Client.	
AC Power Cord Type:	N/A	
DC Power Cable Type:	RJ45 (PoE)	

7.2. EUT Test modes / Configuration description 7.2.1.EUT Test modes: Pre-test mode

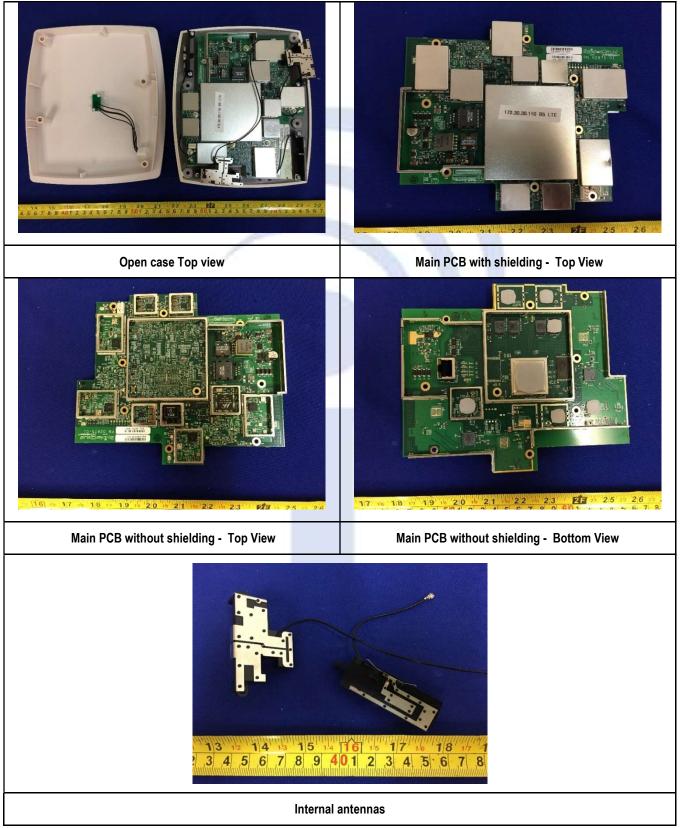
Prescan Test Mode		Notes
Pre-test Mode 1	Manufacturer Specified	Band 5 UMTS 881.5MHz was set to continuously transmit
Pre-test Mode 2	Manufacturer Specified	Band 5 LTE 881.5MHz was set to continuously transmit
Remark:	2 separate EUTs were used for testing in this report with 2 separate test configurations. EUT #1 was configure for Band 5 UMTS (881.5MHz) and EUT #2 was configured for Band 5 LTE (881.5MHz). Each EUT was tested individually with the tested EUT configured as the Master and non-tested EUT used for support equipment configured as the Client.	

7.2.2.EUT Test modes: Final test mode


F	Final Test Mode	Notes
Final-test Mode 1	Manufacturer Specified	Band 5 UMTS 881.5MHz was set to continuously transmit
Final-test Mode 2	Manufacturer Specified	Band 5 LTE 881.5MHz was set to continuously transmit
Remark:	configured for Band 5 UMTS (881.5MHz) and EUT was tested individually with the tested EUT config	report with 2 separate test configurations. EUT #1 was #2 was configured for Band 5 LTE (881.5MHz). Each EUT gured as the Master and non-tested EUT used for support nfigured as the Client.

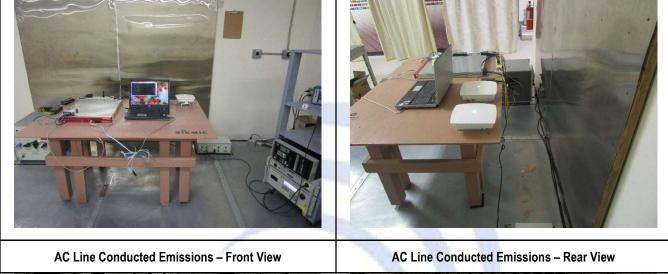
Report: EMC_SL16072901-SPC-007_FCC15B

7.3. EUT Photos | External

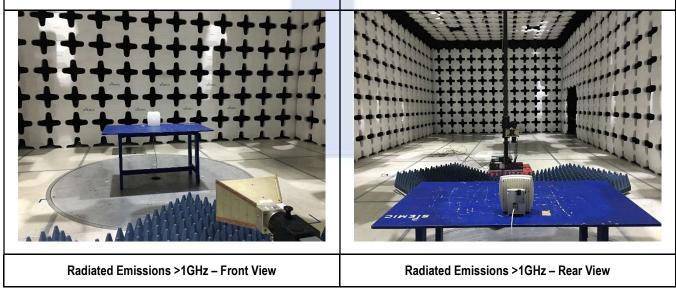


SIEMIC | 775 Montague Expressway, Milpitas, CA 95035 | Ph.+1 408-526-1188 | Fax: +1 408-526-1088 | www.siemic.com

Report: EMC_SL16072901-SPC-007_FCC15B


7.4. EUT Photos | Internal

Report: EMC_SL16072901-SPC-007_FCC15B


7.5. EUT Photos | Test setup

Radiated Emissions 30-1000MHz - Front View

Radiated Emissions 30-1000MHz – Rear View

SIEMIC | 775 Montague Expressway, Milpitas, CA 95035 | Ph.+1 408-526-1188 | Fax: +1 408-526-1088 | www.siemic.com

