TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No: DRTFCC1707-0131

Dt&C

- 2. Customer
 - Name : Phychips Inc.
 - Address : (Yongsan-dong), Migun Technoworld 2, A-104, 187, Techno 2-ro, Yuseong-gu, Daejeon, South Korea
- 3. Use of Report : FCC Original Grant
- 4. Product Name / Model Name : RFID Module / RED5
 - FCC ID : Y3D-RED5
- 5. Test Method Used : FCC Part 15 Subpart C 247
- 6. Date of Test : 2017.07.21 ~ 2017.07.26
- 7. Testing Environment : See appended test report.
- 8. Test Result : Refer to the attached test result.

Affirmation	Tested by		Technical Manager	
	Name : JungWoo Kim	(Signature)	Name : HyunSu Son	(Sinchture)

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.

2017.07.31.

DT&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1707-0131	Jul. 31 2017	Initial issue

Table of Contents

1.General Information5
1.1 Testing Laboratory5
1.2 Details of Applicant5
1.3 Description of EUT6
1.4 Declaration by the manufacturer6
1.5 Test conditions6
1.6 Test Equipment List7
1.7 Summary of Test Results8
1.8 Conclusion of worst-case and operation mode
1.9 Test configuration9
2. Maximum Peak Output Power Measurement10
2.1 Test Setup10
2.2 Limit10
2.3 Test Procedure10
2.4 Test Results10
3. 20dBc BW
3.1 Test Setup13
3.2 Limit13
3.3 Test Procedure13
3.4 Test Results13
4. Carrier Frequency Separation16
4.1 Test Setup16
4.2 Limit16
4.3 Procedure16
4.4 Test Results:
5. Number of Hopping Frequencies
5.1 Test Setup
5.2 Limit17
5.3 Procedure17
5.4 Test Results:
6. Time of Occupancy (Dwell Time)
6.1 Test Setup
6.2 Limit
6.3 Test Procedure18
6.4 Test Results
7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission
7.1 Test Setup
7.2 Limit
7.3 lest Procedures
7.3.1 Test Procedures for Radiated Spurious Emissions
7.3.2 Test Procedures for Conducted Spurious Emissions
7.4 Test Results
7.4.1 Radiated Emission21
7.4.2 Conducted Spurious Emissions24
8. Transmitter AC Power Line Conducted Emission 30

8.1 Test Setup	
8.2 Limit	
8.3 Test Procedures	
8.4. Test Results	
9. Antenna Requirement	
9.1 Procedure	33
9.2 Conclusion	
10. Occupied Bandwidth (99 %)	
10.1 Test Setup	34
10.2 Limit	34
10.3 Test Procedure	34
10.4 Test Results	

1.General Information

1.1 Testing Laboratory

DT&C Co., Ltd.				
Standa	ard	Site number	number Address	
	\square	165783	42, Yurim-ro 154 beon-gil, Cheoin -gu, Yongin-si, Gyeonggi -do, South Korea 449-935	
FCC	804488		42, Yurim-ro 154 beon-gil, Cheoin -gu, Yongin-si, Gyeonggi -do, South Korea 449-935	
FUU	596748		42, Yurim-ro 154 beon-gil, Cheoin -gu, Yongin-si, Gyeonggi -do, South Korea 449-935	
	678747		683-3, Yubang-dong, Cheoin-gu, Yongin-si, Kyeonggi-do, Korea, 449-080	
		5740A-3	42, Yurim-ro 154 beon-gil, Cheoin -gu, Yongin-si, Gyeonggi -do, South Korea 449-935	
		5740A-2	683-3, Yubang-dong, Cheoin-gu, Yongin-si, Kyeonggi-do, Korea, 449-080	
www.d	tnc.ne	<u>.t</u>		
Teleph	one	: + 8	32-31-321-2664	
FAX		: + 8	32-31-321-1664	

1.2 Details of Applicant

Applicant	:	Phychips Inc.
Address	:	(Yongsan-dong), Migun Technoworld 2, A-104, 187, Techno 2-ro, Yuseong-gu, Daejeon, South Korea
Contact person	:	Khyungjoo Min

