STONEX

R35

Total Station Instruction Manual

Dear Customer:

Congratulations! We, STONEX are proud to present you with an R35 instrument. Your total station is a rugged and reliable instrument whose performance and design are not surpassed.

To fully appreciate and protect your investment, we suggest that you take the necessary time to read and fully understand this manual. We have a dedicated service organization. If the need arises, please don't hesitate to call us.

Thank you for your trust and confidence.

NOTE:

Don't collimate the sun directly

Avoid insolating the instrument, and don't collimate the sun directly for protecting eyes and instrument.

Set up the instrument on the tripod

When using it please insure the connection between tripod and instrument is firm. It is better to work with wooden tripod for the measurement accuracy.

Assemble the tribrach on the instrument

The setting of tribrach would influence the accuracy. The tribrach should be check frequently, the screw which connects the tribrach and alidade must be locked tightly. And the central fixing screw should be tight.

Avoiding the librations on the instrument

When transporting, keep the instrument in the case and try your best to lighten librations.

Carry the instrument

When carrying, the instrument handle must be held tight.

High temperature condition

If put the instrument in high temperature condition for a long time, it is bad for the instrument performance.

Temperature changing sharply

The sharp temperature changing on the instrument or prism will shorten the distance measurement range, for example, after taking the instrument out from a warm car to a cold condition, wait for some time, it can be used when it adapts to the surrounding condition.

Check the battery power

Before using it, you should check the power whether it is enough.

Take out the battery

It is not suggested to take out the battery when the instrument is on, otherwise, the stored data may be lost, so it is better to replace the battery after power off the instrument.

Stored data responsibility

STONEX should not be held liability for the lost data because of wrong operation.

The noise from the instrument

When the instrument is working, it is normal if you hear the noise from instrument motor, it will not affect the instrument work.

Definition of Indication

For the safety of your product and prevention of injury to operators and other persons as well as prevention of property damage, items which should be observed are indicated by an exclamation point within a triangle used with WARNING and CAUTION statements in this manual.

The definitions of the indication are listed below. Be sure you understand them before reading the manual's main text.

W WARNING:	Ignoring this indication and making an operation error could possibly result in death or serious injury to the operator.
CAUTION:	Ignoring this indication and making an operation error could possibly result in personal injury or property damage.

PRECAUTIONS FOR SAFE OPERATION

WARNING

- Only STONEX authorized distributors can disassemble or rebuilt the instrument.
- Do not collimate the sun directly. The eye injury or blind could result.
- Cover the charger maybe result fire when charging.
- If use defection power cable, socket or plug, there is danger of fire, or electronic shock.
-Using wet battery or charger maybe result fire, or electronic shock.
- Do not close the instrument to burning gas or liquid, and do not use the instrument in coal mine. Blast could be result.
-Do not put the battery in the fire or high temperature condition. Explosion, damage could result.
- If use the battery which is not specified by STONEX, there is a danger of fire, electric shock or burn.
- If use the power cable which is not specified by STONEX , there is a danger of fire.
- If short circuit of the battery, there is a danger of fire..
- When this product encounters disturbance of severe Electrostatic Discharge, perhaps it will have some degradation of performance like switching on/off automatically and so on.

CAUTION

- If touch the instrument with wet hand, there is danger of electric shock.
- Stand or seat on the carrying case, or turn over the carrying case arbitrarily, the instrument maybe damaged.
- Be careful of the tripod tiptoe when setup or move it.
- Drop the instrument or the carrying case, or use defective belt, agraffe or hinge, instrument damage could result.
- Do not touch liquid leaking from the instrument or battery. Harmful chemicals could cause burn or blisters.
-Please assemble the tribrach carefully, if the tribrach is not stable, series damage could result.
- Drop the instrument or tripod, series damage could result. Before use it, check the central screw is tight.

User

1) This product is for professional user only!

The user is required to be a qualified surveyor or have a good knowledge of surveying, in order to understand the user manual and safety instructions, before operating, inspecting or adjusting.
2) Wear the required protectors (safety shoes, helmet, etc.) when operating.

Exceptions from Responsibility

1) The user of this product is expected to follow all operating instructions and make periodic checks of the product's performance.
2) The manufacturer assumes no responsibility for results of a faulty or intentional usage or misuse including any direct, indirect, consequential damage, and loss of profits.
3) The manufacturer assumes no responsibility for consequential damage, and loss of profits by any disaster, (an earthquake, storms, floods etc.).
4) The manufacturer assumes no responsibility for any damage, and loss of profits due to a change of data, loss of data, an interruption of business etc., caused by using the product or an unusable product.
5) The manufacturer assumes no responsibility for any damage, and loss of profits caused by usage except for explained in the user manual.
6) The manufacturer assumes no responsibility for damage caused by wrong transport, or action due to connecting with other products.

Safety Standards for Laser(R35)

R35 adopts the safe and visible laser on the basis of "Specification Standard of radiant products" (FDA CDRH.21CFR Part 1040.10 and 1040.11) and "Safety of laser products - parts 1: Equipment classification, requirements and user's guide" (IEC 60825-1:2001). According to above standards, R35 is class IIIa/3R laser products. When the prism or reflective sheet is selected in Config mode as target, the output is equivalent to the safer class 1.
Once the instrument is damaged, do not disassemble it. You'd better contact STONEX or local dealer.

Labels

Follow the safety instructions on the labels as well as in this manual to ensure safe use .

Note for Safety

- Never point the laser beam at other's eyes, it could cause serious injury.
- Never look directly into the laser beam source, it could cause permanent eye damage.
- Never stare at the laser beam, it could cause permanent eye damage.
- Never look at the laser beam through a telescope or other optical devices, it could cause permanent eye damage.

CONTENT

1. Nomenclature and Functions 1
1.1 Nomenclature 1
1.2 Keyboard 3
1.3 Comprehensive Understanding 4
1.3.1 Basic Measurement 4
1.3.2 Standard Measurement 5
1.3.3 Instrumment Setup 5
1.3.4 About 6
1.3.5 Third-party software 6
1.3.6 Convenient panel 6
1.4 Shortcut key 7
1.5 Touch screen calibration 8
1.6 Battery 9
1.6.1 Battery Power indicator 9
1.6.2 Replace and mount battery 10
1.6.3 Recharge battery 10
1.7 USB connection 11
1.8 Guide light(Optional) 12
2. Preparation before Measurement 13
2.1 Setting up the instrument. 13
2.2 Levelling-Up 13
2.3 Centering 16
2.3.1 Centering with Optical Plummet (Optional) 16
2.3.2 Centering with Laser Plummet. 16
3 Instrument settings 17
3.1 INST Setup 17
3.1.1 Setting the measure condition 18
3.1.2 Setting the units 18
3.1.3 Setting parameters of communication ports 19
3.1.4 Instrument parameters review 19
3.2 Illumination settings 20
3. Basic measurement program 21
4.1 Run the program "Basic Measurement" 21
4.2 Basic measurement screen introduction 21
4.3 Angle measurement mode 22
4.3.1 Horizontal angle(right angle) and vertical angle measurements 22
4.3.2 Horizontal angle switch between right and left 23
4.3.3 Setting horizontal angle with the "L.Angle" key 24
4.3.4 Setting horizontal angle with the "S.Angle" key 25
4.3.5 Setting "vertical angle and percent grade" mode with the "V/\%" key 26
4.3.6 Carrying out angle retesting with the "Repeat" key 26
4.4 Distance measurement mode 30
4.4.1 Distance measurement and measuring mode setting 30
4.4.2 Fine/Tracking distance measurement 32
4.4.3 Accurate Measurement and Track mode 33
4.4.4 Exchange of distance units 34
4.4.5 Distance stake out measurement 35
4.4.6 Remote Elevation Measurement (REM) 37
4.4.7 Missing Line Measurement (MLM) 42
4.4.8 Line-height Measurement 45
4.5 Coordinate Measurement Mode 50
4.5.1 Setting coordinate of occupied point 50
4.5.2 Setting backsight point 51
4.5.3 Setting instrument height and prism height 53
4.5.4 Operation of coordinate measurement 54
4.5.5 Traverse Surveying 55
4.5.6 Offset Measurement Mode 58
4.6 About 68
4. Check and Adjustment 69
5.1 The Instrument Constant 69
5.2 Plate Level and Circular Level 70
5.2.1 Plate Level 70
5.2.2 Circular Level 70
5.3 The Optical Sight 71
5.4 Optical Plummet and Laser Plummet 71
5.4.1 Optical Plummet(factory optional) 71
5.4.2 Laser Plummet 72
5.5 Vertical Cross-hair on Telescope 73
5.6 Horizontal Collimation Error C. 74
5.7 Vertical Index Error 75
5.8 EDM Optical Axis and the Telescope Sighting Axis Error 77
5. Specifications 78
6. Standard components 81
Appendix I: Atmospheric correction formula and chart(Just for reference) 82
Appendix II: Correction for refraction and earth curvature 84
Appendix III: Assembling and disassembling for three-jaw tribrach 85

1. Nomenclature and Functions

1.1 Nomenclature

1.2 Keyboard

R35 is equipped with two color touch screens and alphanumeric keypad, operation by both touching screen and pressing keyboard is possible.
Do not touch the screen with ball-pen, pencil or other sharp thing to avoid damage on instrument.

Keys	Name	Functions
$0 \sim 9 /$ A \sim	Alphanumeric keypad	Enter text and numerical values.
α	Shift key for character entry	The current entry method can shift among number, smaller letter and capital letter.
\star	Star key	Normal configurations can be set here
Tab	Tab key	Move the cursor right or next position
BS	BackSpace key	Move the cursor left and delete one character
Ctrl	Ctrl key	Same with the Ctrl key of PC
Space	Space key	Enter the space
Enter	Enter key	Confirm an entry or selection
ESC	Function key	Quit a screen or edit mode without saving changes. Return to next higher level
FUNC	Perform variable functions defined by program screen	
$\boldsymbol{4 \boldsymbol { \nabla } \nabla}$	Navigation key	Control the focus bar within the screen and the entry bar within a field
(1)	Power key	Turn on/off the instrument

1.3 Comprehensive Understanding

Function introduction	Display
After initiating the instrument the screen will go to present "Welcome Interface" which is shown right.STONEX AIOSurvey consists of several functions,that is, "BSC Measure (Basic Measurement)", "STD Measure (Standard Measurement)", "Engineering Surveying (FieldGenius)", "INST Setup (Instrument Setup)" and "About (Relevant Information)".	

