

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 <u>http://www.ltalab.com</u>

Dates of Tests: December 21, 2011 ~January 3, 2012 Test Report S/N: LR500111112F Test Site : LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

Y3DPRM90U21C

APPLICANT

Phychips Inc.

:

: : : : :

FCC Classification
Manufacturing Description
Manufacturer
Model name
Test Device Serial No.:
Rule Part(s)
Frequency Range
RF power
Data of issue

FHSS Sequence Spread Spectrum (FHSS)
UHF RFID Reader hybrid module
Phychips Inc.
PRM90U21C
Identification
FCC Part 15.247 Subpart C; ANSI C-63.4-2003
902.75 ~ 927.25MHz
0.19W - Conducted
January 03, 2012

This test report is issued under the authority of:

Hyun-Chae You, Technical Manager

The test was supervised by:

Ki-Hun Cho, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 CARRIER FREQUENCY SEPARATION	6
3.2.2 NUMBER OF HOPPING FREQUENCIES	8
3.2.3 20 dB BANDWIDTH	10
3.2.4 TIME OF OCCUPANCY (Dwell Time)	13
3.2.5 TANSMITTER OUTPUT POWER	15
3.2.6 BAND – EDGE (Conducted)	18
3.2.7 FIELD STRENGTH OF HARMONICS	23
3.2.8 AC CONDUCTED EMISSIONS	26

APPENDIX

APPENDIX TEST EQUIPMENT USED FOR TESTS	2	27
--	---	----

1. General information's

1-1 Test Performed

Company name	: LTA Co., Ltd.
Address	: 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822
Web site	: <u>http://www.ltalab.com</u>
E-mail	: <u>chahn@ltalab.com</u>
Telephone	: +82-31-323-6008
Facsimile	+82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0 2012-09-30 ECT accre		ECT accredited Lab.
RRL	KOREA	KR0049	2013-04-24	EMC accredited Lab.
FCC	U.S.A	610755	2014-04-27	FCC filing
FCC	U.S.A	649054	2013-04-13	FCC CAB
VCCI	JAPAN	R2133(10m), C2307	2014-06-21	VCCI registration
VCCI	JAPAN	T-2009	2013-12-23	VCCI registration
IC	CANADA	IC5799	2012-05-14	IC filing

2. Information's about test item

2-1 Applicant & Manufacturer

Company name	: Phychips Inc.
Address	: #205 Migun Technoworld 1, 533, Yongsan-dong,
	Yuseong-gu, Daejeon, Korea, 305-500
Tel / Fax	: +82-42-864-2402 / +82-42-864-2403

<u>2-2 Equipment Under Test (EUT)</u>

Trade name	:	UHF RFID Reader hybrid module
FCC ID	:	Y3DPRM90U21C
Model name	:	PRM90U21C
Serial number	:	Identification
Date of receipt	:	December 20, 2011
EUT condition	:	Pre-production, not damaged
Antenna type	:	Quadrifilar Spiral Antenna Max Gain 1.0dBi
Frequency Range	:	902.75 ~ 927.25MHz
RF output power	:	0.19 W- Conducted
Number of channels	:	50
Channel spacing	:	500KHz
Channel Access Protocol	:	Frequency Hopping
Power Source	:	3.3VDC

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	902.75	914.75	927.25

2-4 Ancillary Equipment

Equipment	Model No. Serial No.		Manufacturer	
Notebook	Latitude D530	N/A	DELL	

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	Carrier Frequency Separation	> 25 kHz		С
15.247(a)	Number of Hopping Frequencies	\geq 50 hops		С
15.247(a)	20 dB Bandwidth	-		С
15.247	Dwell Time	< 0.4 seconds	Conducted	С
15.247(b)	Transmitter Output Power	< 1Watt		С
15.247(d)	Conducted Spurious emission	> 20 dBc		С
15.247(d)	Band Edge	> 20 dBc		С
15.249 / 15.209	Field Strength of Harmonics	Emission	Radiated	С
15.207	AC Conducted Emissions	Emissions	Conducted	NA ^{note3}
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable				

Note 2: The data in this test report are traceable to the national or international standards.

<u>Note 3</u>: This device is only operated by DC

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

→ Antenna Requirement

The Phychips Inc. PRM90U21C unit complies with the requirement of §15.203.