1.3 Description of EUT

EUT	RFID Module
Model Name	RED5
Add Model Name	NA
Serial Number	Identical prototype
Hardware version	1.0
Software version	1.0
Power Supply	DC 3.3 V
Frequency Range	917.10 ~ 926.90 MHz
Modulation Technique	FSK
Number of Channels	50(Channel Spacing 200kHz)
Antenna Type	Antenna 1 : External Antenna (Microstrip patch antenna) Antenna 2 : External Antenna (PCB Antenna) Antenna 3 : External Antenna (PCB Antenna)
Antenna 1 / Antenna Gain	Max. PK 6.00 dBi
Antenna 2 / Antenna Gain	Max. PK 2.50 dBi
Antenna 3 / Antenna Gain	Max. PK 0.00 dBi

1.4 Declaration by the manufacturer

- N/A

1.5 Test conditions

Ambient Condition			
Temperature	+22 °C ~ +24 °C		
 Relative Humidity 	39 % ~ 48 %		

1.6 Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	16/09/09	17/09/09	MY50200834
Digital Multimeter	Agilent Technologies	34401A	17/01/04	18/01/04	US36099541
DC Power Supply	SM techno	SDP30-5D	17/01/05	18/01/05	305DLJ204
Attenuator	SMAJK	SMAJK-50-10	16/09/08	17/09/08	15081901
Signal Generator	Rohde Schwarz	SMBV100A	17/01/04	18/01/04	255571
Signal Generator	Rohde Schwarz	SMF100A	17/04/21	18/04/21	102341
Thermohygrometer	BODYCOM	BJ5478	17/04/11	18/04/11	120612-2
Loop Antenna	Schwarzbeck	FMZB1513	16/04/22	18/04/22	1513-128
Bilog Antenna	SCHAFFNER	CBL6112B	16/05/23	18/05/23	2737
Horn Antenna	ETS-LINDGREN	3117	16/05/03	18/05/03	00140394
PreAmplifier	Agilent	8449B	17/01/11	18/01/11	3008A00370
PreAmplifier	tsj	MLA-010K01- B01-27	17/03/06	18/03/06	1844539
EMI TEST RECEIVER	Rohde Schwarz	ESR7	16/10/18	17/10/18	101109
EMI TEST RECEIVER	Rohde Schwarz	ESCI	17/02/16	18/02/16	100364
Highpass Filter	Wainwright Instruments	WHKX12-935- 1000-15000- 40SS	16/09/09	17/09/09	7
ARTIFICIAL MAINS NETWORK	ROHDE&SCHWARZ	ESH2-Z5	16/09/08	17/09/08	828739/006
SINGLE-PHASE MASTER	NF	4420	16/09/08	17/09/08	3049354420023
Power Meter & Wide Bandwidth		N1911A	16/10/19	17/10/19	MY53360016
Sensor	Agrient rechnologies	N1921A			MY53360018

1.7 Summary of Test Results

FCC Part RSS Std.	Parameter	Limit (Using in 902-928 MHz)	Test Condition	Status Note 1
	Carrier Frequency Separation	>= 25 kHz or >= 20 dB BW, whichever is greater.		С
15.247(a) RSS-247(5.1)	Number of Hopping Frequencies	>= 50 hops, if 20 dB BW < 250kHz >= 25 hops, if 20 dB BW >= 250kHz		С
	20 dB Bandwidth	< 500 kHz		С
	Dwell Time	=< 0.4 seconds		С
15.247(b) RSS-247(5.4)	Transmitter Output Power	For FCC =< 1 Watt , if CHs >= 50 =< 0.25 W, if CHs >= 25, < 50 For IC if CHs >= 50 =< 1 Watt For Conducted Power =< 4 Watt For e.i.r.p, if CHs >= 25, < 50 =< 0.25 W For Conducted Power. =< 1 Watt For e.i.r.p	Conducted	С
15.247(d) RSS-247(5.5)	Conducted Spurious Emissions	The radiated emission to any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density.		С
RSS Gen(6.6)	Occupied Bandwidth (99 %)	N/A		NA
15.247(d) 15.205 & 209 RSS-247(5.5) RSS-Gen (8.9 & 8.10)	Radiated Spurious Emissions	FCC 15.209 Limits RSS-Gen 8.9	Radiated	C Note2
15.207 RSS-Gen(8.8)	AC Conducted Emissions	FCC 15.207 Limits	AC Line Conducted	С
15.203 RSS-Gen(8.3)	Antenna Requirements	FCC 15.203	-	С
Note 1 : C = Comply	NC = Not Comply NT = Not Tested	NA = Not Applicable		
Note 2 : This test ite	m was performed in each axis and the we	orst case data was reported.		