8. Supporting equipment / Software / Cabling information

8.1. Support equipment

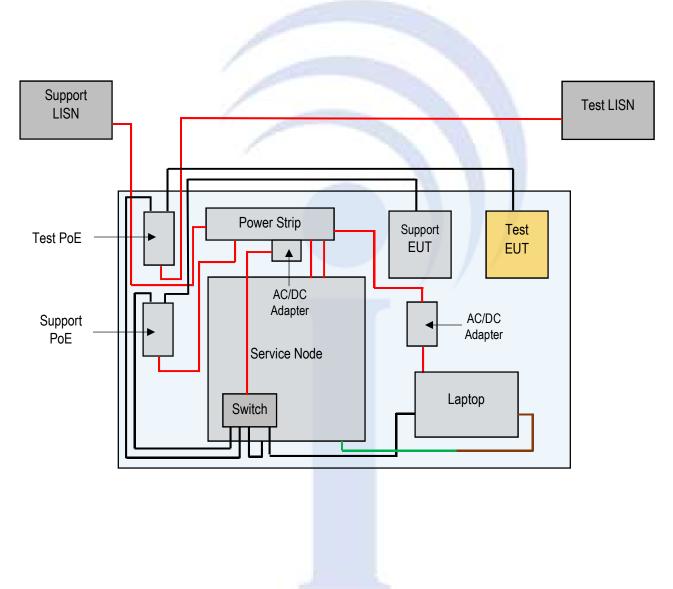
Item	Support Equipment Description	Model	Serial Number	Manufacturer	Notes
1	EUT Band 5 UMTS 881.5MHz	SCRN-310-0205	16238X21747	SpiderCloud Wireless	configured as the client for Band 5 LTE EUT
2	EUT Band 5 LTE 881.5MHz	SCRN-310-0205	16238X21742	SpiderCloud Wireless	configured as the client for Band 5 UMTS
3	SpiderCloud Service Node	SCSN-8000	12044B02090	SpiderCloud Wireless	used to exercise EUT
4	Laptop dv8000		CND6081P8T	HP	used to configure EUT transmission
5	Laptop AC/DC Adapter	PPP009L	592C40ALLSOLR	HP	used to power laptop
6	Switch	GS105 v3	27329A3A0030C	NetGear	used for communication between equipment
7	Switch AC/DC Adapter	DSA-12R-12 AUS 1200	N/A	NetGear	used to power switch
8	PoE to EUT # 1	POE36U-1AT-R	P13801913D1	PHIHONG	used for powering and configuring EUT # 1
9	PoE to EUT # 2	POE36U-1AT-R	P13800877D1	PHIHONG	used for powering and configuring EUT # 2

8.2. I/O Ports

ltem	Connectio	n Start	Connection Stop		Length / shielding Info		Note
	From	I/O Port	То	I/O Port	Length (m)	Shielding	
1	EUT # 1 Band 5 UMTS 881.5MHz	RJ45	PoE 1	Data & Power Out Port	>3	unshielded	-
2	PoE 1	Data In Port	Switch	RJ45 Port 2	>3	unshielded	-
3	PoE 2	Data In Port	Switch	RJ45 Port 3	>3	unshielded	-
4	EUT # 2 Band 5 LTE 881.5MHz	RJ45	PoE 2	Data & Power Out Port	>3	unshielded	-
5	Service Node	RJ45 SFP+ Module Port 2	Switch	RJ45 Port 5	>3	unshielded	-
6	Laptop	RJ45	Switch	RJ45 Port 1	>3	unshielded	-
7	Service Node	RJ45 Console Port	RJ45 to RS232 Cable	RS232 Port	<3	unshielded	-
8	RS232 to USB Cable	RS232 Port	Laptop	USB	<3	unshielded	-

8.3. Test software description

Test Item	Software	Description
1	ePerview	Software used via Laptop to set EUT to transmit at desired band continuously.


8.4. System setup block diagram

Red Cables = Power Cables

Black Cables = RJ45 Cables

Green Cable = RJ45 to RS232 Cable

Brown Cable = RS232 to USB Cable

9. Test summary

	Emissions		
Test Item	Test Standard	Test Method / Procedure	Pass / Fail
AC Conducted Emissions	FCC 15 Subpart B (Class A)	ANSI C63.4:2014	X Pass Fail N/A
Radiated Spurious Emissions Below 1GHz	FCC 15 Subpart B (Class A)	ANSI C63.4:2014	X Pass Fail N/A
Radiated Spurious Emissions Above 1GHz	FCC 15 Subpart B (Class A)	ANSI C63.4:2014	X Pass Fail N/A

10. Measurement uncertainty

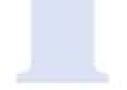
	Emissions					
Test Item	Frequency Range	Description	Uncertainty			
AC Conducted Emissions	150KHz – 30MHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2	±3.5dB			
Radiated Spurious Emissions	30MHz – 1GHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/- 4.5dB			
Radiated Spurious Emissions	>1GHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+4.3dB/- 4.1dB			

11. Frequency Range of Radiated Measurements

(b) For unintentional radiators:

- (1) Except as otherwise indicated in paragraphs (b)(2) or (b)(3) of this section, for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:
- (2) A unintentional radiator, excluding a digital device, in which the highest frequency generated in the device, the highest frequency used in

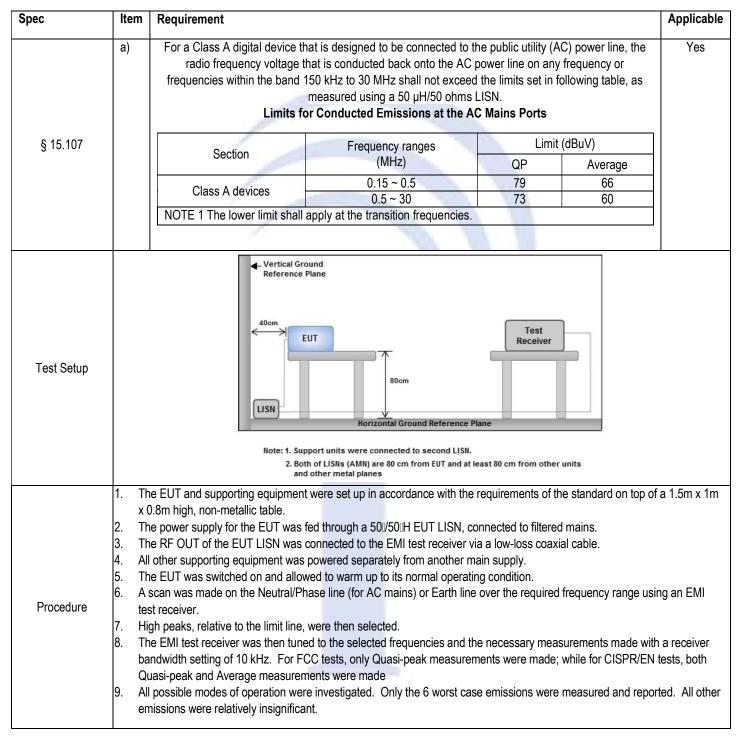
highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30.
1.705-108	1000.
108-500	2000.
500-1000	5000.
Above 1000	5th harmonic of the highest frequency or 40 GHz,
	whichever is lower.