1.3.1 Basic Measurement

Function introduction	Display				
Click "BSC Measure" key to activate basic measuring.This function is used for surveying and calculating,including some modes,that is, angle measurement,distance measurement,coordinate measurement and parameter setting during conventional surveying.Distance measurement mode underpins Remote Elevation Measurement and Line-height Measurement.Coordinate measurement mode is made up of Traverse Surveying,Angle	Basic Mea-Angle Mea				
	va(v): HA(HR):	$\begin{array}{\|c} 95^{\circ} 29^{\prime} 10^{\prime \prime} \\ 163^{\circ} 05^{\prime} 31^{\prime \prime} \end{array}$		PPM: 4.9 PSM: 0.0 Dist Unit: m M.MMde: Trak Tilt Status: A.OFF	
				(M.Ang	S. M.Dist
				(3) M.Coor	* Param
	S.Zero	S.Angle	L.Angle		
	Repeat	V/\%	L/R Angle	(3top	1 Exit

Measurement,Distance \quad Offset	
Measurement,Plane Offset Measurement,and	
Column Offset Measurement.	
Besides,basic measurement is also appropriate	
for checking performance functionality and	
index of angle measurement and distance	
measurement for total station.	

1.3.2 Standard Measurement

Function introduction	Display
Standard measurement function is used to resolve and calculate applied measurements during conventional surveying. It contains "project management", "import/export", "instrument station setup and orientation", "foresight measurement", "backsight measurement", "side-looking measurement", "cross-sectional measurement", "setting out of point, bunch and alignment", "road design", "traverse adjustment", " coordinate geometry", " batter board label", "steel ruler connection survey","data query and editing" and so on.	

1.3.3 Instrumment Setup

1.3.4 About

Function introduction	Display
The "About" function Offers information of manufacturer and software version.	
	Stonex Survey WINCE Series Total Station Stonex Europe Srl. Email: infoes stonexit Wob:www.stonexpositioning.com

1.3.5 Third-party software

1.3.6 Convenient panel

Function introduction	Display	
Click 【 \star 】 key to enter into convenient panel.Electronic bubble function on this panel is used for dynamic display of electronic bubble during leveling up.Furthermore,functions like settings of meteorological condition,observed object,illumination,prism constant and communication port are provided.		

1.4 Shortcut key

1)Some shortcut keys are applied in R35.

Key combination	Description
\odot	Power on/off
\star	Enter into setting mode directly/turn on the electronic bubble
α	Shift among number, smaller letter and capital letter
FUNC + BS $+\odot$	Enter this combinition at the same time before starting up to backup all settings
FUNC+CTRL+ \odot	Enter this combinition at the same time before starting up to restore all settings
FUNC + SP $+\odot$	Enter this combinition at the same time before starting up to erase all settings
FUNC + BS	Turn on/off backlight of key panel in face left position
FUNC + TAB	Turn on/off backlight of key panel in face right position
CTRL+ESC	Enter boot menu
CTRL+TAB	Start touch screen calibration
FUNC + CTRL	Turn on/off soft keyboards
FUNC $+\uparrow$	Increase backlight brightness of LCD
FUNC $+\downarrow$	Decrease backlight brightness of LCD
FUNC $+\leftarrow$	Turn on/off LCD display in face left position
FUNC $+\rightarrow$	Turn on/off LCD display in face right position

2) method for character entry switch

Press $\boldsymbol{\alpha}_{\text {key, current character entry mothod will be changed, on the lower right corner, the }}$ inputing method will display for a moment.

1.5 Touch screen calibration

When you operate on the screen, if your device isn't responding to you taps, you may need to recalibrate your screen. In any picture, press the combination key "CTRL+TAB" so as to enter into touch screen calibration. The calibration process is shown in the figure below.

1) Carefully press and briefly hold stylus on the center of the target. Repeat as the target moves around the screen.
2) After all the targets are clicked, the screen will display as left, tap the screen to register saved data. The screen goes back to Stylus Properties menu.

1.6 Battery

1.6.1 Battery Power indicator

At any screen, press【 \star 】 key to open fast setting menu.
Select Battery, battery level will be seen following Battery Level.

Δ
 NOTE:

1. The battery's working time will be affected by many factors, such as ambient temperature, recharging time, recharging and discharging times. So we suggest the users recharge the battery full or prepare several full batteries before operation.
2. The battery symbol only indicates power capability for current measurement mode. The power consumption in distance measurement mode is more than in angle mode, if the instrument enters into distance measurement mode from angle mode, the power maybe auto-off because of lower battery.
3. The symbol only indicates the supply power but not the instantaneous power change. And if the measurement mode changes, the symbol will not show the power's decrease or increase immediately.
4. It is suggested that user should check every battery power before field work.

1.6.2 Replace and mount battery

1.Replace battery

1) Press the button downward as shown left.
2) Remove the battery by pulling it toward you.
2. Mount battery
3. Insert the battery to the instrument.
4. Press the top of the battery until you hear a

Click.

1.6.3 Recharge battery

1)Connect the charger connector to the battery.
2)Plug the charger on $100 \mathrm{~V} / 240 \mathrm{~V}$ power supply.The red lamp becomes lighting, which indicates recharging.If interval-time is longer,the connector isn't fixed well.
3) That the green lamp flashes means recharging is complete.

NOTE: 1) New battery (or battery does not used for several months) should be recharged for several times.Please recharge it more than 10 hours, and then the battery can attain best status.
2) Please recharge the battery continuously for another $1 \sim 2$ hours after the light green, which is good for the battery.

1.7 USB connection

- The file in the instrument could be read through ActiveSync software by USB cable.
- External memory stick could be used by USB Host connector. The file in the external memory stick could be read in the instrument interface.

1) Open the cover of USB which behind the display panel;
2) Input external memory stick into USB Host connector;
3) The external memory stick could be recognized as hard disk automatically. It could be file copy etc.

1.8 Guide light(Optional)

Guide light is optional in R35 total station. It is mainly used to stake out. The Surveyor could adjust the position of prism and station through the guide light color. It will be faster to set the prism.

The guide light could be seen within 100M. The distance will be effective by atmospheric conditions and others.
Under the face left, the Surveyor should move to left direction when he only saw the green light or the light became bigger; If only saw the red light or red light became bigger, the surveyor should move to the right direction. The move direction will be contrary when the telescope is in face right.
Guide light on/off: press【 \star Ito open fast setting menu, select Battery, if the instrument is equipped with guide light module, 4 options for Guide light are active, (1)(2)(3) are for adjusting guide light intensity, select $\{\mathrm{Off}\}$ to turn off guide light.

2. Preparation before Measurement

2.1 Setting up the instrument

(1) Set up the tripod first: extend the extension legs to suitable lengths and tighten the screws on the legs.Make sure the legs are spaced at equal intervals and the head is approximately level. Set the tripod so that the head is positioned over the surveying point. Make sure the tripod shoes are firmly fixed in the ground.
(2)Attaching the instrument on the tripod head: mount the instrument carefully on the tripod head. Supporting it with one hand, tighten the centering screw on the bottom of the unit to make sure it is secured to the tripod.

2.2 Levelling-Up

(1) Basic Levelling-Up with the circular level

（2）Accurate Levelling－Up with plate level
Pcrew A late level
3．Loosen the horizontal motion clamp，and turn the
instrument till the plate level is parallel to a line shaped
with screws A and B．Adjust the screws A and B to
make the bubble in the center of the level．
center of the plate level while the instrument is rotated to
any position．
（3）Accurate Levelling－Up with Electronic Level on the screen
It is convenient for R35 to level－up with electronic level，especially when it is difficult to observe the circular level and plate level．

Firstly，press the key 【 \star 】 to turn on the electronic bubble as shown in left figure．On the electronic bubble screen，five function keys are displayed in the left column，which is listed as follows：
【TiltXY】dynamic display of electronic bubble
【T．P】 observation and setting of temperature and atmospheric pressure
【Target】 target condition of surveying
【Battery】dynamic display of battery level
【Exit】exit the electronic bubble screen
Secondly，level it by turning three foot screws and ensure the bubble is in the plate level．Make sure the red spot is in the center．

Note：

As shown，you can realize transformation of compensation options by pressing the lower right button．
【XYON】compensate horizontal angle and vertical angle at the same time
【XONYOFF】 just compensate X axis
【XYOFF】don＇t compensate X axis and Y axis

【A．OFF】don＇t compensate X axis and Y axis，and turn off the popup function of electronic bubble．

In STONEX FieldGenius software，the Level display is always shown as left figure．

2.3 Centering

2.3.1 Centering with Optical Plummet (Optional)

Turn the focusing ring of the optical plummet to focus the ground mark point. Then adjust three foot-screws to center the bubble of the circular level. If the plate level is not leveling-up, you can loosen the center screw of the tripod, and move the instrument to center the bubble of the plate level. At last tighten the center screw.Repeat above steps until the center of reticule always coincides with the mark point when rotating alidade of instrument.
Note: You'd better use the three leveling screws and tripod to center the instrument.

2.3.2 Centering with Laser Plummet

Press the key 【 \star 】 to enter into the display as shown in the left figure.
Operation Steps:
(1)Click the "target" button, and you can turn on laser plummet and set it as three levels of brightness.Thus,that laser emits downwards can be seen.
(2) Loosen the center screw of tripod, and move the base plate on tripod head until the laser spot coincides with ground mark point.Then tighten the center screw.
(3)Repeat leveling and two steps until the instrument keeps leveling and the laser spot coincides with ground mark point when rotating alidade of instrument in any direction.
(4)After centering,please turn off laser plummet to save power.

3 Instrument settings

Instrument settings software is applied for settings and calibration of instrument,generation and management of instrument constant.It is made up of a serie of functions such as "compensator linear correction", "compensator zero correction", "horizontal axis error correction", "index correction", "instrument settings", "distance constant settings", "communication port settings", "configuration management", etc.

3.1 INST Setup

Enter "instrument settings" program by clicking "INST Setup" icon on the desktop.And then input the password " 12345678 " to display configuration settings screen.On the screen tap $\boldsymbol{\text { or }}$ keys, different setting screen can be shifted.

NOTE: This password is open for all users, current configuration settings can be checked here, but not be adjusted. If you want to adjust these settings, please contact local distributer or STONEX company.

3.1.1 Setting the measure condition

Opereation:

1. The distance measurement mode will be: Fine, Coarse, Repeat Fine, Average Fine, Tracking.

setting or press cancelled.
2. Tilt correction mode will be: HV, V, NO, Always off.
3. Collimator correction mode will be: Yes or No.
4. CR correction mode will be: $\mathrm{K}=0.142, \mathrm{~K}=0.2$, No.
5. Sea Level correction mode will be: Yes or No.
6. Target Type mode will be: Prism, No Prism, Reflector.You could press "Enter" to keep the

3.1.2 Setting the units

Operation:

1. Angle unit mode will be:DMS,GON,MIL.
2. Angle Precision mode will be: 1 second, 0.1 second or 0.5 second.
3. Distance Unit mode will be: Meter, US Feet, Feet.
4. Distance precision mode will be: 1 mm or 0.1 mm .

You could press "Enter" to keep the setting or press cancelled.

3.1.3 Setting parameters of communication ports

As left shows,click "Other Setup",you can activate bluetooth(BT) and guidelight(GL), and set parameters of "Bluetooth Port" and "Phy Port".