Note 3 : The sample was tested according to the following specifications :

- ANSI C63.10-2013

1.8 Conclusion of worst-case and operation mode

The field strength of spurious emission was measured in three orthogonal EUT positions(X-axis, Y-axis and Z-axis).

Tested frequency information,

- Hopping Function: Enable

	TX Frequency (MHz)	RX Frequency (MHz)
Hopping Band	917.10 ~ 926.90 MHz	917.10 ~ 926.90 MHz

- Hopping Function: Disable

Channel	TX Frequency (MHz)	RX Frequency (MHz)	
Lowest Channel	917.10	917.10	
Middle Channel	921.90	921.90	
Highest Channel	926.90	926.90	

1.9 Test configuration

For RF operations control and antenna connection, the EUT used the jig boards.

2. Maximum Peak Output Power Measurement

2.1 Test Setup

Refer to the APPENDIX I.

2.2 Limit

FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

 §15.247(b)(2), For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

IC Requirements

1. RSS-247(5.4)(1), For FHSs operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

2.3 Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using ;

Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge 20 \text{ dB BW}$ $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold

2.4 Test Results

Tested Channel	Frame Average	e Output Power	Peak Output Power		
	dBm	mW	dBm	mW	
Lowest	27.740 594.292		29.180	827.942	
Middle	27.820	605.341	29.200	831.764	
Highest	27.970	626.614	29.300	851.138	

Note 1 : The frame average output power was tested using an average power meter for reference only.

Note 2 : See next pages for actual measured spectrum plots.

Peak Output Power

Peak Output Power

Middle Channel

Peak Output Power

Highest Channel

3. 20dBc BW

3.1 Test Setup

Refer to the APPENDIX I.

3.2 Limit

Limit: For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

3.3 Test Procedure

- 1. The 20 dB bandwidth were measured with a spectrum analyzer connected to RF antenna Connector (conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting: RBW shall be in the range of 1% to 5% of the 20 dB bandwidth and VBW ≥ 3 x RBW, Span = between two times and five times the 20 dB bandwidth.

3.4 Test Results

Frequency (MHz)	Tested Channel	20dBc BW (kHz)
917.10	Lowest	81.53
921.90	Middle	81.00
926.90	Highest	80.51

Note 1: See next pages for actual measured spectrum plots.

20dBc Bandwidth

Lowest Channel

20dBc Bandwidth

Middle Channel

20dBc Bandwidth

Highest Channel

4. Carrier Frequency Separation

4.1 Test Setup

Refer to the APPENDIX I.

4.2 Limit

Limit : \geq 25 kHz or \geq 20 dB BW whichever is greater.

4.3 Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to

best identify the center	of each individual channel.
VBW ≥ RBW	Sweep = auto
Detector function = peak	Trace = max hold

4.4 Test Results:

Hopping	Peak of center channel	Peak of adjacent Channel	Test Result	
Mode	(MHz)	(MHz)	(kHz)	
Enable	921.900	922.101	201	