the device and the highest frequency on which the device operates or tunes are less than 30 MHz and which, in accordance with §15.109, is required to comply with standards on the level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a device designed to conduct its radio frequency emissions via connecting wires or cables, e.g., a carrier current system not intended to radiate, shall be investigated from the lowest radio frequency generated or used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in the following table. If the unintentional radiator contains a digital device, the upper frequency to be investigated shall be that shown in the table below or in the table in paragraph (b)(1) of this section, as based on both the highest frequency used in the digital device, whichever range is higher.

Highest frequency generated or used in the device tunes (MHz)	Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	
Below 1.705	Access of the second se	30
1.705-10		400
10-30		500

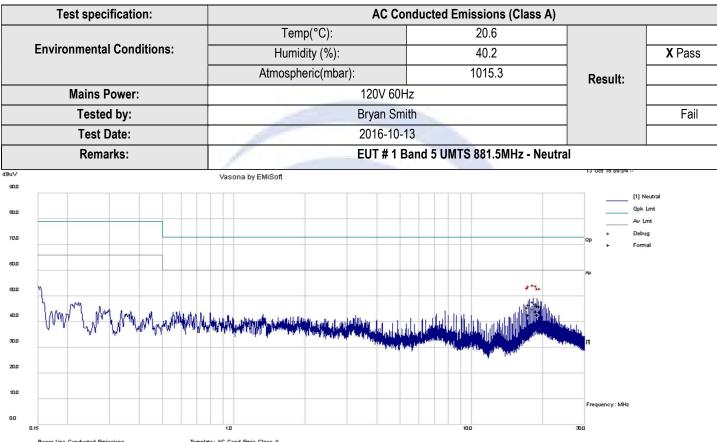
(3) Except for a CB receiver, a receiver employing superheterodyne techniques shall be investigated from 30 MHz up to at least the second harmonic of the highest local oscillator frequency generated in the device. If such receiver is controlled by a digital device, the frequency range shall be investigated up to the higher of the second harmonic of the highest local oscillator frequency generated in the device or the upper frequency of the measurement range specified for the digital device in paragraph (b)(1) of this section.

Example:


If the EUT has a transceiver operating or tunes at 2.4GHz, then both the Receiver, and the Transmitter needs to be tested separately to the Fifth Harmonic (e.g. Upper Frequency range would be 12GHz). A Transceiver consists of both a transmitter and a receiver, the receiver portion of which is always subject to the part 15 Subpart B Unintentional Radiator rules.

12. Guideline for interference allowed

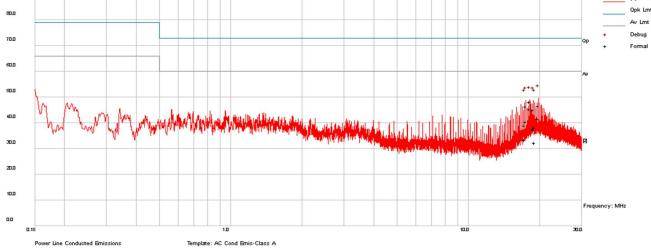
12.1. AC Conducted emissions (Class A)



Description of the Conducted Emission Program	This EMC Measurement software, EMI Soft Vasona offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the common scan range from 15 kHz to 30 MHz; the program will first start a peak and average scan on selectable measurement time and step size. After the program complete the pre-scan, this program will perform the Quasi Peak and Average measurement, based on the pre-scan peak data reduction result.
	At 20 MHz limit = 250 μ V = 47.96 dB μ V
	Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB
Sample Calculation	Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$
Example	(Calibrated for system losses)
	Therefore, Q-P margin = 47.96 – 40.00 = 7.96 i.e. 7.96 dB below limit
Remarks	2 separate EUTs were used for testing in this report with 2 separate test configurations. EUT #1 was configured for Band 5 UMTS (881.5MHz) and EUT #2 was configured for Band 5 LTE (881.5MHz). Each EUT was tested individually with the tested EUT configured as the Master and non-tested EUT used for support equipment configured as the Client. EUT is powered via PoE and does not directly connect to AC Mains, therefore all data measurements presented in this section were taken on the PoE, which is connected to AC Mains.
Test Data:	X Yes N/A
Test Plot	X Yes (See below) N/A

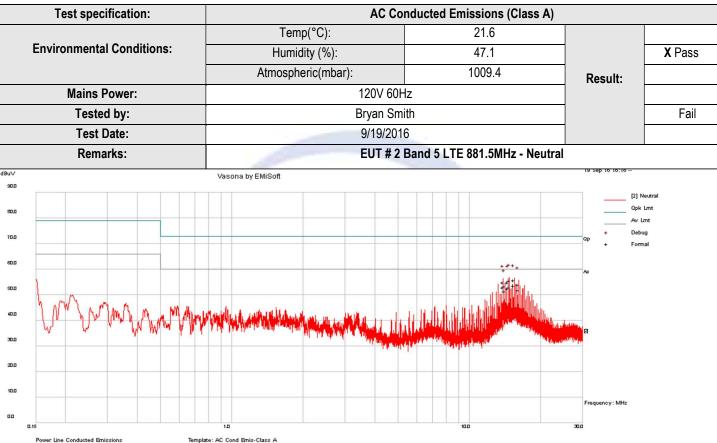
Test Plot:	X Yes (See below)	N/A
------------	-------------------	-----