3.1.4 Instrument parameters review

Click "Data Monitor" used for reviewing the setting parameters.

3．2 Illumination settings

Press the【 【】 button and click＂Target＂and ＂Battery＂keys in order to go on with illumination settings including＂Cross Light＂， ＂Guide Light＂，and＂Laser Point＂．

Cross Light：Click this item to turn on the reticle illumination，and move the slipping button to adjust reticle illumination．

Guide Light：Click＂Battery＂key，resulting in display on which guide light could be adjusted．

Laser Point：Tun on／off the laser flash before distance measurement．

4. Basic measurement program

4.2 Basic measurement screen introduction

The function keys display in the lower left corner of screen, and they vary from one measurement mode to another.There are some function keys under every measurement mode being listed in the following table.

Measurement mode	key	function
(2) M.Ang	S.Zero	Set current horizontal angle as zero
	S.Angle	Set current horizontal angle
	L.Angle	Lock horizontal angle
	Repeat	Retest horizontal angle
	V/\%	Switch between vertical angle and percent grade
	L/R Angle	Horizontal angle switch between left and right
0 M.Dist	Mode	Set Fine,N Fine,Loop Fine,Track measurement mode
	m / ft	Switch among meter,international feet and American feet in terms of distance unit
	Setout	Set out measurement mode
	REM	Start REM function
	MLM	Start MLM function
	LHM	Start LHM function
(3) M.Coor	Mode	Set Fine,N Fine,Loop Fine,Track measurement mode
	OCC PT	Set the coordinate of instrument station
	S.BS	Set the coordinate of a backsight point
	Setup	Set instrument height and target height

	Line	Start traverse surveying
	Offset	Start offset measurement（ANG．Offset，DIST Offset，PLANE Offset，CYL．Offset）function
4 Param	Coor Order	Set displayed coordinate order as NEZ or ENZ
	Save Coor	Save coordinate of instrument station or not
	Ang．Unit	Set Ang．Unit as DMS，GON，MIL
	Dist Unit	Set Dist Unit as m，UsFeet，IntFeet
（1）Stop	Stop	Stop distance measurement
E）Exit	Exit	Exit basic measurement program

4．3 Angle measurement mode

4．3．1 Horizontal angle（right angle）and vertical angle measurements

At first，make sure the operation is under angle measurement mode．

Operation steps	Keys	Display				
（1）Collimate the first target A	Collimate A	Basic Mea－－Angle Mea				
		VA（V）： $\mathrm{HA}(\mathrm{HL}):$	$\begin{array}{\|c\|} \hline 177^{\circ} 23^{\prime} 28^{\prime \prime} \\ 69^{\circ} 10^{\prime} 54^{\prime \prime} \end{array}$		PPM： 6.9 PSM： 0.0 Dist Unit： mine M．Mode： Fine Tilt Status： A．OFF	
					（ M．Ang	－M．Dist
					（3）M．Coor	Q Param
		S．zero	S．Angle	L．Angle		
		Repeat	V／\％	L／R Angle	Stop	－
（2）Set horizontal angle as zero for target A．Click the ＂S．Zero＂button，and choose ＂OK＂in the popup dialog box．	【S.Zero】 【OK】	Basic Mea－－Angle Mea				
		$\begin{aligned} & \mathrm{VA}(\mathrm{~V}): \\ & \mathrm{HA}(\mathrm{HL}): \end{aligned}$	$177^{\circ} 23^{\prime} 28^{\prime \prime}$		PPM：	$\begin{aligned} & 6.9 \\ & 0.0 \end{aligned}$
			BSCSurvey			Fine
			（？）Set HA as Zero，Sure？			A．OFF
						－M．Dist
			Yes		No	
		s．zero	S．Angle	L．Angle		
		Repeat	v／\％	L／R Angle	（3）Stop	$\Rightarrow 1$ Exit

(3)Collimate the second first target B,and the horizontal angle and vertical angle will display on the screen of instrument.	Collimate B	Basic Mea--Angle Mea				
		VA(V): $\mathrm{HA}(\mathrm{HL}):$	$177^{\circ} 23^{\prime} 28^{\prime \prime}$		PPM:	6.9
			$69^{\circ} 10^{\prime} 54^{\prime \prime}$		Dist Unit: M.Mode: Tilt Status:	m Fine A.OFF
					M.Ang	- M.Dist
					2) M.Coor	- Param
		S.Zero	S.Angle	L.Angle		
		Repeat	V/\%	L/R Angle	Stop	Exit

4.3.2 Horizontal angle switch between right and left

Make sure the operation is under angle measurement mode.

Operation steps	Keys	Display				
(1)Make sure the operation is under angle measurement mode		Basic Mea-Angle Mea				
		VA(V): HA(HL):	$\begin{array}{\|} 177^{\circ} 23^{\prime} 28^{\prime \prime} \\ 69^{\circ} 10^{\prime} 54^{\prime \prime} \end{array}$		PPM: 6.9 PSM: 0.0 Dist Unit: mine M.Mode: Fine Tilt Status: A.OFF	
					(M.Ang	- M. ${ }^{\text {Dist }}$
					(3) M.Coor	- Param
		5.Zero	S.Angle	L.Angle		
		Repeat	v/\%	L/R Angle	(1) Stop	I
(2)switch horizontal angle between left and right by Clicking "L/R Angle" key ※1	【L/RAngle】					
		$\mathrm{VA}(\mathrm{V})$: HA(HR):	$\begin{gathered} 177^{\circ} 23^{\prime} 28^{\prime \prime} \\ 23^{\circ} 42^{\prime} 22^{\prime \prime} \end{gathered}$		PPM: 6.9 PSM: 0.0 Dist Unit: m M.Mode: Fine Tilt Status: A.OFF	
					2 M.Ang	2. M.Dist
					(3) M.Coor	Q Param
		S.Zero	S.Angle	L.Angle		
		Repeat	v/\%	L/R Angle	(3top	AIExit

[^0]4．3．3 Setting horizontal angle with the＂L．Angle＂key
Make sure the operation is under angle measurement mode．

Operation steps	Keys	Display				
（1）Turn horizontal circle unit in the needed direction with horizontal clamp and tangent part．		Easic Mea－－Angle Mea				
		va（v）： HA（ HR R ）：	$177^{\circ} 23^{\prime} 28^{\prime \prime}$		PPM： 6.9 PSM： 0.0 Dist Unit： m M．MMde： Fine Tilt Status： A．OFF	
			$23^{\circ} 42^{\prime} 22^{\prime \prime}$			
					（ M．Ang	2．M．Dist
					B M．Coor	Q Param
		5．Zero	S．Angle	L．Angle		
		Repeat	V／\％	L／R Angle	Stop	EIExit
（2）Click＂L．Angle＂key，and activate the function of locking horizontal angle．	【L．Angle】	Easic Mea－Angle Mea				
		$\begin{aligned} & \mathrm{VA}(\mathrm{~V}): \\ & \mathrm{HA}(\mathrm{HR}): \end{aligned}$	$177^{\circ} 23^{\prime} 28^{\prime \prime}$		PPM：	6.9 0.0
			Lock HA			
			HA：	$23^{\circ} 42^{\prime \prime} 23^{\prime \prime}$		
			UnLock		Cancel	
		5．Zero	S．Angle	L．Angle		
		Repeat	V／\％	L／R Angle	Stop	E
（3）Collimate target point used for Orientation． ※ 1						
（4）Click＂unclock＂key to deactivate the function of locking horizontal angle．Then the screen will return to normal angle measurement mode，and meantime horizontal angle will be set as locked angle．	【Unlock】	Basic Mea－－Angle Mea			P\％	
		va（v）： $\mathrm{HA}(\mathrm{HR}):$	$\begin{gathered} 177^{\circ} 23^{\prime} 28^{\prime \prime} \\ 23^{\circ} 42^{\prime} 22^{\prime \prime} \end{gathered}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	$\begin{aligned} & 6.9 \\ & 0.0 \\ & \text { mine } \\ & \text { Fine } \\ & \text { A.OFF } \end{aligned}$
					2 M．ang	－M．Dist
					3）M．Coor	Q Param
		5．Zero	S．Angle	L．Angle	（3top	
		Repeat	V／\％	L／R Angle		\＃1 Exit

※1 Click "Cancel" key before it returns to Previous mode.

4.3.4 Setting horizontal angle with the "S.Angle" key

Make sure the operation is under angle measurement mode.

4.3.5 Setting "vertical angle and percent grade" mode with the "V/\%" key Make sure the operation is under angle measurement mode.

Operation steps	Keys	Display				
(1)Make sure the operation is under angle measurement mode.		Basic Mea--Angle Mea $\mathrm{T}^{\text {a }}$ (O				
		$\begin{aligned} & \mathrm{VA}(\mathrm{~V}): \\ & \mathrm{HA}(\mathrm{HR}): \end{aligned}$	$63^{\circ} 18^{\prime} 11^{\prime \prime}$		PPM: PSM: Dist Unit: M.Mode: Tilt Status:	6.9
			$232^{\circ} 21^{\prime} 22^{\prime \prime}$			m Fine A.OFF
					(M.ang	- M. ${ }^{\text {Dist }}$
					(3) M.Coor	Q Param
		5.Zero	S.Angle	L.Angle		
		Repeat	v/\%	L/R Angle	Stop	d Exit
$\begin{aligned} & \text { (2)Click "V/\%" key. } \\ & ※ 1 \end{aligned}$	【V/\%】	Basic Mea--Angle Mea				
		VA(v\%): HA(HR):	$\begin{array}{\|l\|} \hline 50.3 \% \\ \hline 232^{\circ} 21^{\prime} 22^{\prime \prime} \\ \hline \end{array}$		PPM: PSM: Dist Unit: M.Mode: Tilt Status:	$\begin{aligned} & 6.9 \\ & 0.0 \\ & \mathrm{~m} \\ & \text { Fine } \\ & \text { A.OFF } \end{aligned}$
					2 M.Ang	2. M.Dist
					(3) M.Coor	Q Param
		5.Zero	S.Angle	L.Angle		
		Repeat	V/\%	L/R Angle	Stop	- Exit

$※ 1$ Vertical angle and percent grade will be switched in turn every time you click "V/\%" key.

4.3.6 Carrying out angle retesting with the "Repeat" key

This program is applied for adding up angle retesting values, displaying the sum and the average of all observed values, and meantime recording the number of observations.