Carrier Frequency Separation

Hopping mode : Enable

Agilent Spectrum Analyzer - Swept SA				
LXI RF 50 Ω AC		ALIGNAUTO Avg Type: Log-Pwr	05:13:31 PM Jul 25, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
Ref Offset 11.06 dB 10 dB/div Ref 40.00 dBm	IFGain:Low Atten: 40 dB	ΔΝ	۸kr1 200.5 kHz 0.07 dB	Auto Tune
20.0 10.0	X2			Center Freq 922.000000 MHz
-10.0				Start Freq 921.750000 MHz
-30.0				Stop Fred 922.250000 MHz
Center 922.0000 MHz #Res BW 62 kHz	#VBW 180 kHz	Sweep 1.	Span 500.0 kHz 000 ms (1001 pts)	CF Step 50.000 kH <u>Auto</u> Mar
1 <u>A2</u> <u>1</u> <u>f</u> <u>(A)</u> <u>2</u> 2 <u>F</u> <u>1</u> <u>f</u> <u>921.88</u> 3 4 5 6	00.5 kHz (Δ) 0.07 dB 99 5 MHz 28.77 dBm		=	Freq Offse 0 H
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			~	
MSG		STATUS		

5. Number of Hopping Frequencies

5.1 Test Setup

Refer to the APPENDIX I.

5.2 Limit

Limit: >= 50 hops

5.3 Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while

EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 902 ~ 928 MHz were examined.

The spectrum analyzer is set to :

```
Span for FH mode = 20 MHz Start Frequency = 911.9 MHz, Stop Frequency = 931.9 MHz
```

RBW = To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Detector function = peak

Sweep = auto Trace = max hold

5.4 Test Results:

Hopping mode	Test Result (Total Hops)	
Enable	50	

Hopping mode : Enable

Carrier Frequency Separation

Frequency Avg Type: Log-Pwr Trig: Free Run Atten: 40 dB TYPE DE1 PNO: Fast IFGain:Low Auto Tune Mkr2 926.90 MH: 29.085 dBn Ref Offset 11.06 dB Ref 40.00 dBm **Center Freq** 921.900000 MHz Start Fred 911.900000 MHz Stop Freq 931.900000 MHz Center 921.90 MHz #Res BW 62 kHz Span 20.00 MHz CF Step 2.000000 MHz #VBW 180 kHz Sweep 5.000 ms (1001 pts) Auto Man 917.10 MHz 926.90 MHz 28.711 dBm 29.085 dBm **Freq Offset** 0 H; STATUS

6. Time of Occupancy (Dwell Time)

6.1 Test Setup

Refer to the APPENDIX I.

6.2 Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

6.3 Test Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :

 Center frequency = 915 MHz
 Span = zero

 RBW = 100 kHz (RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)

 VBW ≥ RBW
 Detector function = peak

Trace = max hold

6.4 Test Results

Channel Frequency	Length	Number	Dwell Time	
(MHz)	(ms)		(ms)	
921.9	397.5	1	397.500	

7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

7.1 Test Setup

Refer to the APPENDIX I.

7.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1705	24000/F (kHz)	30
1705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

^t Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below :

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~ 156.52525	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.7 ~ 156.9	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	162.0125 ~ 167.17	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	167.72 ~ 173.2	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	240 ~ 285	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	322 ~ 335.4	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1240	3345.8 ~ 3358		
			3600 ~ 4400		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

7.3 Test Procedures

7.3.1 Test Procedures for Radiated Spurious Emissions

- The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- NOTE 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- NOTE 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.
- NOTE 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz for Average detection (AV) at frequency above 1 GHz.

7.3.2 Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

```
Frequency range : 9 kHz ~ 30 MHz
RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001
```

Frequency range : 30 MHz ~ 10 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

7.4 Test Results

7.4.1 Radiated Emission

Note 1: Attached plot of worst data, refer to the APPENDIX II.