Conducted Emission Test Results per FCC 15 Subpart B (Class A)



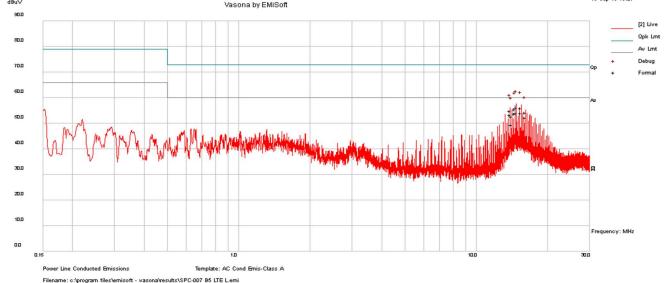
Power Line Conducted Emissions Template: AC Cond Emis-Class A Filename: c:program files/emisoft - vasona/vesults/SPC-007 UMTS 10-13 N.emi

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	Factors (dB)	Level (dBuV)	Measurement Type	Line/ Neutral	Limit (dBuV)	Margin (dB)	Pass /Fail
18.20	37.04	10.07	0.63	47.74	Quasi Peak	Neutral	73.00	-25.26	Pass
18.86	36.51	10.07	0.64	47.22	Quasi Peak	Neutral	73.00	-25.78	Pass
17.53	35.98	10.06	0.61	46.66	Quasi Peak	Neutral	73.00	-26.34	Pass
17.31	35.03	10.06	0.61	45.71	Quasi Peak	Neutral	73.00	-27.29	Pass
19.09	35.50	10.07	0.64	46.21	Quasi Peak	Neutral	73.00	-26.79	Pass
19.54	35.27	10.07	0.65	45.99	Quasi Peak	Neutral	73.00	-27.01	Pass
18.20	34.27	10.07	0.63	44.96	Average	Neutral	60.00	-15.04	Pass
18.86	33.32	10.07	0.6 <mark>4</mark>	44.02	Average	Neutral	60.00	-15.98	Pass
17.53	32.18	10.06	0.61	42.86	Average	Neutral	60.00	-17.14	Pass
17.31	32.28	10.06	0.61	42.96	Average	Neutral	60.00	-17.04	Pass
19.09	32.13	10.07	0.64	42.84	Average	Neutral	60.00	-17.16	Pass
19.54	33.10	10.07	0.65	43.82	Average	Neutral	60.00	-16.18	Pass


T	est specification:	AC Condu	ucted Emissions (Class A)		
		Temp(°C):	Temp(°C): 20.6		
Enviro	onmental Conditions:	Humidity (%):	40.2	- 	X Pass
Mains Power:		Atmospheric(mbar):	1015.3	Result:	
		120V 60Hz			
	Tested by:	Bryan Smith			Fail
	Test Date:	2016-10-13			
	Remarks:	EUT # 1 Ba	nd 5 UMTS 881.5MHz - Line	9	
UV 80.0		Vasona by EMiSoft		13 Oct 16 D8:50	ve
0.03				Qpk	Lmt

Filename: c:\program files\emisoft - vasona\results\SPC-007 UMTS 10-13 L.emi

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	Factors (dB)	Level (dBuV)	Measurement Type	Line/ Neutral	Limit (dBuV)	Margin (dB)	Pass /Fail
19.71	36.04	10.07	0.65	46.76	Quasi Peak	Live	73.00	-26.24	Pass
18.16	37.61	10.07	0.63	48.30	Quasi Peak	Live	73.00	-24.70	Pass
17.50	35.82	10.06	0.61	46.50	Quasi Peak	Live	73.00	-26.50	Pass
18.83	34.38	10.07	0.64	45.09	Quasi Peak	Live	73.00	-27.91	Pass
17.28	28.33	10.06	0.61	39.00	Quasi Peak	Live	73.00	-34.00	Pass
19.04	27.50	10.07	0.64	38.21	Quasi Peak	Live	73.00	-34.79	Pass
19.71	31.06	10.07	0.65	41.79	Average	Live	60.00	-18.21	Pass
18.16	34.69	10.07	0.63	45.39	Average	Live	60.00	-14.61	Pass
17.50	29.90	10.06	0.61	40.58	Average	Live	60.00	-19.42	Pass
18.83	26.91	10.07	0.6 <mark>4</mark>	37.62	Average	Live	60.00	-22.38	Pass
17.28	22.81	10.06	0.61	33.48	Average	Live	60.00	-26.52	Pass
19.04	21.65	10.07	0.64	32.36	Average	Live	60.00	-27.64	Pass



Filename: c:\program files\emisoft - vasona\results\SPC-007 B5 LTE N.emi

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	Factors (dB)	Level (dBuV)	Measurement Type	Line/ Neutral	Limit (dBuV)	Margin (dB)	Pass /Fail
14.77	44.91	10.06	0.56	55.52	Quasi Peak	Neutral	73.00	-17.48	Pass
15.43	45.13	10.06	0.57	55.76	Quasi Peak	Neutral	73.00	-17.24	Pass
14.54	44.34	10.06	0.56	54.95	Quasi Peak	Neutral	73.00	-18.05	Pass
13.87	44.25	10.06	0.55	54.85	Quasi Peak	Neutral	73.00	-18.15	Pass
16.11	43.39	10.06	0.58	54.04	Quasi Peak	Neutral	73.00	-18.96	Pass
14.09	42.82	10.06	0.55	53.43	Quasi Peak	Neutral	73.00	-19.57	Pass
14.77	42.28	10.06	0.56	52.90	Average	Neutral	60.00	-7.10	Pass
15.43	43.12	10.06	0.57	53.75	Average	Neutral	60.00	-6.25	Pass
14.54	42.03	10.06	0.56	52.64	Average	Neutral	60.00	-7.36	Pass
13.87	42.41	10.06	0.55	53.02	Average	Neutral	60.00	-6.98	Pass
16.11	41.36	10.06	0.58	52.01	Average	Neutral	60.00	-7.99	Pass
14.09	40.81	10.06	0.55	51.42	Average	Neutral	60.00	-8.58	Pass