Operation steps	Keys	Display				
（1）Click＂Repeat＂key，and activate angle retesting function．	【Repeat】	Basic Mea－Angle Mea				
		va（v）： $\mathrm{HA}(\mathrm{HR})$ ：	63 ${ }^{\circ} 1$	$\frac{8^{\prime} 11^{\prime \prime}}{1^{\prime} 22^{\prime \prime}}$	PPM： PSM： Dist Unit M．Mode： Tilt Status	$\begin{aligned} & 6.9 \\ & 0.0 \\ & m \\ & \text { Fine } \\ & \text { A.OFF } \end{aligned}$
					2 M．Ang	工M．Dist
					（3）M．Coor	Q Param
		S．Zero	S．Angle	L．Angle		
		Repeat	v／\％	L／R Angle	（1）Stop	Exit

4.4 Distance measurement mode

4.4.1 Distance measurement and measuring mode setting

Operation steps (1)Collimate the centre of prism.	Keys	Display				
	Collimate	Basic Mea-Angle Mea			Cot	
		$\begin{aligned} & \mathrm{VA}(\mathrm{~V}): \\ & \mathrm{HA}(\mathrm{HR}): \end{aligned}$	$63^{\circ} 18^{\prime} 11^{\prime \prime}$		PPM: ${ }_{\text {Dist }}$ Pinit:M.Mode: Tit Status\qquad	6.9
			$232^{\circ} 21^{\prime} 22^{\prime \prime}$			$\begin{aligned} & \text { Fine } \\ & \text { Fine } \\ & \text { A. } \end{aligned}$
					- M.Ang	\pm M.Dist
					B M.Coor	Q Param
		s.zero Repeat			(1) stop	\Rightarrow Ext

（2）Click＂M．Dist＂key to enter distance measurement mode，and then the system will carry out measurement based on previous setting mode．	【M．Dist】	Basic Mea－－Dist．Mea				
		VA（V）： HA（HR）： SD： HD： vD：	$63^{\circ} 18^{\prime} 09^{\prime \prime}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	$\begin{aligned} & 6.9 \\ & 0.0 \\ & \mathrm{~m} \\ & \text { Fine } \\ & \text { A.OFF } \end{aligned}$
			$20^{\circ} 29^{\prime} 56^{\prime \prime}$			
			＞＞＞＞－－－			
					M．Ang	\pm M．Dist
					（3）M．Coor	Q Param
		Mode	m／ft	Setout	（1）stop	$\Rightarrow 】$ Exit
		REM	MLM	LHM		
（3）Click＂Mode＂key to activate setting function of distance measurement mode．Take＂Loop Fine＂as example here．	【Mode】					
		$\text { VA(V): Mimode } \quad X]_{0}^{9}$				
		HA（HR）：		M．Mode		1e
			\bigcirc Fine			OFF
		HD：	N N FineOLLoop Fir			－M．Dist
Fine：single fine measuring mode			\bigcirc Track			－Param
		Mode	Enter		Cancel	
N Fine： n times fine measuring mode		REM	MLM	LHM	（1）Stop	dy Exit
（4）Display the result of measurement．$※ 1 ~ ※ 2$		Basic Mea－－Dist．Mea			\％${ }^{\text {a }}$	
		VA（V）：	$80^{\circ} 04^{\prime} 42^{\prime \prime}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	6.9 0.0 m Loop Fine A．OFF
		Ha（HR）：	$20^{\circ} 30^{\prime} 05^{\prime \prime}$			
		SD：	0.6242			
			0.6149		M．Ang	$=$ M．Dist
			0.1076		3．M．Coor	Q Param
		Mode	m / ft	Setout		
		REM	MLM	LHM	（1）stop	\＃1 Exit
※ 1 Click＂mode＂key if you wanna change measurement mode，as step（3）shows． ※ 2 Click＂M．Ang＂key to return to angle measurement mode．						

4．4．2 Fine／Tracking distance measurement

When you preset the measuring times，the instrument will carry out distance measurement and display the average distance according to the setting times．If you preset single observation，the average distance won＇t be displayed．In general，the factory default is set as single observation．

Operation steps	Keys	Display				
（1）Under distance measurement mode，click ＂Mode＂key to activate setting function of distance measurement mode． The default setting is＂single observation＂．	【Mode】					
		HA，（HR）：	M．Mode			$\begin{aligned} & \text { pop Fine } \\ & \text { PFF } \end{aligned}$
			Offine			
		HD：	OLoop Fine			M．Dist
			Otrack			
		vD：	Enter		Cancel	
		REM	MLM	LHM	（3）stop	\＃】 Exit
（2）Click＂N Fine＂key with stylus，and then input the number of needed observations in the upper right column of screen．	【N Fine】 input the number of observations	Basic Mea－－Dist．Mea				
		VA．（V）： Mimode $\times]_{0}^{9}$				
		HA，（HR）： SD：	M．Mode			op Fine OFF
			Ofin ON	Count 3		
		HD：	OLoop Fine			M．Dist
			\bigcirc Track			
			Enter		Cancel	－Param
		REM	MLM	LHM	（－）stop	－Exit

(3)Click "Enter" key, collimate the centre of prism, and then the system will carry out measurement based on previous setting. ※ 1					
	VA(V):	80°	$4^{\prime} 42^{\prime \prime}$		6.9
	HA(HR):	20°	'05'	Dist Unit: M. Mode:	m
	SD:	0.62		Tilt Status:	A.OFF
		0.61		M.Ang	2. M.Dist
		0.10		M.Coor	Par
	Mode	m / ft	Setout		
	REM	MLM	LHM	(3) stop	A】Exit
$※ 1$ Click "M.Ang" key to return to angle measurement mode.					

4.4.3 Accurate Measurement and Track mode

Accurate Measurement mode:it's a normal measurement mode.
Track mode:Track mode takes less time than accurate measurement.It is mainly applied for setting-out survey and useful for tracking moving target.

Operation steps	Keys	Display

（1）Collimate the centre of prism．	Collimate prism	Basic Mea－－Dist．Mea			－0\％	
		VA（V）： HA（HR）： SD： HD： VD：	$80^{\circ} 04^{\prime} 42^{\prime \prime}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	$\begin{aligned} & 6.9 \\ & 0.0 \\ & \mathrm{~m} \\ & \text { Loop Fine } \end{aligned}$
			$20^{\circ} 30^{\prime} 05^{\prime \prime}$			
			0.6242			
			0.6149		2 M．Ang	－M．Dist
			0.1076		（3）．Coor	Q Param
		Mode	m / ft	Setout	（1）Stop	m】 Exit
		REM	MLM	LHM		
（2）Click＂Mode＂key to activate setting function of distance measurement mode．And this mode is set as＂Track＂．	【Mode】					
		$\text { VA.(v): Mimode } \quad X]_{0}^{9}$				
		HA，（HR）：	M．Mode \longrightarrow			pop Fine
		SD：	Ofine ON Fine			OFF
		HD：	Oloop Fine			M．Dist
			OTrack			
			Enter		Cancel	P－Param
		REM	MLM	LHM	Stop Exit	
（3）Click＂Enter＂ key，collimate the centre of prism，and the system will carry out measurement based on previous setting．	【Enter】	Basic Mea－－Dist．Mea			P）	
		VA（V）： HA（HR）： SD： HD： VD：	$63^{\circ} 18^{\prime} 09^{\prime \prime}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	6.9 0.0 min Fine A．OFF
			$20^{\circ} 29^{\prime} 56^{\prime \prime}$			
			＞＞＞＞－－－－			
					OM．Ang	－M．Dist
					（3）M．Coor	Q Param
		Mode	m／ft	Setout	（3）stop	\＃】 Exit
		REM	MLM	LHM		

4．4．4 Exchange of distance units

Change distance unit on the screen of distance observation．

Operation steps	Keys	Display

（1）Click＂m／ft＂key．	【m／ft】	Basic Mea－－Dist．Mea				
		VA（V）： HA（HR）： SD： HD： VD：	$80^{\circ} 04^{\prime} 42^{\prime \prime}$		PPM： PSM： Dist Unit M．Mode： Tilt Status：	6.9 0.0 m Loop Fine A．OFF
			0.6242			
			0.6149		OM．Ang	－M．Dist
			0.1076		（ M．Coor	\％Param
		Mode	m／ft	Setout		d】 Exit
		REM	MLM	LHM	（1）stop	
（2）Changed distance unit will display in the upper right corner．※1						
		VA．（V）：	$80^{\circ} 04^{\prime} 41^{\prime \prime}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	6.9 0.0 UsFeet Fine A．OFF
		HA（HR）：	$20^{\circ} 30^{\prime} 04^{\prime \prime}$			
			2.051			
			2.020		（ M．Ang	－M．Dist
			0.353		［ M．Coor	\％Param
		Mode	m／ft	Setout	（3top	d】 Exit
		REM	MLM	LHM		
$※ 1$ Distance unit will be exchanged among meter，american feet and international feet every time you click＂ m / ft＂key．						

4．4．5 Distance stake out measurement

This function can display the difference between measured distance and preset distance．
Displayed Value＝Observed Value－Standard（Preset）Distance
Setting out among all sorts of distance measurement modes（such as slope distance， horizontal distance and elevation difference）can be carried on．

Operation steps	Keys	Display

※1 First of all, a prompt that reminds you to input SD to be set out is displayed in the popup dialog box. Click "Enter" key to execute SD setting out after inputing data。If you want HD setting out,need to input zero in "SD dialog box", click "Enter", and the system will eject "HD dialog box" automatically. HD setting out can go on after HD data entry. If you want VD setting out,need to input zero in both "SD dialog box" and "HD dialog box", thus the system will remind you to input elevation difference to be set out.

4.4.6 Remote Elevation Measurement (REM)

The Remote Elevation program calculates the vertical distance (VD) of a remote object relative to ground. When using a prism height, the remote elevation measurement will start from the prism (reference point). If no prism height is used, the remote elevation will start from any reference point in which the vertical angle is established. In both modes, the reference point should be perpendicular to the remote object.