9kHz ~ 10GHz Data_ANT 1

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2751.407	V	Z	PK	53.58	-0.07	N/A	53.51	74.00	20.49
2751.353	V	Z	AV	50.27	-0.07	N/A	50.20	54.00	3.80
3668.503	V	Z	PK	52.54	1.76	N/A	54.30	74.00	19.70
3668.427	V	Z	AV	48.87	1.76	N/A	50.63	54.00	3.37

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2765.558	V	Z	PK	54.40	-0.03	N/A	54.37	74.00	19.63
2765.743	V	Z	AV	50.96	-0.03	N/A	50.93	54.00	3.07
3687.708	V	Z	PK	53.08	1.86	N/A	54.94	74.00	19.06
3687.635	V	Z	AV	49.71	1.86	N/A	51.57	54.00	2.43

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2780.630	V	Z	PK	54.67	0.01	N/A	54.68	74.00	19.32
2780.725	V	Z	AV	51.57	0.01	N/A	51.58	54.00	2.42
3707.653	V	Z	PK	49.87	1.95	N/A	51.82	74.00	22.18
3707.623	V	Z	AV	45.67	1.95	N/A	47.62	54.00	6.38

Note.

1. No other spurious and harmonic emissions were reported greater than listed emissions above table.

2. Above listed point data is the worst case data.

3. The limit is applied as below, Restricted band = FCC Part 15.209 Non-restricted band = Fundamental level – 20dB *= Non-restricted band

4. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCF = Duty Cycle Correction Factor

9kHz ~ 10GHz Data_ANT 2

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2751.295	Н	Z	PK	52.48	-0.07	N/A	52.41	74.00	21.59
2751.333	Н	Z	AV	49.28	-0.07	N/A	49.21	54.00	4.79
3668.587	Н	Y	PK	51.15	1.76	N/A	52.91	74.00	21.09
3668.415	Н	Y	AV	46.49	1.76	N/A	48.25	54.00	5.75

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2765.740	Н	Z	PK	52.45	-0.03	N/A	52.42	74.00	21.58
2765.702	Н	Z	AV	49.10	-0.03	N/A	49.07	54.00	4.93
3687.745	Н	Y	PK	50.22	1.86	N/A	52.08	74.00	21.92
3687.640	Н	Y	AV	45.19	1.86	N/A	47.05	54.00	6.95

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2780.835	Н	Z	PK	53.28	0.01	N/A	53.29	74.00	20.71
2780.708	Н	Z AV 49.57 0.01 N/A 4		49.58	54.00	4.42			
3707.638	Н	Y	PK	49.20	1.95	N/A	51.15	74.00	22.85
3707.642	Н	Y	AV	43.62	1.95	N/A	45.57	54.00	8.43

Note.

1. No other spurious and harmonic emissions were reported greater than listed emissions above table.

2. Above listed point data is the worst case data.

3. The limit is applied as below, Restricted band = FCC Part 15.209 Non-restricted band = Fundamental level – 20dB *= Non-restricted band

4. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCF = Duty Cycle Correction Factor

9kHz ~ 10GHz Data_ANT 3

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2751.443	Н	Z	PK	52.91	-0.07	N/A	52.84	74.00	21.16
2751.298	Н	Z	AV	48.99	-0.07	N/A	48.92	54.00	5.08
3668.430	Н	Y	PK	51.18	1.76	N/A	52.94	74.00	21.06
3668.427	Н	Y	AV	47.22	1.76	N/A	48.98	54.00	5.02

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2765.582	Н	Z	PK	52.28	-0.03	N/A	52.25	74.00	21.75
2765.745	Н	Z	AV	47.81	-0.03	N/A	47.78	54.00	6.22
3687.565	Н	Y	PK	50.80	1.86	N/A	52.66	74.00	21.34
3687.625	Н	Y	AV	46.06	1.86	N/A	47.92	54.00	6.08

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2780.745	Н	Z	PK 52.45		0.01	N/A	52.46	74.00	21.54
2780.763	Н	Z AV 47.45 0.01 N/A		47.46	54.00	6.54			
3707.528	Н	Y	PK	52.18	1.95	N/A	54.13	74.00	19.87
3707.667	Н	Y	AV	47.10	1.95	N/A	49.05	54.00	4.95

Note.