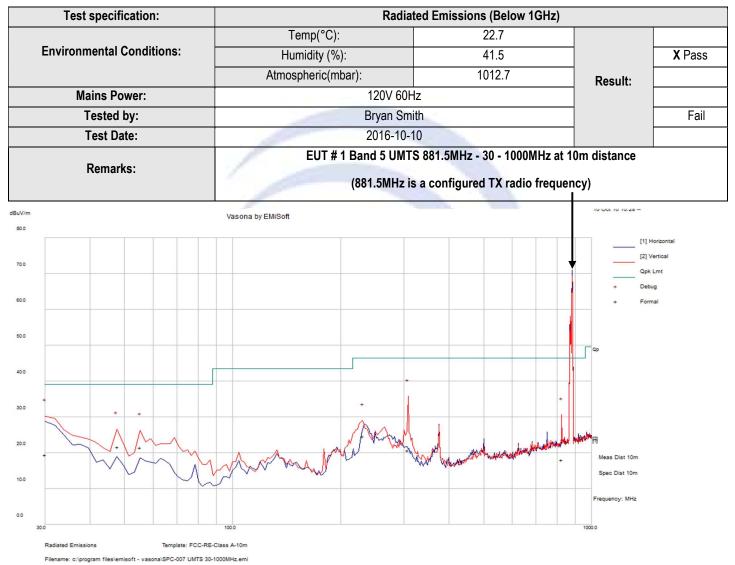
AC Conducted Emissions (Class A)							
Temp(°C):							
Humidity (%):	47.1		X Pass				
Atmospheric(mbar):	1009.4	Result:					
120V 60Hz							
Bryan Smith	h		Fail				
9/19/2016							
EUT # 2	ine	•					
	Temp(°C): Humidity (%): Atmospheric(mbar): 120V 60Hz Bryan Smitt 9/19/2016	Temp(°C): 21.6 Humidity (%): 47.1 Atmospheric(mbar): 1009.4 120V 60Hz Bryan Smith 9/19/2016 9/19/2016	Temp(°C): 21.6 Humidity (%): 47.1 Atmospheric(mbar): 1009.4 120V 60Hz Bryan Smith				

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	Factors (dB)	Level (dBuV)	Measurement Type	Line/ Neutral	Limit (dBuV)	Margin (dB)	Pass /Fail	
14.77	45.59	10.06	0.56	56.21	Quasi Peak	Live	73.00	-16.79	Pass	
15.43	45.47	10.06	0.57	56.10	Quasi Peak	Live	73.00	-16.90	Pass	
14.54	44.88	10.06	0.56	55.49	Quasi Peak	Live	73.00	-17.51	Pass	
13.87	44.32	10.06	0.55	54.93	Quasi Peak	Live	73.00	-18.07	Pass	
16.10	43.71	10.06	0.58	54.36	Quasi Peak	Live	73.00	-18.64	Pass	
14.09	42.27	10.06	0.55	52.88	Quasi Peak	Live	73.00	-20.12	Pass	
14.77	43.47	10.06	0.56	54.09	Average	Live	60.00	-5.91	Pass	
15.43	43.45	10.06	0.57	54.08	Average	Live	60.00	-5.92	Pass	
14.54	43.26	10.06	0.56	53.88	Average	Live	60.00	-6.12	Pass	
13.87	42.72	10.06	0.5 <mark>5</mark>	53.32	Average	Live	60.00	-6.68	Pass	
16.10	41.76	10.06	0.58	52.41	Average	Live	60.00	-7.59	Pass	
14.09	38.85	10.06	0.55	49.46	Average	Live	60.00	-10.54	Pass	

12.2. Radiated Spurious Emissions Below 1GHz (Class A)

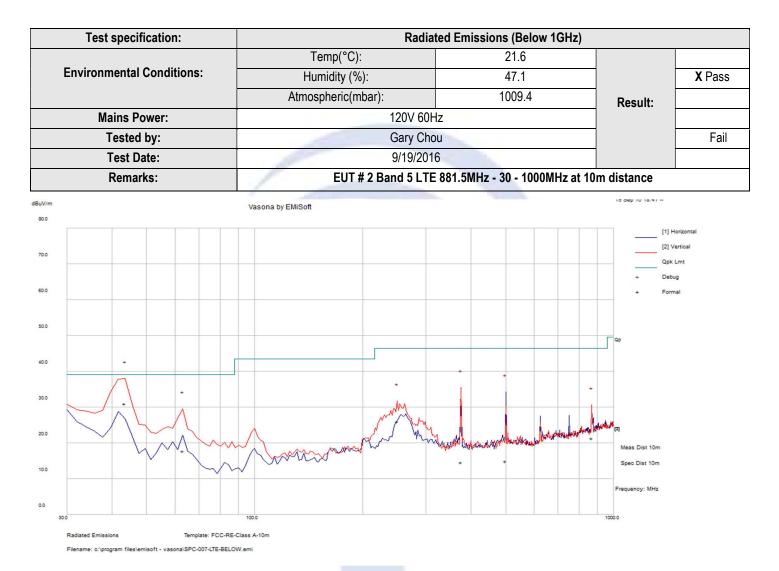
Requirement(s):