1) With prism height (PH) input

Operation steps (1)Under	Keys	Display				
	【REM】	Basic Mea--Dist.Mea				
		VA(v): HA((HR) : SD: HD: VD:	$80^{\circ} 04^{\prime} 41^{\prime \prime}$		PPM: PSM Dist Unit: M.Mode: Tilt Status:	6.9 0.0 UsFeet Fine A.OFF
			$20^{\circ} 30^{\prime} 04^{\prime \prime}$			
			2.051			
			2.020		M.Ang	\ldots M.Dist
			0.353			
		Mode	m/ft	Setout		
		REM	MLM	LHM	(1) stop	m Exit

（2）Select＂with PH＂button with stylus．	【 with PH】	REM	
		Option－PPM 6.9	
		OWith PH O None PH	PPM： PSM： $\quad 6.9$ 0.0
		Measure	$\begin{array}{ll}\text { Dist Unit：} & \text { UsFeet } \\ \text { M．Mode：} \\ \text { Fine }\end{array}$
		HD：	Tilt Status：A．OFF
		PH：	M．Dist
			Continue
			Exit
（3）Input the prism height following PH．	Input prism height	REM	
		Option （－）With PH None PH	PPM： 6.9 PSM： 0.0 Dist Unit： UsFeet M．Mode： Fine Tilt Status： A．OFF
		Measure HD：	
		PH： 1.6	M．Dist
			Continue
			Exit
（4）Collimate the centre P of prism． （5）Click＂M．Dist＂key to start measuring． （6）Horizontal distance between instrument and prism will be shown．	Collimate prism	REM	
		Option	PPM： 6.9 PSM： 0.0 Dist Unit： UsFeet M．Mode： Fine Tilt Status： A．OFF
	【M．Dist】	$\begin{array}{ll} \text { Measure } & \\ \text { HD: } & 2.020 \end{array}$	
		PH：	Continue
			Exit

（7）Click＂Continue＂key，and position of prism is locked， that means reference point is confirmed．	【Continue】	REM	
		Option	PPM： 6.9 PSM： O．0 Dist Unit： UsFeet M．Mode： Fine Tilt Statu： A．OFF
		Measure HD：	
		PH：$\quad 1.6$	M．Dist
		Mea．Result	Continue
			Exit
（8）Collimate target K and click＂Continue＂，vertical distance（VD）will be shown． ※1）	【 Collimate K】	REM X	
		Option	$\begin{array}{ll} \text { PPM: } & 6.9 \\ \text { PSM: } & 0.0 \\ \text { Pist Unit: } & \text { UsFeet } \\ \text { M.Mode: } & \text { Fine } \\ \hline \end{array}$
		Measure HD：	
		$\mathrm{PH}: \quad 1.6$	M．Dist
		Mea．Result	Continue
			Exit
※1）Click＂Exit＂key to finish REM．			

2）without prism height input

4.4.7 Missing Line Measurement (MLM)

The Missing Line Measurement program calculates the horizontal distance (dHD), slope distance (dSD) and elevation (dVD) between two target prisms.
The instruemt can accomplish this in two ways:

1. MLM Method (A-B, A-C): Measurement is A-B, A-C, A-D, \qquad

2. MLM Method (A-B, B-C): Measurement is A-B, B-C, C-D,

(7)Click "Continue" key,then dHD, dVD and dSD between prism A and prism C will be shown.	【Continue】	MLM	
		Sel.Mode (-) $(A-B, A-C)$ (A-B,B-C) First Step \qquad 2.010	PPM: 6.9 PMM: 0.0 Dist Unit: UsFeet M.Mode: Fine Tilt Status: A.OFF
		$\begin{array}{\|l\|l\|} \hline \text { Second Step } \\ \text { HD: } & 1.747 \end{array}$	M.Dist
		$\begin{aligned} & \text { Mea.Result } \\ & \text { dHD: } 0.411 \end{aligned}$	Continue
		$\text { dSD: } 0.412$	Exit

※1) Click "Exit" key to return to main menu.
\bullet Procedure of MLM Method (A-B, B-C) is completely same as Method (A-B, A-C) Method.

4.4.8 Line-height Measurement

This function is applied for measuring and determining a height of line(like electric wire)above ground which is hard to reach.

See following image, L is point on the overhead line, G is projective point on the ground, which is also difficult to set target, A and B are baseline which are set up in a certain distance under line. After measuring horizontal distances from instrument to prisms A / B and confirm the base line, VD between A and B, VD between L and G, HD between instrument and $\mathrm{L}(\mathrm{G})$,offset distance from A to $\mathrm{L}(\mathrm{G})$ will be determined and shown.

Operation steps	Keys	Display				
(1)Under distance measurement mode, click "LHM" key to activate line-height measurement program.	【LHM】	Basic Mea--Dist.Mea				
		VA(V): HA(HR): SD(dSD): HD: VD:	$80^{\circ} 04^{\prime} 41^{\prime \prime}$		 PPM: 6.9 PSM: 0.0 Dist Unit: UsFeet MiMode: Fine Tilt Status: A.OFF	
			$20^{\circ} 30^{\prime} 01^{\prime \prime}$			
			-2.069			
			2.021		OM.Ang	- M. Dist
			0.353		(3) M.Coor	Q Param
		Mode	m/ft	Setout		
		REM	MLM	LHM	(3) Stop	- Exit
(2)Select "With PH" button with stylus.	With PH	LHM \times				
		OptionO. With PH O ONone PHHDPD.A:Pt.APt.B:			PPM: PSM: Dist Unit: M.Mode: Tilt Status:	6.9 0.0 UsFeet Fine A.OFF
					Measure	Setup

(9)Collimate ground point G by screwing vertical tangent part.	Collimate G	LHM		
		Option (-) With PH None PH	PPM: 6.9 PSM: 0.0 Dist Unit: UsFeet M.Mode: Fine Tilt Status: A.OFF	
		HD Pt.A: 1.747 Pt.B: $\mathbf{1 . 8 2 7}$		
		 VH VD: 4.118 HD: 1.827 Off: 0.135	Continue	
		$\begin{aligned} & \text { Grd.PT } \\ & \text { V: } \end{aligned}{944^{\circ}}^{\prime} 28^{\prime} 42^{\prime \prime}$		Setup
(10)Click "Continue" key again, and then height of overhead line(LH) and horizontal distance(Off) will display. $\quad ※ 1 \sim ※ 3)$	【Continue】	LHM		
		Option (0) With PH None PH HD Pt.A: 1.747 1.827	PPM: 6.9 PM: 0.0 Dist Unit: UsFeet MiMode: Fine Tilt Status: A.OFF	
		VH: VD: 4.118 HD: 1.827 off: 0.135	$\begin{array}{ll} \text { LHM } & \\ \text { LH: } & -0.829 \\ \text { off: } & 0.135 \end{array}$	
		$\begin{aligned} & \text { Grd.PT } \\ & : \\ & : 94^{\circ} 28^{\prime} 43^{\prime \prime} \end{aligned}$	vH	Setup
※1) Click "X" key to end measurement.				
※2) Click "VH" key to return to operation step ${ }^{\text {(7). }}$				

4．5 Coordinate Measurement Mode

4．5．1 Setting coordinate of occupied point

After input coordinate of occupied point（instrument location），unknown point coordinate will be measured and displayed with this program．

Operation steps	Keys	Display				
（1）Click＂M．Coor＂key to enter coordinate measurement mode．	【M．Coor】	Basic Mea－－Coor．Mea				
		$\begin{aligned} & \mathrm{VA}(\mathrm{~V}): \\ & \mathrm{HA}(\mathrm{HR}): \\ & \mathrm{N}: \\ & \mathrm{E}: \\ & \mathrm{Z}: \end{aligned}$	$94^{\circ} 28^{\prime} 47^{\prime \prime}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	6.9 0.0 UsFeet Fine A．OFF
			$17^{\circ} 52^{\prime} 22^{\prime \prime}$			
			2.015			
			0.650		2 M．Ang	\ldots M．Dist
			－5．415		（3）．Coor	Q Param
		Mode	OCC PT	S．BS		
		Setup	Line	Offset	（3top $\Rightarrow 】{ }_{\text {Exit }}$	
（2）Click＂OCC PT＂key．	【OCC PT】	Basic Mea－Coor．Mea				
		VA(V): OCC PT				
		HA（HR）：	Input Coor			
			$\mathrm{N}: 0.000$			2．OFF
		E：	E：$\quad 0.000$			M．Dist
				0.000		
		Mod	Enter		Cancel	＊Param
		Setup	Line	Offset	（3top	4 Exit

（3）Input coordinate of occupied point from N to Z ．		Basic Mea－Cour．Mea				
		$\begin{aligned} & \mathrm{VA}(\mathrm{~V}): \\ & \mathrm{HA}(\mathrm{HR}): \\ & \mathrm{N}: \\ & \mathrm{E}: \\ & \mathrm{Z}: \\ & \hline \text { Mode } \\ & \hline \text { Setup } \end{aligned}$				
			E：$\quad 100$			M．Dist
			Z： 100			M．Bit
			Enter		Cancel	＊）Param
			Line	Offset	（1）stop	－Exit
（4）Finishing data entry，click ＂Enter＂key and return to coordinate measurement interface．	【Enter】	Basic Mea－Coor．Mea				
		VA（V）：	$94^{\circ} 28^{\prime} 48^{\prime \prime}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	6.9 0.0 UsFeet Fine A．OFF
		HA，（HR）：	$17^{\circ} 52^{\prime} 39^{\prime \prime}$			
		$\mathrm{N}:$	102.016			
			100.650		M．Ang	－M．Dist
			94.585			
		Mode	OCC PT	S．BS	（－）stop	
		Setup	Line	Offset		A】 Exit

4．5．2 Setting backsight point

Operation steps	Keys	Display				
（1）Click＂S．BS＂key to set backsight point．	【S．BS】	Basic Mea－Coor．Mea				
		$\mathrm{VA}(\mathrm{V})$ ：	94°	＇48＂	PPM：	6.9
		HA（HR）：	17°	$2^{\prime} 39^{\prime \prime}$	Dist Unit：	UsFeet
		$\mathrm{N}:$	102.0		Tilt Status：	A．OFF
			100.6		2 M．Ang	－M．Dist
			94.58			
					（3）M．Coor	Param
		Mode	OcC PT	S．BS		
		Setup	Line	Offset	\bigcirc stop	Exit

4．5．3 Setting instrument height and prism height

Coordinate measurement must be based on instrument height and prism height，thus coordinate of unknown point can be calculated easily and directly．

Operation steps	Keys	Display				
（1）Click＂Setup＂key．	【Setup】	Basic Mea－Coor．Mea ${ }^{\text {\％}}$				
		VA（V）：	$94^{\circ} 28^{\prime} 49^{\prime \prime}$		PPM： 6.9 PSM： o．0 Dist Unit： UsFeet M．Mode： Fine Tilt Status： A．OFF	
		HA，（HR）：	$62^{\circ} 21^{\prime} 42^{\prime \prime}$			
			102.016			
			100.650		2 M．Ang	$=$ M．Dist
			94.585			
					3．M．Coor	\％Param
		Mode	OCC PT	S．BS	（3top	－Exit
		Setup	Line	Offset		
（2）Input instrument height （IH）and prism height（ PH ）．	Input IH and PH	Basic Mea－Coor．Mea				
		VA（V）：	$94^{\circ} 28^{\prime} 48^{\prime \prime}$		PPM：	
		HA，（HR）：	Setup IH and PH			
		$\mathrm{N}:$	$\begin{array}{ll} \text { Setup } \\ \text { IH: } 0.000 \end{array}$			
		E：	PH： 5.249			\square M．Dist
			Enter		Cancel	1 Param
		Mode	OCC PT	S．BS	－stop	d】 Exit
		Setup	Line	Offset		
（3）Finishing data entry，click ＂Enter＂key to return to coordinate measurement screen．	【Enter】	Basic Mea－Coor．Mea			\％${ }^{\text {d }}$	
		VA（V）：	$94^{\circ} 28^{\prime} 49^{\prime \prime}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	6.9 0.0 UsFeet Fine A．OFF
		HA，（HR）：	$62^{\circ} 21^{\prime} 42^{\prime \prime}$			
		$\mathrm{N}:$	102.016			
			100.650		（2）M．Ang	\triangle M．Dist
			94.585		（3）M．Coor	Q Param
		Mode	OCC PT	S．BS		
		Setup	Line	Offset	（\％）Stop	\Rightarrow Exit

4.5.4 Operation of coordinate measurement

With coordinate of occupied point, backsight azimuth angle, Instrument height and prism height set up,you can directly calculate coordinate of unknown point.