The Antenna type is U.FL Type ; Refer to the External photo

3.2 Transmitter requirements

3.2.1 Carrier Frequency Separation

Procedure:

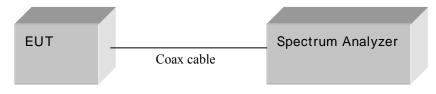
The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

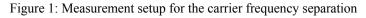
After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

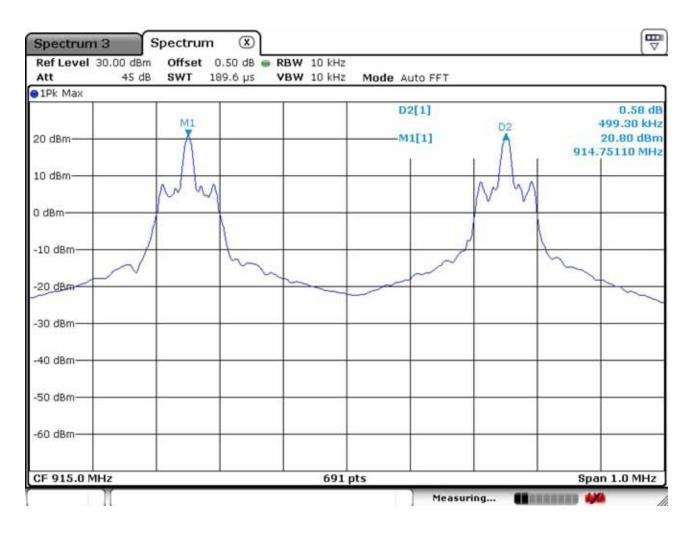
The spectrum analyzer is set to:

Span = 1 MHz (wide enough to capture the peaks of two adjacent channels)RBW = 10 kHz (1% of the span or more)Sweep = autoVBW = 10 kHzDetector function = peakTrace = max holdTrace = max hold

Measurement Data:


Test Results		
Carrier Frequency Separation (KHz)	Result	
499.3	Complies	


- See next pages for actual measured spectrum plots.


Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup

Carrier Frequency Separation

3.2.2 Number of Hopping Frequencies

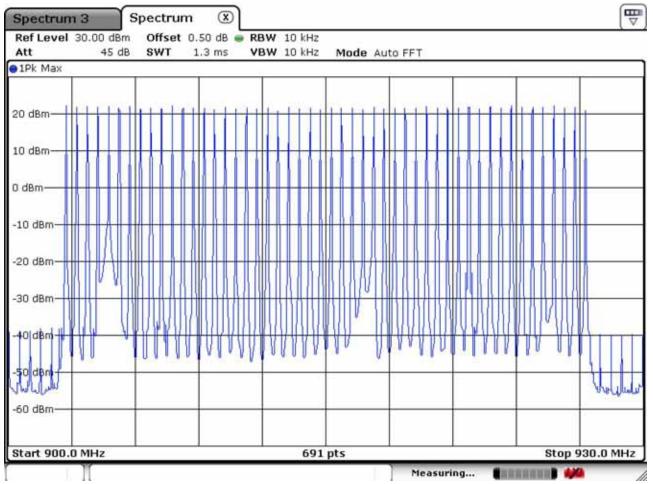
Procedure:

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the $902 \sim 928$ MHz FH band were examined.

The spectrum analyzer is set to:Frequency range1: Start = 900 MHz, Stop = 930 MHzRBW = 10 kHzSweep = autoVBW = 10 kHz (VBWRBW)Detector function = peakTrace = max holdSpan = 30MHz

Measurement Data: Complies


Total number of Hopping Channels50

- See next pages for actual measured spectrum plots.

Minimum Standard:

At least 50 hopes

Measurement Setup

Number of Hopping Frequencies

3.2.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

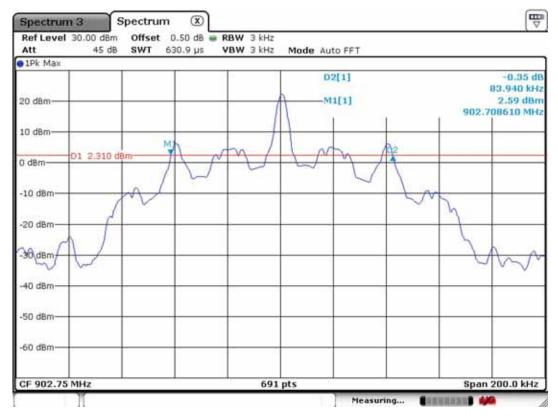
After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to:

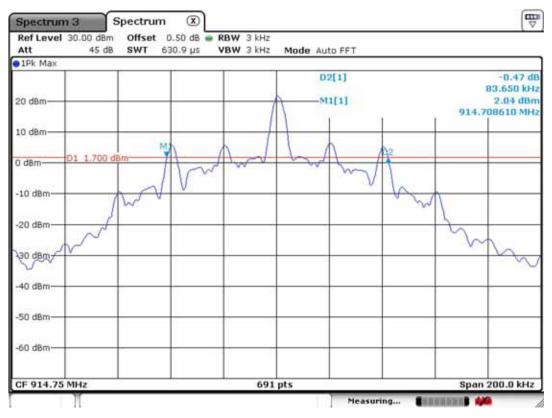
Center frequency = the highest, middle and the lowest channels Span = 200 KHz (approximately 2 or 3 times of the 20 dB bandwidth) RBW = 3 kHz Sweep = auto VBW = 3 kHz (VBW RBW) Detector function = peak Trace = max hold

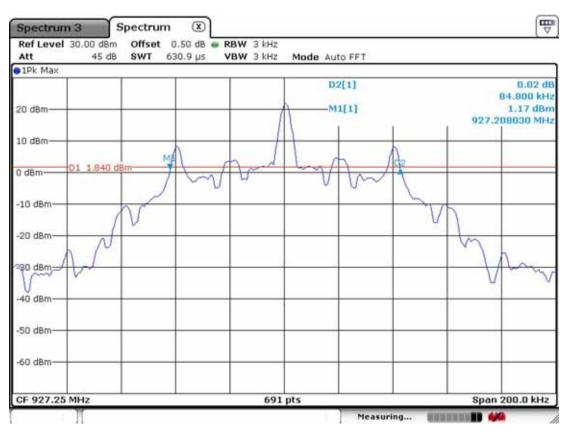
Measurement Data:

Frequency	Test Results		
(MHz)	Measured Bandwidth (kHz)	Result	
902.75	83.94	Complies	
914.75	83.65	Complies	
927.25	84.80	Complies	


- See next pages for actual measured spectrum plots.

Minimum Standard:


Measurement Setup


20 dB Bandwidth

Low Channel

Mid Channel

High Channel

3.2.4 Time of Occupancy (Dwell Time)

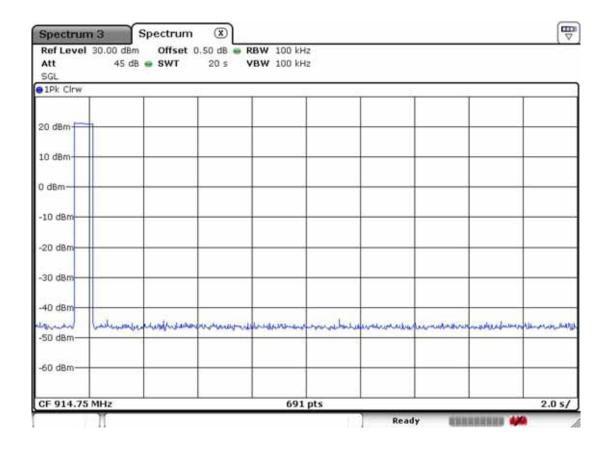
Procedure:

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:		
Center frequency =914.75 MHz	Span = zero	
RBW = 100 KHz	VBW = 100KHz (VBW	RBW)
Trace = Single SWEEP	Detector function = peak	

Measurement Data:

Channel Frequency	Test Results					
(MHz)	Length (ms)	number	Dwell Time (ms)	Result		
914.75	372.46	1	372.46	Complies		


- See next pages for actual measured spectrum plots.