Spec	ltem	Requirer	nent		4	Applicable
	a)		I strength of radiated emissions from a Classions from a Classion of the solution of the solut	ass A digital device, as determined at a	distance of	Yes
			Frequency range (MHz)	Field Strength (uV/m)	- I	
§ 15.109			30 – 88	100	-	
			88 – 216	150	-	
			216 960	210	-	
			Above 960	300		
Test Setup			Radio Absorbing Material	/10m		
			Ground Plan	e	pectrum Analyzer	
Procedure	X 0 2. The 3. The emi follo a. b. c. 4. A C 5. Ste	.8m high, no e EUT was s e test was ca ssions, was owing manne Vertical o The EUT Finally, th Quasi-peak m ps 3 and 4 w	upporting equipment were set up in accord on-metallic table switched on and allowed to warm up to its r arried out at the selected frequency points carried out by rotating the EUT, changing er: or horizontal polarisation (whichever gave to was then rotated to the direction that gave to antenna height was adjusted to the heig neasurement was then made for that frequency point, range covered was from 30MHz to 1GHz to	normal operating condition. obtained from the EUT characterisation. the antenna polarization, and adjusting the he higher emission level over a full rotation the maximum emission. ht that gave the maximum emission. ency point. until all selected frequency points were a	Maximization o ne antenna heig on of the EUT) y	f the ght in the
Description of the Radiated Emissions Program	measu system a pre-s antenn scan; tl hold sv After th all spec	rements. Th s. It guarant can measur a heights, 2 he program veeps. Each he program o cified antenr	rement software, EMI Soft Vasona offer his software is a modern and powerful to tees reliable collection, evaluation, and do rement before it proceeds with the final m e antenna polarity, and 360 degrees table will first start from a meter antenna height in parts of maximum hold sweep, the progr complete the 1m scan, the antenna conti na height and polarity. This program will can routine. The final measurement will be	bol for controlling and monitoring EMI to cumentation of measurement results. Ba easurement. The pre-scan routine will ro rotation. For example, the program was and divide the 30 MHz to 1 GHz into 10 ram will collect the data from 0 degree to nues to rise to 2m and continue the sca perform the Quasi Peak measurement a	est receivers a asically, this pro un the scan on set to run 30 M separate parts o 360 degrees t n. The step wil after the signal	and EMC test ogram will run four different /IHz to 1 GHz s of maximum table rotation. I repeated for



	At 300 MHz limit = 200 μV/m = 46.00 dBμV/m
Sample	Log-periodic antenna factor & cable loss at 300 MHz = 18.50 dB
Calculation	Q-P reading obtained directly from EMI Receiver = 40.00 dBµV/m
Example	(Calibrated level including antenna factors & cable losses
	Therefore, Q-P margin = 46.00 – 40.00 = 6.00 i.e. 6 dB below limit
	2 separate EUTs were used for testing in this report with 2 separate test configurations. EUT #1 was configured for Band 5
	UMTS (881.5MHz) and EUT #2 was configured for Band 5 LTE (881.5MHz). Each EUT was tested individually with the tested
Remarks	EUT configured as the Master and non-tested EUT used for support equipment configured as the Client. Only the EUT under
	test was located inside the test chamber, all other support equipment was located remotely in the control room.

Test Data:	X Yes (See below)	N/A	
Test Data:	X Yes (See below)	N/A	

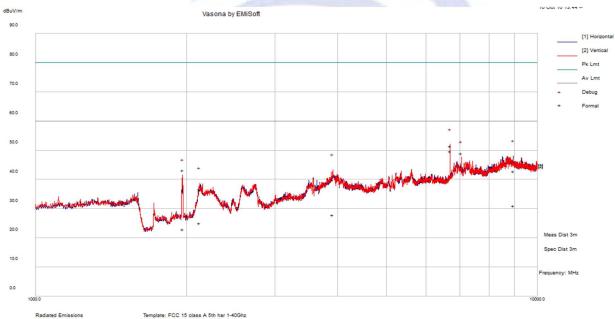


Radiated Emission Test Results (Below 1GHz, Class A)

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	AF (dB)	Level (dBuV/m)	Measurement Type	Pol	Hgt (cm)	Azt (Deg)	Limit (dBuV/m)	Margin (dB)	Pass /Fail
30.00	34.53	0.87	-15.88	19.51	Quasi Max	V	203.00	127.00	39.08	-19.57	Pass
308.00	43.75	2.61	-25.73	20.62	Quasi Max	V	102.00	6.00	46.44	-25.82	Pass
47.74	49.64	1.12	-29.10	21.66	Quasi Max	V	346.00	357.00	39.08	-17.42	Pass
55.27	51.27	1.19	-30.93	21.52	Quasi Max	V	283.00	230.00	39.08	-17.56	Pass
824.92	31.21	4.43	-17.54	18.11	Quasi Max	V	370.00	150.00	46.44	-28.33	Pass
230.39	50.67	2.28	-28.40	24.54	Quasi Max	V	109.00	19.00	46.44	-21.90	Pass

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	AF (dB)	Level (dBuV/m)	Measurement Type	Pol	Hgt (cm)	Azt (Deg)	Limit (dBuV/m)	Margin (dB)	Pass /Fail
43.36	56.29	1.14	-26.40	31.03	Quasi Max	V	109.00	221.00	39.08	-8.05	Pass
63.02	47.52	1.36	-31.20	17.68	Quasi Max	V	278.00	4.00	39.08	-21.40	Pass
376.16	36.10	3.25	-24.70	14.66	Quasi Max	V	294.00	94.00	46.44	-31.78	Pass
500.50	32.68	3.77	-21.48	14.97	Quasi Max	Н	376.00	231.00	46.44	-31.47	Pass
249.66	51.57	2.59	-28.08	26.08	Quasi Max	V	138.00	10.00	46.44	-20.36	Pass
867.57	33.60	5.02	-17.30	21.32	Quasi Max	V	302.00	225.00	46.44	-25.12	Pass