1. No other spurious and harmonic emissions were reported greater than listed emissions above table.

2. Above listed point data is the worst case data.

3. The limit is applied as below, Restricted band = FCC Part 15.209 Non-restricted band = Fundamental level – 20dB *= Non-restricted band

4. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCF = Duty Cycle Correction Factor **Dt&C**

7.4.2 Conducted Spurious Emissions

Low Band-edge

Low Band-edge

<u>Hopping mode</u>

Conducted Spurious Emissions

Lowest Channel

LXI RF 50 Ω 🚹 DC		SENSE: IA	NT Aug		09:59:08 AM Jul 26, 20	Frequency
	PNO: Fast	Trig: Free Ru	n Avg	Type: Log-Pwr	TYPE MWWWW DET P N N N N	N N
Def Offeret 40.27 el	IFGain:Low	Atten: 40 dB			Vkr1 281.9 kH	Auto Tune
10 dB/div Ref 40.00 dBm					-34.63 dBn	n
30.0						Center Freq
20.0						15.004500 MHz
10.0					8.89 dB	
-10.0						Start Freq
-20.0						9.000 kHz
-30.0						Oten Free
-40.0		naderial fillen and and	entering and a second secon	hanna an	معتقو أمتحمد فرعا مراعي مناهلته والتعديد	30.000000 MHz
-50.0						
Start 9 kHz #Pes BM 100 kHz	#\/B)/	N 300 kHz		Sween 5'	Stop 30.00 MH	CF Step
		Y JOO KHZ	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man
1 N 1 f	281.9 kHz	-34.63 dBm				
3						Freq Offset
5						0 Hz
8						
9						
11					>	2
MSG				STATUS	DC Coupled	

Agilent Spectr	um Analyzer -	Swept SA								
L <mark>XI</mark>	RF 5	50 Ω AC		SENS	E:INT	Avg Type	ALIGNAUTO : Log-Pwr	10:00:19 TRAC	AM Jul 26, 2017 E 1 2 3 4 5 6	Frequency
		F IF	PNO: Fast G Gain:Low	Trig: Free Atten: 38 o	Run 18		Mkr	TYI DI 3 2 709		Auto Tune
10 dB/div	Ref Offse Ref 40.0	t 12.59 dB 00 dBm				_		-25.	31 dBm	
20.0 10.0									8.89 dBm	Center Freq 5.015000000 GHz
0.00 -10.0 -20.0		\$ ³	2							Start Freq 30.000000 MHz
-30.0 -40.0 -50.0										Stop Freq 10.000000000 GHz
Start 30 M #Res BW	/IHz 1.0 MHz		#VBV	V 3.0 MHz		s	weep 18	Stop 10 .67 ms (4	.000 GHz 0001 pts)	CF Step 997.000000 MHz
MKR MODE TH	RC SCL	× 917.3	33 MHz	Y 30.39 dB	FUN	CTION FUI	NCTION WIDTH	FUNCTIO	IN VALUE	Auto Mari
2 N 1 3 N 1 4 5	f	3.241 (2.709 (09 GHz 94 GHz	-25.55 dB -25.81 dB	m m					Freq Offset 0 Hz
7 8 9 10										
11 				Ш					>	
MSG							STATUS			

Reference for limit

Middle Channel

Conducted Spurious Emissions

Agilen	it Spec	trum /	Anal	yzer - Sw	rept SA											
LXI			RF	50 Q	2 🛆 DC			SEN	SE:INT			ALIGNAUTO	09:28:53	7 AM Jul 26, 201	Ζ.	Fraguese
										Avg	Туре	: Log-Pwr	TRA	ACE 12345	5	Frequency
						PNO: Fast	5	Trig: Free	Run				T	PE MUMMAN	<i>*</i>	
						IFGain:Lov	v T	Atten: 40	dB				1	DET PINNINN	8	
													NAL.		ĩ	Auto Tune
		R	lef (Offset 10	0.37 dB								WIKET 28	93.2 KH2		
10 di	B/div	R	lef	40.00	dBm								-35.	.91 dBm		
Log			-													
30 D																Center Fred
																CenterFreq
20.0																15.004500 MHz
10.0														9.00 dBr		
10.0																
0.00	 															Otort Eron
10.0																Start Freq
-10.0																9.000 kHz
-20.0																
	1															
-30.0	() ' -															
-40 N	1															Stop Freq
40.0	346,0	titain register	ANN I	والمواجية والاجار	and the second	in the last section of the section o	A	harring lighter	ana	station the second	welling .	And South States	and the second	in a children in the		30.000000 MHz
-50.0	\vdash															
Star	† 9 k	Hz											Stop 3	30.00 MHz		CE Stop
#Do	e BV	10	n k	Hz		#\/	BIA	300 kHz			9	ween 5	333 me (/	10001 nts		
mixe.	3 0 1	V 10	<u>v</u> 1	112		<i>"</i> •		500 KH2			•	weep 5.	-) em 666	rooorpis	4	2.999100 1012
MKR	MODE	TRC S	SCL		X			Y	FL	INCTION	FUN	ICTION WIDTH	FUNCT	ION VALUE	Auto	<u>man</u>
1	N	1	f			293 2 kHz		-35 91 dF	3m							
2	<u> </u>					200121112		00.01 44								
3																Freq Offset
4																0 Hz
5														-		0112
6																
7											-					
8			_													
9									_							
10											-					
_			-						_					~		
			_					10					_			
MSG												STATU	IS 🧘 DC Co	upled		
			-													