Minimum Standard:

0.4 seconds within a 20 second period per any frequency

Measurement Setup

Spectrum 3	Spectrum 🗵			
Ref Level 30.00 dBm Att 45 dB SGL		100 kHz 100 kHz		
• 1Pk Clrw			1.1	0.44 d
20 dBm			(1) (1)	0.44 0 372.46 m ~48.78 dBr 326.09 m
10 dBm				
0 dBm				
-10 dBm				
-20 dBm				
-30 d8m	1			
-40 dBm				
w38-damenterterteretere	il warming and a start		CRAN	monants and disconsister and a
-60 dBm			-	
CF 914.75 MHz		691 pts		100.0 ms/
The second se		1	Ready	BRARRENES 🚧

3.2.5 Transmitter Output Power

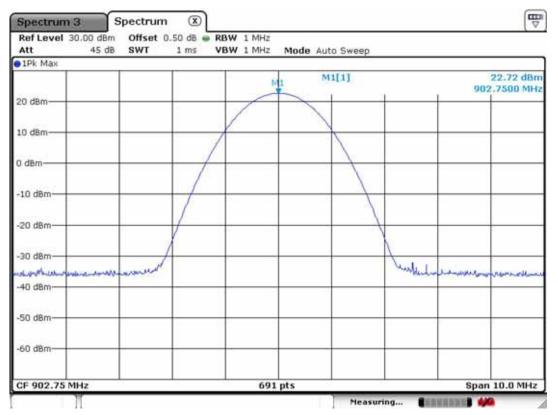
Procedure:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum analyzer is set to:Center frequency = the highest, middle and the lowest channelsSpan = 5 MHz (approximately 5 times of the 20 dB bandwidth)RBW = 1 MHz (greater than the 20dB bandwidth of the emission being measured)VBW = 1 MHz (VBW RBW)Detector function = peakTrace = max holdSweep = auto

Measurement Data:


Frequency	Test Results			
(MHz)	dBm	W	Result	
902.75	22.72	0.19	Complies	
914.75	21.84	0.15	Complies	
927.25	21.82	0.15	Complies	

- See next pages for actual measured spectrum plots.

Minimum Standard:	< 1W

Measurement Setup

Peak Output Power

Low Channel

Mid Channel

Spectrum 3	1000	pectrum							
Ref Level 3 Att	0.00 dBm 45 dB	Offset 0 SWT	1 ms V	BW 1 MHz BW 1 MHz	Mode Au	to Sweep			
1Pk Max									
				1	N. N	11[1]			21.84 dBn 6920 MH
20 dBm				1					
10 dBm				<u> </u>			-		
0 dBm			-/						
-10 dBm							-		
-20 dBm			/						
-30 dBm			X						
40 dBm	hophinter	manut			-		Marrie	linner	eren a
-50 dBm			-		-				
-60 dBm			-						
CF 914.75 M	Hz			69	1 pts			Span	10.0 MHz
	11					Measuri			