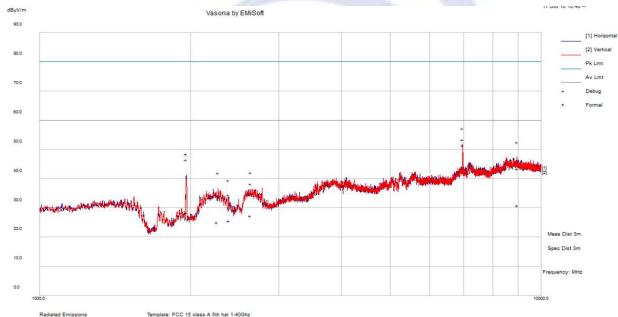
12.3. Radiated Spurious Emissions above 1GHz (Class A)


Requirement(s):

Spec	ltem	Requirement			Applicable
	a)		ated emissions from a Class A c Il not exceed the following:	digital device, as determined a	at a Yes
§ 15.109		Frequency rang	ab(uv/m)	dB(uV/m)	
		Above 1	60	80	
Test Setup		Radio Absorbing Mater	Semi Anechoic Chamber	Antenna	Spectrum Analyzer
Procedure	1.0 2. The 3. The em foll a. b. c. 4. A F 5. Ste	m X 0.8m high, non-metallic t e EUT was switched on and a e test was carried out at the s issions, was carried out by ro owing manner: Vertical or horizontal polaris chosen. The EUT was then rotated Finally, the antenna height Peak and Average measurem ps 3 and 4 were repeated for	Illowed to warm up to its normal elected frequency points obtaine tating the EUT, changing the ant sation (whichever gave the highe to the direction that gave the ma was adjusted to the height that g ent was then made for that frequency point, until al	operating condition. ed from the EUT characterisation tenna polarization, and adjusting er emission level over a full rotan ximum emission. gave the maximum emission. lency point. Il selected frequency points we	on. Maximization of the ng the antenna height in th ation of the EUT) was ere measured.
Remarks	2 sepa UMTS tested EUT u	00MHz) using a horn antenna rate EUTs were used for tes (881.5MHz) and EUT #2 wa EUT configured as the Mast nder test was located inside	as from 1GHz to 6GHz (for FCC ting in this report with 2 separat s configured for Band 5 LTE (88 er and non-tested EUT used for the test chamber, all other supp the 5 th harmonic of Band 2 LTE	e test configurations. EUT #1 81.5MHz). Each EUT was test support equipment configure port equipment was located re	was configured for Band ted individually with the d as the Client. Only the motely in the control roon
est Data:	X Yes (See	below)	I/A		
est Data:	X Yes (See	,	I/A		

Radiated Emission Test Results (Above 1GHz, Class A)

Test specification:	Radiate	Radiated Emissions (Above 1GHz)					
	Temp(°C):						
Environmental Conditions:	Humidity (%):	41.5		X Pass			
	Atmospheric(mbar):	1012.7	Result:				
Mains Power:	120V 60Hz	120V 60Hz					
Tested by:	Bryan Smith			Fail			
Test Date:	2016-10-10	2016-10-10					
Remarks:	EUT # 1 Band 5 UMT	S 881.5MHz - 1 – 10GHz a	at 3m distance				



Filename: o:\program files\emisoft - vasona\SPC-007 UMTS 1-10GHz.emi

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	AF (dB)	Level (dBuV/m)	Measurement Type	Pol	Hgt (cm)	Azt (Deg)	Limit (dBuV/m)	Margin (dB)	Pass /Fail
6692.76	47.17	5.56	-1.31	51.41	Peak Max	V	150.00	2.00	80.00	-28.59	Pass
8946.13	35.22	7.21	0.42	42.86	Peak Max	Н	195.00	242.00	80.00	-37.14	Pass
7052.69	43.62	5.81	-0.46	48.97	Peak Max	V	117.00	323.00	80.00	-31.03	Pass
3907.32	41.11	4.59	-5.97	39.73	Peak Max	V	294.00	227.00	80.00	-40.27	Pass
1961.79	51.95	3.23	-11.96	43.22	Peak Max	V	167.00	327.00	80.00	-36.79	Pass
2121.19	45.07	3.33	-11.73	36. <mark>6</mark> 7	Peak Max	V	314.00	229.00	80.00	-43.33	Pass
6692.76	45.39	5.56	-1.31	49. <mark>6</mark> 4	Average	V	150.00	2.00	60.00	-10.36	Pass
8946.13	23.33	7.21	0.42	30.96	Average	Н	195.00	242.00	60.00	-29.04	Pass
7052.69	39.15	5.81	-0.46	44.50	Average	V	117.00	323.00	60.00	-15.50	Pass
3907.32	29.21	4.59	-5.97	27.83	Average	V	294.00	227.00	60.00	-32.17	Pass
1961.79	31.71	3.23	-11.96	22.98	Average	V	167.00	327.00	60.00	-37.02	Pass
2121.19	33.40	3.33	-11.73	25.00	Average	۷	314.00	229.00	60.00	-35.00	Pass

Test specification:	Radiated Emissions (Above 1GHz)					
	Temp(°C):					
Environmental Conditions:	Humidity (%): 46.6			X Pass		
	Atmospheric(mbar):	1016.0	Result:			
Mains Power:	120V 60Hz					
Tested by:	Bryan Smith		Fail			
Test Date:	2016-10-11					
Remarks:	EUT # 2 Band 5 LTE 881.5MHz - 1 – 10GHz at 3m distance					

Radiated Emissions Template: FCC 15 class A 5th har 1-40Gh Filename: c:\program files\emisoft - vasona\SPC-007 LTE 1-10GHz 10-11-2016.emi