（4）Click＂M．Coor＂key to finish operation．$※ 4)$	【M．Coor】	Basic Mea－Coor．Mea			○\％	
		$\begin{aligned} & \mathrm{VA}(\mathrm{~V}): \\ & \mathrm{HA}(\mathrm{HR}): \\ & \mathrm{N}: \\ & \mathrm{E}: \\ & \mathrm{Z}: \end{aligned}$	$94^{\circ} 28^{\prime} 49^{\prime \prime}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	6.9 0.0 UsFeet Fine A．OFF
			$62^{\circ} 21^{\prime} 42^{\prime \prime}$			
			102.016			
			100.650		（2．Ang	－M．Dist
			94.585			
		Mode	OCC PT	S．BS		
		Setup	Line	Offset	（ Stop	\＃】 Exit

※1）If don＇t input coordinate of occupied point，previous coordinate of occupied point is set as default．If don＇t input instrument height and prism height，the previous is set as default too．
$※ 2$ ）refer to＂4．3．4 Setting horizontal angle with the S．Angle key＂or＂4．5．2 Setting backsight point＂。
※3）Click＂Mode＂key to change distance measurement method（Fine／N Fine／Loop Fine／Track）
※4）Click＂M．Angle＂or＂M．Dist＂to return to normal angle or distance measurement mode．

4．5．5 Traverse Surveying

Measure the coordinate of foresight point and save it in the list，this point would be taken as the occupied point after transferring to point 2，and the previous occupied point will be taken as the backsight point，the azimuth angle will be calculated and set．

－Set coordinate of occupied point p0 and azimuth angle from point P0 to known point A．

Operation steps	Keys	Display					
（1）Click＂Line＂key．	【Line】	Basic Mea－－Coor．Mea			（ ${ }^{3}$	＊	
		$\mathrm{VA}(\mathrm{V})$ ：	$94^{\circ} 28^{\prime} 49^{\prime \prime}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	6.9 0.0 UsFeet Fine A．OFF	
		HA（HR）：	$62^{\circ} 21^{\prime \prime} 42^{\prime \prime}$				
			102.016				
			100.650		2 M．Ang	\Longrightarrow M．Dist	
			94.585				
					3）M．Coor	Q Param	
		Mode	Occpt	S．bs	（1）stop	\＃】 Exit	
		Setup	Line	Offset			
（2）Click＂Save＂key with stylus．	【Save】	TRS．M					
					PPM： 6.9 PSM： 0.0 Dist Unit： UsFeet M．MMode： Fine Tilt Status： A．OFF		
					Measure		
					Setup		
					Exit		
（3）Click＂Setup＂key to reset instrument height and prism height．And then click ＂Enter＂key．	【Setup】	RS．M				\times	
		Option （O）Save Measure HA： HD：	Setup IH and PH PM:				
						isfeet	
			Setup 0			line	
				0.000			
			Enter		Cancel		
					Exit		

(7)After instrument is established in P1,enter into traverse surveying of coordinate measurement and select "Call" button with stylus.$※ 1)$	TRS.M x				
	OptionOSave CallCall			PPM: 6.9 PSM: 0.0 Dist Unit: UsFeet M.Mode: Fine Tilt Status: A.OFF	
	HR:242 $21^{\prime} 42^{\prime \prime}$ Setup?			Measure	
				Setup	
				Exit	
(8)Collimate last occupied point P0. Click "Setup" key, then coordinate of P1 and azimuth angle from P 1 to P 0 will be ascertained. And it returns to main menu at the same time.	Basic Mea-Coor.Mea			P\%	
	VA.(V):HA,(HR):$\mathrm{N}:$	$94^{\circ} 28^{\prime} 49^{\prime \prime}$		PPM: PSM: Dist Unit: M.Mode: Tilt Status:	6.9 0.0 UsFeet Fine A.OFF
		$242^{\circ} 21^{\prime} 42^{\prime \prime}$			
		100.982			
		101.875		(2.Ang	- M. Dist
		94.585		(3) M.Coor	\% Param
	Mode	OCC PT	S.ES	(3) stop	\Rightarrow Exit
	Setup	Line	Offset		
(9)Repeat steps(1)~8), and carry on according to the sequence of guidelines till the end.					
※1) Click "Exit" key to finish Traverse Surveying.					

4.5.6 Offset Measurement Mode

There are four kinds of Offset Measurement Modes:

- Angle Offset Measurement
- Distance Offset Measurement
- Plane Offset Measurement
- Column Offset Measurement

1) Angle Offset Measurement

This program is used to measure the point where it's difficult to set prism. Place the prism at the same horizontal distance from the instrument as that of point A0 to measure.

- When measuring coordinate of ground point A1(projection of point A0), set instrument height and prism height.
- When measuring coordinate of point A0,set instrument height only(Prism height is set as $0)$.

- Under angle offset measurement mode,there are two methods to set vertical angle:
1.Free vertical angle: vertical angle ranges from up-and-down movement of telescope.
2.Lock vertical angle:vertical angle is locked and can't range from up-and-down movement of telescope.
Thus, if collimate A0 with the first method, vertical angle ranges from up-and-down movement of telescope, and meantime slope distance(SD) and elevation difference(VD) will change too.But if collimate A0 with the second method,vertical angle is locked in the direction where prism is located and can't range from up-and-down movement of telescope.

$※ 1)$ Click "Setup" key to set instrument height and prism height.
※2)Click "Exit" to finish Angle Offset Measurement
- Set instrument height/prism height before Offset Measurement.
- Refer to "4.5.1" to set coordinate of occupied point.

2) Distance Offset Measurement

The measurement of a target point apart from a prism is possible by inputting offset horizontal distance of front and back/left and right.

－When measuring coordinate of ground point A 1 ，set instrument height and prism height．
－When measuring coordinate of point A0，set instrument height only（Prism height is set as $0)$ ．
－Refer to＂4．5．1＂to set coordinate of occupied point．

Operation steps	Keys	Display			
（1） Click＂DIST Offset＂key in ejecting dialog box．	$\underset{\text { Offset }}{\text { 【 }} \text { DIST }$	Basic Mea－Coor．Mea			
		$\begin{aligned} & \mathrm{VA}(\mathrm{~V}): \\ & \mathrm{HA}(\mathrm{HR}): \\ & \mathrm{N}: \\ & \mathrm{E}: \\ & \mathrm{Z}: \end{aligned}$	$94^{\circ} 28^{\prime} 49^{\prime \prime}$	PPM： PSM： Dist Unit： M．Mode： Tilt Status：	6.9 0.0 UsFeet Fine A．OFF
			$242^{\circ} 21^{\prime} 42^{\prime \prime}$		
			100.982		
			101.875	（ M．Ang	＝－M．Dist
			94.585		
				ANG．OffsetDIST Offset	Param
		Mode	OCCPT		
		Setup	Line Cl	CYL．Offset	1 Exit
（2）Finish data entry with stylus．		DIST Offset			x
		$\begin{aligned} & \text { Input Option } \\ & \text { drf: } \quad 0.1125 \end{aligned}$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	6.9 0.0 UsFeet Fine A．OFF
		dRL： 0.1			
		Measure HD：			
		Measure	Continue	Setup	Exit
（3）Collimate prism and click ＂Measure＂key．	【Measure】	DIST Offset x			
		Input OptiondfR：$\quad 0.1125$		PPM： PSM： Dist Unit： M．Mode： Tilt Status：	6.9 0.0 UsFeet Fine A．OFF
		Measure $\mathbf{2 . 1 1 9}$ 			
		Measure	Continue	Setup	Exit

(4)Click "Continue" key,and result displays with the correction of offset distance.$※ 1), \quad ※ 2$	【Continue】	DIST Offset				
		Input Option				
		dFR: 0.1125				
		dRL: 0.1		PSM: Dist Unit:	0.0 UsFeet	
		Measure HD: 1819		M.Mode: Tilt Status:	Fine	
		Mea.Result				
		V : $94^{\circ} 1$	04"	HR: $244{ }^{\circ} 55^{\prime} 47^{\prime \prime}$		
		SD: 2.240		N: 100.036		
		HD: 2.234		E: 99.8953		
		Measure	Continue	Setup	Exit	

※1) Click "Setup" key to set instrument height and prism height.
※2) Click "Exit" key to finish Distance offset measurement.

3) Column Offset Measurement

It is possible to measure circumscription point $(\mathrm{P} 1)$ of column directly, the distance to the center of column(P 0), coordinate and direction angle can be calculated by measured circumscription points P2 and p3.The direction angle of the center of column is $1 / 2$ of total direction angle of circumscription points P2 and P3.

- Refer to "4.5.1" to set coordinate of occupied point.

4) Plane Offset Measurement

Measuring will be taken for the place where direct measuring can not be done,for example distance or coordinate measuring for an edge of a plane.Three random points($\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3$) on a plane will be measured at first in the plane offset measurement to determine the measured plane,collimate the measuring point $(\mathrm{P} 0)$,the instrument calculates and displays coordinate and distance value of cross point between collimation axis and of the plane.

- Refer to "4.5.1" to set coordinate of occupied point.

※1)Click "Setup" key to set instrument height and prism height.

- If the three observing points can't determine a plane,the system will display error message.Thus observe the first point once again.
- When collimation axis doesn't intersect with determined plane, the system will display error message.

4.6 About

WinCE Total Station
Suzhou FOIF CO.,LTD.
http://www.foif.com
B.M V2.2.0.2 2013-03
S.T V2.2.0.2 2013-03
C.D V2.2.0.2 2013-03

Operation:

1. Click "about" icon on desktop.
2. Press "Exit" to return to the basic measurement.

5. Check and Adjustment

5.1 The Instrument Constant

1) Check

It is suggested to observe and compare the instrument with a testing line which is set on stable ground with a particular accuracy, though error is not generally included in the instrument constant. If the testing line is unavailable, you can set it for 20 meters or so by yourselves, then check and compare it with your new instrument.

1. Select a point B on the approximately horizontal line AC with about 100 meters long. Measure the distances of lines AB, AC and BC .
2. The instrument constant can be calculated;
instrument constant $=\mathrm{AB}+\mathrm{BC}-\mathrm{AC}$
3. If there is a difference between the instrument standard constant and the calculated value, colligate the measured constant and the prism constant to get a new value ,then input the value into the instrument as a prism constant .
4. Compare length of the instrument's testing line again with a certain standard testing line.
5. If the difference is over 5 mm after the preceding operations, it is necessary to reset the instrument constant .
2) Adjustment

About instrument constant setting, you must contact STONEX distributor to do that.