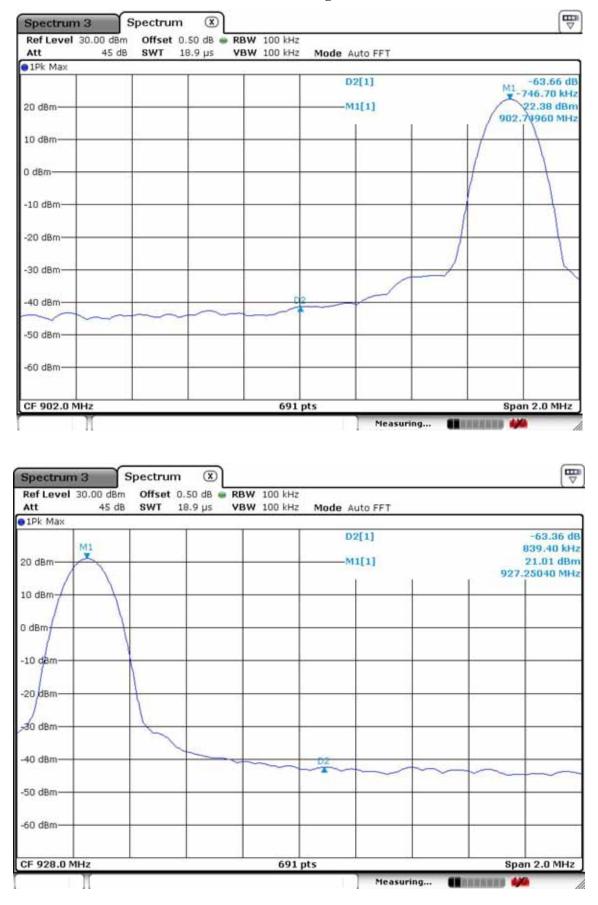
High Channel

3.2.6 Band Edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

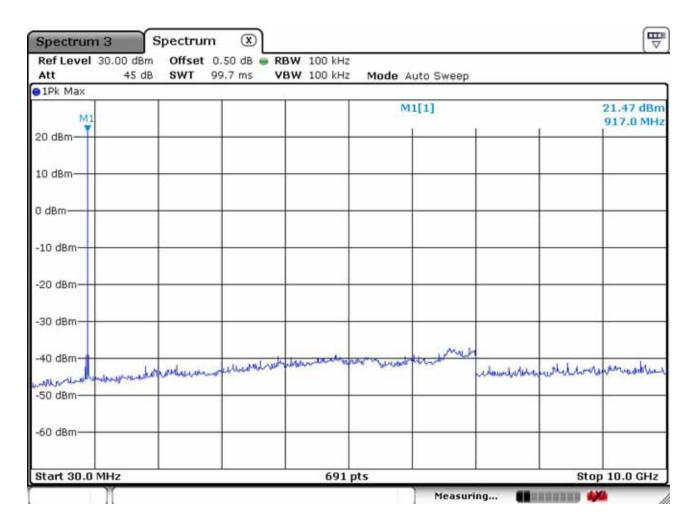

The spectrum analyzer is set to:				
Center frequency = the highest, middle and the lowest channels				
RBW = 100 kHz	VBW = 100 kHz			
Span = 2 MHz	Detector function = peak			
Trace = max hold	Sweep = auto			

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

Measurement Setup



Band - edge

Band - edge – Low channel
Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

Spectrum 3	Spectrum 🗵			
Ref Level 30.00 Att 45		RBW 100 kHz VBW 100 kHz Mode	Auto Sweep	
1Pk Max	12 II.	10		
20 dBm			M1[1]	22.18 dBm 903.0 MHz
10 dBm				_
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm	mbornessherrenterstables	Aladranden hopenanderen	www.	and the west in the rest
-50 dBm				
-60 dBm				
Start 30.0 MHz		691 pts		Stop 10.0 GHz
			Measuring 📲	

Band - edge – Mid channel Frequency Range = 30 MHz ~ 10th harmonic.

Spectrum 3	Spectrum	×						
Ref Level 30.00 Att 4			3W 100 kHz 3W 100 kHz		uto Sweep			
1Pk Max	12	n:						
20 dBm				м	1[1]			21.09 dBm 932.0 MHz
10 dBm								-
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm-								
-40 dBm	arealutionare	martinghille	hallaberrow	mothenter	nouse with the	and the second second	enobenherthe	and water to the
-50 dBm							<i>.</i> //	-
-60 dBm								-
Start 30.0 MHz			691	pts	1		Stop	10.0 GHz
Ĭ					Measuri	ng 🔳		Contract of the local division of the local

Band – edge – High channel Frequency Range = 30 MHz ~ 10th harmonic.

3.2.7 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

<u>The spectrum analyzer is set to:</u> Center frequency = the worst channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

RBW = 100 kHz (30MHz ~ 1 GHz)

= 1 MHz (1 GHz \sim 10th harmonic)

Span = 100 MHz

Trace = max hold

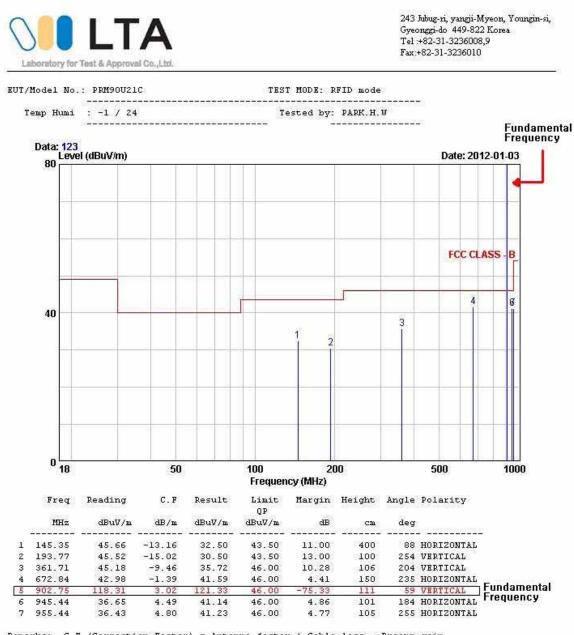
Peak mode: VBW = 1 MHz Average mode: VBW = 10Hz Detector function = Peak & average Sweep = auto