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	AF (dB)	Level (dBuV/m)	Measurement Type	Pol	Hgt (cm)	Azt (Deg)	Limit (dBuV/m)	Margin (dB)	Pass /Fail
6971.87	47.93	5.76	-0.32	53.37	Peak Max	V	106.00	40.00	80.00	-26.63	Pass
8946.06	35.71	7.21	0.42	43.34	Peak Max	Н	176.00	280.00	80.00	-36.66	Pass
1960.17	57.23	3.23	-11.97	48.48	Peak Max	Н	215.00	120.00	80.00	-31.52	Pass
2637.54	42.88	3.63	-10.57	35.94	Peak Max	V	313.00	134.00	80.00	-44.06	Pass
2267.46	41.65	3.41	-11.75	33.31	Peak Max	V	167.00	219.00	80.00	-46.69	Pass
2380.85	42.54	3.46	-11.67	34 <mark>.</mark> 33	Peak Max	Н	224.00	304.00	80.00	-45.67	Pass
6971.87	45.94	5.76	-0.32	51.38	Average	V	106.00	40.00	60.00	-8.62	Pass
8946.06	23.15	7.21	0.42	30.79	Average	Н	176.00	280.00	60.00	-29.21	Pass
1960.17	37.14	3.23	-11.97	28.40	Average	Н	215.00	120.00	60.00	-31.60	Pass
2637.54	34.38	3.63	-10.57	27.44	Average	V	313.00	134.00	60.00	-32.56	Pass
2267.46	33.28	3.41	-11.75	24.94	Average	V	167.00	219.00	60.00	-35.06	Pass
2380.85	33.86	3.46	-11.67	25.65	Average	Н	224.00	304.00	60.00	-34.35	Pass

13. Annex A | Test instruments and method

Instrument	Model	Serial #	Cal Cycle	Cal Due	In use	
Conducted Emissions						
EMI Test Receiver (9kHz - 6GHz)	ESL6	100178	1 Year	8/17/2017	Yes	
Transient Limiter (9kHz - 100MHz)	EM-7600	287	1 Year	4/7/2017	Yes	
V-LISN (150 kHz - 30 MHz)	NNLK 8129	8129-190	1 Year	8/4/2017	Yes	
LISN (9kHz - 30MHz)	MN2050B	1018	1 Year	8/16/2017	Yes	
ISN T8	ISN T800	30814	1 Year*	9/23/2016*	No	
ISN T8 CAT 6	D-12623	38906	1 Year	12/3/2016	No	
	Radiated E	missions		1		
EMI Test Receiver	ESIB 40	100179	1 Year	6/8/2017	Yes	
EXA Signal Analyzer (20Hz - 26.5GHz)	N9010A	MY50210206	1 Year	10/27/2016	No	
MXA Signal Analyzer (20Hz - 26.5GHz)	N9020A	MY51240100	1 Year	10/1/2016	No	
Keysight EXA 44 GHz Spectrum Analyzer	N9010A	MY51440112	1 Year	8/2/2017	Yes	
Antenna - Biconlog (30MHz - 2GHz)	JB1	A030702	1 Year	7/8/2017	Yes	
Double Ridged Waveguide Horn Antenna (1 - 18 GHz)	3115	10SL0059	1 Year	8/11/2017	Yes	
Horn Antenna (700MHz - 18GHz)	SAS-571	411	1 Year	4/4/2017	No	
Horn Antenna (18 - 40GHz)	AH-840	101013	1 Year	7/15/2017	No	
RF Pre-Amplifier (9kHz - 6.5GHz)	LPA-6-30	11140711	1 Year	2/10/2017	Yes	
Pre-Amplifier (1 - 26.5GHz)	8449B	3008A00715	1 Year	3/30/2017	No	
Pre-Amplifier (1 - 40GHz)	J532-00104000-58- 5P	1960351	1 Year	5/10/2017	Yes	
2.4GHz Notch Filter	BRM50702	116	1 Year	3/28/2017	No	
5GHz Notch Filter	BRM50705	41	1 Year*	9/11/2016*	No	

5GHz Notch Filter	BRM50716	072	1 Year*	9/11/2016*	No
2.4GHz Notch Filter	BRM50702	G242	1 Year	4/14/2017	No
5.7GHz Notch Filter	BRC50705	G093	1 Year	4/14/2017	No
10 Meters SAC	10M	N/A	1 Year	7/6/2017	Yes

14. Annex B | SIEMIC Accreditation

Accreditations	Document	Scope / Remark
ISO 17025 (A2LA)		Please see the documents for the detailed scope
ISO Guide 65 (A2LA)	4	Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation	R	FCC Declaration of Conformity Accreditation
FCC Site Registration		3 meter site
FCC Site Registration	R	10 meter site
IC Site Registration	A	3 meter site
IC Site Registration	A	10 meter site
	ħ	Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
EU NB	A	Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	22	Phase I, Phase II
Vietnam MIC CAB Accreditation		Please see the document for the detailed scope
Hong Kong OFCA	A	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
	A	(Phase I) Conformity Assessment Body for Radio and Telecom
Industry Canada CAB	A	Radio: Scope A – All Radio Standard Specification in Category I
	A	Telecom: CS-03 Part I, II, V, VI, VII, VIII
Japan Recognized Certification Body Designation	٦D	Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
Korea CAB Accreditation		EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EM, KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS

		Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10,
		RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80,
		RRL Notice 2004-68
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with
		attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition	~	LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08
Taiwan BSMI CAB Recognition		CNS 13438
Japan VCCI		R-3083: Radiation 3 meter site
		C-3421: Main Ports Conducted Interference Measurement
		T-1597: Telecommunication Ports Conducted Interference Measurement
	B	EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3,
		AS/NZS 61000.6.4
		Radio communications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1,
Australia CAD Deservition		AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS
Australia CAB Recognition		4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06, AS/ACIF
		S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01,
		AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition	_	AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016, AS/ACIF
	\wedge	S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2