5.2 Plate Level and Circular Level

5.2.1 Plate Level

1) Check
1. Mount the instrument on a stable device (as tripod, adjusting device),and fix it.
2. Level the instrument until the plate level is parallel to a line linking leveling foot screws A and B , then adjust the two screws to center the air bubble.
3. Turn the instrument 180°, observe the moving direction of the bubble, if it is still centered, no adjustment is necessary, if not, you have to adjust it.
2) Adjustment
1. Mount the instrument on a stable device and fix it.
2. Level it roughly.
3. Turn the instrument and make the plate level be parallel to a line linking two leveling foot screws, then adjust the two screws to center the air bubble .
4. Turn the instrument 180°, adjust the Adj-screw with adjustment pin slightly to correct half of the bubble's

Turnthe instrument 180°
 displacement when it doesn't move,
5. Repeat the operation (3) and (4) until the air bubble remains centered in any position .

5.2.2 Circular Level

1) Check
1. Mount the instrument on a stable device and fix it.
2. Level it accurately by the plate level.
3. Observe the bubble of the circular level, if it is centered, no adjustment is necessary, if not, you have to adjust it.
2) Adjustment

4. Mount the instrument on a stable device and fix it.
5. Level it accurately by the plate level.
6. Adjust the three adjusting screws to center the bubble by a wrench.

Note: Be careful when adjusting the three screws, and the tightening tension is identical for them.

5.3 The Optical Sight

1) Check
1. Mount the instrument on a tripod and fix it.
2. Set a cross mark target which apart from the
 instrument about 50 m .
3. Take the telescope sight the cross mark.
4. Observe the optical sight collimator whether collimating the cross mark, if collimate the mark, adjustment is not necessary; if not, adjust it.
2) Adjustment
1. Mount the instrument at the tripod and fix it.

2. Set a cross mark target which apart from the instrument about 50 m .
3. Take the telescope sight the cross mark.
4. Loosen two fixing screws, adjust the collimator, then fix the two screws again.

5.4 Optical Plummet and Laser Plummet

5.4.1 Optical Plummet(factory optional)

1) Check
1. Mount the instrument at the tripod and fix it.
2. Set a cross mark under the instrument
3. Coincide the center mark of the optical plummet with the cross mark by adjusting three leveling foot screws.
4. Turn the instrument 180°, check the center mark and cross mark, if they are coincide, no adjustment is necessary, if not, adjust it.
2) Adjustment
1. Set the instrument on stable device and fix it.
2. Set a cross mark under the instrument.
3. Use the three leveling screws and coincide the center mark of plummet and cross mark on the ground.
4. Rotate the instrument 180° around and take off the cover of the optical plummet eyepiece, adjust the four adjusting screws with the adjusting pin to shift the center mark to the cross mark, correct only one-half of the displacement in this manner.
(5) Repeat the operation in (3) and (4) until coincide the center mark of the plummet and cross mark on the ground.

NOTE:

1. When adjust the screws of plummet reticle, firstly loosen the screw on the moving direction of reticle, secondly tighten another screw by the same mount, clockwise turning is for tightening, and anticlockwise turning is for loosening, the turning mount for tightening or loosening should be same.

5.4.2 Laser Plummet

Check
(1)Set the instrument on stable device and fix it.
(2)Set a cross mark on the ground under the instrument.
(3)Turn the laser switch on and focus it accurately.
(4)Turn the three leveling screws until the instrument keeps leveling and the laser spot coincides with the cross mark on the ground.
(5)Rotate the instrument $180^{\circ}(200 \mathrm{~g})$ around and check the laser spot and cross mark, if they coincide, adjustment is not required. Otherwise, adjust it.
Adjustment

1. Setting up the instrument on the checking tool or tripod which is 1.5 m apart from ground.
2. Turn on laser plummet, turn tribrach
 foot screws until laser spot coincide with cross mark. If you use tripod, make a cross mark on the laser spot directly. 3. Rotate instrument 180° around, if the laser spot is over 2 mm apart from cross mark, remove the protecting cover firstly, adjust two screws with 1.5 mm hexagon wrench to move laser spot to the cross mark, correct only one-half of the displacement in this manner.
Adjusting details see attached figure.
3. Repeat steps 2 and 3 until laser spot coincides with cross mark always when rotate instrument.

5.5 Vertical Cross-hair on Telescope

1) Check
(1) Set the instrument up the tripod and carefully level it.
(2) Set a point A front the instrument 50 m apart;
(3) Collimate the point A and adjust the vertical tangent screw; If the point appears to move continuously on the hair, adjustment is not required. Otherwise, adjust it.

2) Adjustment
(1) Set the instrument, and set the point A front the instrument 50 m apart.
(2) Take off cover of telescope eyepiece, there are 4 screws for the reticle part.

(3) Loosen all four fixing screws slightly with the cross screw-drive.
(4)Revolve the eyepiece section so that the vertical cross-hair coincides to point A, finally, re-tighten the four screws.
(5) Repeat the checking and adjusting until there is no deviation.

NOTE:

1) After the adjustment of cross-hair, please check the collimation error and vertical index error.
2) Refer to the chapter "5.9 EDM Optical Axis and the Telescope Sighting Axis Error" to check the axis. At last check the collimator error again.

5.6 Horizontal Collimation Error C

If the telescope's sight line isn't perpendicular to the horizontal axis, the collimation error will appear. The assembling, transportation and operation will cause this error.
If the collimation error isn't over the permitted range, with the program the instrument can correct this collimation error.
NOTE: After the program correction this deviation error is also on the instrument.

1) Check
(1) Set-up the instrument on tripod or adjustment platform and leveling accurately.
(2) Aim at the cross-hairs of collimator or the obvious target at a distance. Get the face left angle reading H 1 and the face right angle reading Hr .
(3) Calculating the horizontal collimation error C according to $\mathrm{C}=\left(\mathrm{Hl}-\mathrm{Hr} \pm 180^{\circ}\right) / 2$, if $\mathrm{C}<8^{\prime \prime}$, no adjustment will be necessary. If $\mathrm{C}>8^{\prime \prime}$, proceed with the following adjustment.
2) Adjustment by program:

Set-up the instrument on tripod or adjustment platform, and leveling accurately.

Procedures:

1. Power on, run the software "INST Setup", on the screen tap $\boldsymbol{4}$ or keys until Collimation displays, tap it to display collimation error and vertical index error setting menu.
2. Aim at the cross-hair of collimator at telescope left, tap "Left value" to read the horizntal and vertical angles.
3. Aim at the cross-hair of coillmator at telescope right, tap "Right value" to read the horzontal and vertical angles.
4. The software will calculate the new collimation error and vertical index error automatically.
5. Tap "Enter" to save the new values, or tap "Cancel" to use old values.

Note:
The adjustment can be performed by the program when $\mathrm{C}<30^{\prime \prime}$, if $\mathrm{C}>30^{\prime \prime}$, adjust the
reticle.
Reticle Adjusting:

1. Rotate the instrument in face right position, turning horizontal tangent screw until $\mathrm{Hr}^{\prime}=\mathrm{Hr}+\mathrm{C}$.
2.Loosen the shield of telescope's reticle.

2. Adjusting two screws at left and at right until the vertical hairs of telescope's reticle coincides with the cross-hairs of collimator or target.
3. Repeat the check and adjustment procedure until the error is accepted.

NOTE:

1. When adjust the screws of reticle, firstly loosen the screw on the moving direction of reticle, secondly tighten another screw by the same mount, clockwise turning is for tightening, and anticlockwise turning is for loosening, the turning mount for tightening or loosening should be same.
2. After the reticle adjustment, it is necessary to adjust the vertical index error by program.

5.7 Vertical Index Error

The deviation between vertical circle zero position and horizontal direction is vertical index (i), it is necessary to concern this error when measure vertical angle. The instrument program applied a formula to remove this error. This correction can offer the index for the formula.
Warning: Before starting this operation, be sure to read manual carefully, otherwise it may cause data faulty.
Because of the close relationship between vertical index and compensator zero position, it is necessary to check and adjust compensator zero position when adjust the vertical circle, the value should be stable when reading.

1) Check:

Please adjust the reticle of telescope and correct the collimation error before this operation.
(1) Mount the instrument at the tripod or a stable device and level it accurately, then turn on the instrument.
(2) Aim at the cross-hairs of collimator or the obvious target at a distance, VA should be
about $\pm 10^{\circ}$. Read the face left angle Vl and face right angle Vr.
(3) Calculate the index error according to the formula below:

$$
\mathrm{i}=\left(\mathrm{V} l+\mathrm{Vr}-360^{\circ}\right) / 2
$$

(4)If $\mathrm{I}<10^{\prime \prime}$, no adjustment is necessary , or you have to adjust it .
2) Adjustment by program:

Set-up the instrument on tripod or adjustment platform, and leveling accurately.

Procedures

1. Power on, run the software "INST Setup", on the screen tap $\boldsymbol{4}$ or keys until Collimation display, tap it to display collimation error and vertical index error setting menu.
2. Aim at the cross-hair of collimator at telescope left, tap "Left value" to read the horizntal and vertical angles.
3. Aim at the cross-hair of coillmator at telescope right, tap "Right value" to read the horzontal and vertical angles.
4. The software will calculate the new collimation error and vertical index error automatically.
5. Tap "Enter" to save the new values, or tap "Cancel" to use old values.

5.8 EDM Optical Axis and the Telescope Sighting Axis Error

It is necessary to check this error after the adjustment of telescope reticle error.

1) Checking
(1) Install the instrument at the tripod or a stable device and level it accurately, then power on the instrument.
(2) Set a prism about 2 m far away from the instrument.
(3) Aim at the prism center with telescope reticle.

(4) Enter EDM signal testing screen.
(5) Observe through eyepiece, turn the focusing knob until the red mark is clear, if the deviation between mark and cross-hair is not over $1 / 5$ of red mark diameter, adjustment is unnecessary.

2) Checking (For R35)

(1) Install the instrument at the tripod or a stable device and level it accurately, then power on the instrument.
(2) Set a reflective sheet about $5 \mathrm{~m}-20 \mathrm{~m}$ far away from the instrument.
(3) Aim at the sheet cross-mark with telescope reticle.

(4) Enter EDM signal testing screen.
(5) Observe the laser spot, if the laser spot coincides with the cross-mark of reflective sheet, adjustment is unnecessary.

NOTE:

Laser radiation do not stare into beam.
3) Adjustment

If the instrument needs adjustment, please contact with our dealers.