Measurement Data: Complies

- See next pages for actual measured data.
- The warm-up time of the EUT is 20min.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz) (@ 300m)
0.490 ~ 1.705	24000/F(kHz) (@ 30m)
1.705 ~ 30	30(@ 30m)
30~88	100 **
88~216	150 **
216~960	200 **
Above 960	500


** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Frequency			Correction			Limits		Result		Margin		
	[dBuV/m]		Pol.	Factor			[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV / Peak			Antenna Amp.Gain Cable		AV / Peak		AV / Peak		AV / Peak		
3611.2	52.3	55.2	V	29.1	36.9	5.1	54.0	74.0	49.6	52.5	4.4	21.5
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
Frequency	Reading			Correction			Limits		Result		Margin	
rrequency	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV / Peak			Antenna Amp.Gain Cable		AV / Peak		AV / Peak		AV / Peak		
3658.1	49.0	53.6	v	29.1	36.9	5.1	54.0	74.0	46.3	50.9	7.7	23.1
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
Frequency	Reading			Correction			Limits		Result		Margin	
requercy	[dBuV/m] Pol.		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV / Peak			Antenna Amp.Gain Cab		Cable	AV / Peak		AV / Peak		AV / Peak	
3709.5	49.6	52.3	V	29.1	36.9	5.1	54.0	74.0	46.9	49.6	7.1	24.4
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-

Measurement Data :

No other emissions were detected at a level greater than 20dB below limit.

Radiated Emissions – RFID mode

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.8 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Not Applicable (This product is operated by DC)

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5~30	60	50			

Minimum Standard: FCC Part 15.207(a)/EN 55022

* Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Spectrum Analyzer (~30GHz)	FSV-30	100757	R&S	1 year	2011-01-24
2	Signal Generator (~3.2GHz)	8648C	3623A02597	HP	1 year	2011-03-30
3	Signal Generator (1~20GHz)	83711B	US34490456	HP	1 year	2011-03-30
4	Attenuator (3dB)	8491A	37822	HP	2 year	2010-10-08
5	Attenuator (10dB)	8491A	63196	HP	2 year	2010-10-08
6	Attenuator (30dB)	8498A	3318A10929	HP	2 year	2011-01-05
7	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	1 year	2011-03-30
8	EMI Test Receiver (~1GHz)	ESCI7	100722	R&S	1 year	2011-10-07
9	RF Amplifier (~1.3GHz)	8447D	2439A09058	HP	2 year	2010-10-08
10	RF Amplifier (1~18GHz)	8449B	3008A02126	HP	2 year	2010-03-29
11	Horn Antenna (1~18GHz)	BBHA 9120D	9120D122	SCHWARZBECK	2 year	2010-12-24
12	Horn Antenna (18 ~ 40GHz)	SAS-574	154	Schwarzbeck	2 year	2010-11-25
13	Horn Antenna (18 ~ 40GHz)	SAS-574	155	Schwarzbeck	2 year	2010-11-25
14	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	2 year	2010-10-07
15	Dipole Antenna	VHA9103	2116	SCHWARZBECK	2 year	2010-11-25
16	Dipole Antenna	VHA9103	2117	SCHWARZBECK	2 year	2010-11-25
17	Dipole Antenna	VHA9105	2261	SCHWARZBECK	2 year	2010-11-25
18	Dipole Antenna	VHA9105	2262	SCHWARZBECK	2 year	2010-11-25
19	Hygro-Thermograph	THB-36	0041557-01	ISUZU	2 year	2010-04-12
20	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
21	Power Divider	11636A	6243	HP	2 year	2010-10-08
22	DC Power Supply	6622A	3448A03079	HP	-	-
23	Frequency Counter	5342A	2826A12411	HP	1 year	2011-03-30
24	Power Meter	EPM-441A	GB32481702	HP	1 year	2011-03-30
25	Power Sensor	8481A	US41030291	HP	1 year	2011-10-07
26	Audio Analyzer	8903B	3729A18901	HP	1 year	2011-10-07
27	Modulation Analyzer	8901B	3749A05878	HP	1 year	2011-10-07
28	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2011-10-07
29	Stop Watch	HS-3	601Q09R	CASIO	2 year	2010-03-31
30	LISN	ENV216	100408	R&S	1 year	2011-10-07
31	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	2 year	2010-05-13
32	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	-	-
33	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	-	-
34	Loop Antenna	FMZB 1516	151602/94	SCHWARZBECK	2 year	2011-04-05