6. Specifications

R35

Telescope

Length	156 mm
Image	Erect
Magnification	$30 \times$
Aperture	45 m m
Field of view	$1^{\circ} 30^{\prime}$
Minimum focus	1.0 m

Angle measurement

Reading system	Absolute encoder
Circle diameter	79 m m
Angle unit	360 degree $/ 400$ gon $/ 6400 \mathrm{mil}$, selectable
Minimum display	$0.5^{\prime \prime} / 1^{\prime \prime} / 5^{\prime \prime}$,selectable
	$0.1 \mathrm{mgon} / 0.2 \mathrm{mgon} / 1 \mathrm{mgon}$, selectable
Detecting mode	Double
Accuracy	$2^{\prime \prime} / 5^{\prime \prime}$

Distance measurement(R600)
Display resolution(m/inch selectable) $0.1 \mathrm{~mm} / 1 \mathrm{~mm}$
Laser class

Distance unit
Measurement range(good condition)

Mini-reading
$\begin{array}{ll}\text { Prism } & \text { Class 1 } \\ \text { Reflectorless/Reflective sheet } & \text { Class 3R }\end{array}$
Reflectorless/Reflective sheet Class 3R
m / ft, selectable
$\begin{array}{lc}\text { Single prism } & 1 \text { to } 3000 \mathrm{~m} \\ \text { Reflective sheet/RP60 } & 1 \text { to } 800 \mathrm{~m} \\ \text { Reflectorless } & 1 \text { to } 500 \mathrm{~m} \\ \text { Fine mode } & 0.1 \mathrm{~mm} / 1 \mathrm{~mm}(0.001 \mathrm{ft} / 0.01 \mathrm{ft}) \\ \text { Tracking mode } & 10 \mathrm{~mm}(0.1 \mathrm{ft})\end{array}$
Accuracy
Prism: $2 \mathrm{~mm}+2 \mathrm{ppm} / 1 \mathrm{~mm}+1.5 \mathrm{ppm}$ (Optional)
Reflective sheet/RP60:3mm+2ppm
Reflectorless:1-200m:3mm+2ppm/ $\geqslant 200: 5 \mathrm{~mm}+3 \mathrm{ppm}$

Measurement time

Prism
Reflective sheet/Rp60

Initial: 2.5 s
Fine mode: 1.5 s
Rapid mode: 0.9s
Tracking mode: 0.5 s
typ.1.0-1.5s
typ.1.5s

Reflectorless
Temperature unit
Pressure unit
Temperature input range
Pressure input range
Prism constant condition
Refraction and earth curvature correction
Reflecting prism constant correction

Distance measurement(R1000)

Laser class
Prism standard mode/Prism long mode
Reflective sheet
Reflectorless standard mode
Reflectorless long mode
Measurement range(good condition)
Standard mode/Prism
Long mode/Prism
Reflective sheet/RP60
Reflectorless
typ.1.5-5s,max.20s
${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$, selectable
$\mathrm{hPa} / \mathrm{mmHg} / \mathrm{inchHg}$, selectable
$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(1^{\circ} \mathrm{C}\right.$ steps $)$
510 hPa to 1066 hPa (1 hPa setps)
-99.9 mm to +99.9 mm
OFF/0.14/0.2, selectable
-99.9 mm to +99.9 mm

Accuracy/typical measuring time(max.20s)
Prism standard mode: $1 \mathrm{~mm}+1.5 \mathrm{ppm} / 1.0 \mathrm{~s}-5.0 \mathrm{~s}$
Prism long mode: $2 \mathrm{~mm}+2.5 \mathrm{ppm} / 0.7 \mathrm{~s}-6 \mathrm{~s}$
Reflective sheet/RP60:2mm $+2 \mathrm{ppm} / 1 \mathrm{~s}-5 \mathrm{~s}$
Reflectorless:1-500m:2mm+2ppm/0.7s-6s>500m:4mm+2ppm/3s-12s

Level vial sensitivity

Plate level	$30^{\prime \prime} / 2 \mathrm{~m} \mathrm{~m}$
Circular level	$8^{\prime} / 2 \mathrm{~m} \mathrm{~m}$
Compensation	Dual-axis
System	Liquid type
Range	$\pm 3^{\prime}$
Resolving power	$1^{\prime \prime}$

Data processing system

Operating system
Windows CE
CPU 32 bit

Optical plummet(Factory optional)

Accuracy
$\pm 0.8 \mathrm{~mm} / 1.5 \mathrm{~m}$
Image

Erect

Magnification $3 \times$

Focusing range
Field of view
Laser plummet(Standard)
Accuracy
Laser class
Laser spot size/brightness
Laser wave length
$3 \times$
$0.5 \mathrm{~m} \sim \propto$
4°

$\pm 1.0 \mathrm{~mm} / 1.5 \mathrm{~m}$
Class 2/IEC60825-1
Adjustable
635 nm

Display
LCD

Internal memory

Internal memory

Power

Battery 3400 mAh Li-ion Rechargeable battery
Voltage
Continuous operation time About 10 hours(single distance measurement every 30 seconds)
Chargers
Charging time (at $+20^{\circ} \mathrm{C}$)

Application programs

Data collection/Stake out/Resection/REM/MLM/Point to line
AREA/Z coordinate/OFFset/3D Road/Traverse adjustment
Tape measurement/section/axis positioning measurement

Others

CPU
Memory
Guide Light System
Sensors
Keyboard
Operating temperature
Storage temperature
Dimension $(\mathrm{W} \times \mathrm{D} \times \mathrm{H})$
Weight(including batteries)
Dimensions $(W \times D \times H)$
Interface
Water and dust protection
Data collector

ARM9 Core
2G internal memory
Factory optional
Built-in temperature and pressure sensors
Alphanumerical illuminated key board,both sides
$-20^{\circ} \sim+50^{\circ} \mathrm{C}$
$-40^{\circ} \sim+70^{\circ} \mathrm{C}$
$210 \times 210 \times 360 \mathrm{~m} \mathrm{~m}$
5.5 kg
$185 \times 220 \times 360 \mathrm{~mm}$
USB host/USB slave/RS-232C/Bluetooth(Optional)
IP55 (IEC60529)
PS236,fully rugged PDA(Optional)

8. Standard components

- Carrying case

1 each

- Instrument
- Battery

1 each

- Charger
- Adjusting pins 2 each
- Cleaning cloth 1 each
- Cleaning brush 1 each
- Screwdriver 1 each
- Wrench 2 each
- Silica gel 1 each
- Instruction manual 2 each
- CD 1 each
- USB Communication cable 1 each
- RS232C Communication cable 1 each
- Rainproof 1 each
- Reflective sheet/RP30 4 each
- Reflective sheet/RP60 1 each
- Laser caution sign board 1 each

Appendix I: Atmospheric correction formula and chart(Just for reference)

Factory setting: temperature: $20^{\circ} \mathrm{C}$, pressure: $1013 \mathrm{hpa}, 0 \mathrm{ppm}$ temperature: $20^{\circ} \mathrm{C}$, pressure: $1013 \mathrm{hpa}, 0 \mathrm{ppm}$
The correction:

$$
\begin{aligned}
& \mathrm{Kpt}=274.417-0.2905 * \mathrm{p} /(1+0.0036 * \mathrm{t}) \\
& \mathrm{Kpt}=278.960-0.2902 * \mathrm{p} /(1+0.0036 * \mathrm{t})
\end{aligned}
$$

Where: p--Pressure value (hPa)
t --Temperature value $\left({ }^{\circ} \mathrm{C}\right)$
Kpt--Atmospheric correction (ppm)
Example:
$\mathrm{t}=20^{\circ} \mathrm{C}, \mathrm{p}=1013 \mathrm{hpa}, \mathrm{L} 0=1000 \mathrm{~m}$.
Then: $\mathrm{Kpt}=0 \mathrm{ppm} \quad \mathrm{Kpt}=4 \mathrm{ppm}$
$\mathrm{L}=\mathrm{L}_{0}(1+\mathrm{Kpt})=1000 \times\left(1+0 \times 10^{-6}\right)=1000.000 \mathrm{~m}$
$\mathrm{L}=\mathrm{L}_{0}(1+\mathrm{Kpt})=1000 \times\left(1+4 \times 10^{-6}\right)=1000.004 \mathrm{~m}$
The atmospheric value is obtained easily with the atmospheric correction chart. Find the measured temperature in horizontal axis, and pressure in vertical axis on the chart.
Read the value from the diagonal line, which is the required atmospheric correction value.

Elevation (m)

Appendix II: Correction for refraction and earth curvature

Considering the correction of refraction and earth curvature for distance measurement, the formula for slope distance, horizontal distance and vertical distance applied in the instrument are as followings:
$\mathrm{SD}=\mathrm{D}_{0} \times\left(1+\mathrm{ppm} \times 10^{-6}\right)+\mathrm{mm}$
SD--Displayed slope distance (m)
Do--Real measured distance (m)
$\mathrm{ppm}-$ - Scale coefficient ($\mathrm{mm} / \mathrm{km}$)
mm - - Target constant (mm)
$H D=Y-A \times X \times Y$
$V D=X+B \times Y^{2}$
HD- - Horizontal distance (mm)
VD--Vertical distance (mm)
$Y=S D .|\operatorname{Sin} \xi|$
$X=$ SD.Cos ξ
$\xi--$ Zenith angle

Elevation measurement
$A=\frac{1-K / 2}{R}$
$B=\frac{1-K / 2}{2 R}$
$\mathrm{K}=0.142$ or 0.20
$R=6.37 \times 10^{6}(\mathrm{~m})$

The conversion formula for horizontal and vertical distance is as follows when correction for refraction and earth curvature is not applied:
HD=SD COS§
VD=SD | SIN§ |
NOTE:
The factory setting for the refraction coefficient K is 0.142 .
Refer to the section 3.10 to change the value of K .

Appendix III: Assembling and disassembling for three-jaw tribrach

It is convenient to assemble or disassemble the instrument from tribrach by loosen or tighten the tribrach clamp.

Disassemble
(1) Rotate the tribrach clamp anticlockwise until the lever is loosen.
(2) One hand hold up the tribrach, another hand hold the carry handle of the instrument and lift out the instrument from the tribrach.

Assemble
(1) Put the instrument into the tribrach lightly, let the communication port against in the indentation of the tribrach..
(2) Rotate the tribrach clamp clockwise until the lever is tighten.

Note: Fix the tribrach clamp

If the instrument don't need assembly or disassembly from tribrach frequently, it is necessary to fix the tribrach clamp by fixed screw to avoid the disassembly by accident.

Screw out the fixed screw by driver to fix the clamp.

NOTE:

These designs, figures and specifications are subject to change without notice. We shall not be held liable for damages resulting from errors in this instruction manual.

STONEX

STONEX Co., Ltd.

Tel:
Fax:

E-mail:
Add:
Web: http://www.STONEX .com

Warning Statement

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
-Reorient or relocate the receiving antenna.
-Increase the separation between the equipment and receiver.
-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
-Consult the dealer or an experienced radio/TV technician for help.

The device has been evaluated to meet general RF exposure requirement. The device can be used in portable exposure condition without restriction.

[^0]: $※ 1$ Left angle or right angle will be switched in turn every time you click the "L/R Angle" key.