Agilent Spectrum Analyzer - Swept SA					
LX/ RF 50 Ω AC		SENSE:INT	ALIGNAUTO Ava Type: Loa-Pwr	09:30:12 AM Jul 26, 2017 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 🖵 Trig:	Free Run		TYPE MINAMOMAN DET P N N N N N	
	IFGain:Low Atter	1: 38 dB			Auto Tune
Ref Offset 12.59 dB 10 dB/div Ref 40.00 dBm			IVIKE	-26.43 dBm	
20.0 Q1					Contor From
20.0					5 015000000 GHz
10.0				9.00 dBm	3.013000000 GH2
0.00					
10.0					Start Freq
-10.0 A 3		2			30.000000 MHz
20.0		Y.	histoitet a sea ha ann a bhaile an saobhailte a sao	Maria and Andrea	
		ل الأثناء التقور الك			Stop Freq
-40.0					10.00000000 GHz
-50.0					
Start 30 MHz #Res BW 1.0 MHz	#VBW 3.0 M	Hz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz
MKR MODE TRC SCL X	Y	FUNCTI	ON FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
1 N 1 f 92 2 N 1 f 586	2.07 MHz 30.3 0.46 GHz -26 1	2 dBm			
3 N 1 f 2.37	2 45 GHz -26.4	3 dBm			Freq Offset
5				-	0 Hz
6					
8					
10					
				~	
MSG			STATUS		

Middle Channel

High Band-edge

Highest Channel

High Band-edge

Hopping mode

Dt&C

Conducted Spurious Emissions

Agile	int Sj	pectr	um	Апа	lyzer	- Sw	ept S <i>I</i>																	
LXI				RF		50 Ω	<u>≜</u> DC				SE	INSE: INT	Г		/	ALIGNAUTO	C	09:47:	45 AM J	ul 26, 20	17	E	requenc	w.
									PNO: Fas FGain:Lo	at 구 w	Trig: Fre Atten: 4	e Run 0 dB		Avg	Туре	: Log-Pw	r	TF	TYPE DET	2345 NNNN	6 ₩ N		requent	.y-
10 0	dB/c	liv	R	tef (tef	Offs 40.	et 10 . 00 ().37 d dBn	IB 1									М	kr1 2 -33	81.9 3.06	9 kH dBn	z		Auto	Tune
30. 20. 10.	9 0 0																			9.20 dB	m	1	Center 5.004500	Freq MHz
0.0 -10.1 -20.1		1																					Start 9.00	Freq 0 kHz
-30. -40. -50.			إفباريية		wath	an di san	Wetterste	yan Yand	if a bacaffet,		(dana ng mga Kada)	n nain	nindlet progra	perra and pa	wenite	pijet Merical Africa	aib s ya biy	and the second	, kan <mark>ma</mark> lina	in the second	*	3(Stop	Freq D MHz
Sta #R	urt 9 es 1) kH BW	lz 10	10 k	κHz				#`	VBW	300 kHz	z			S	weep (5.33	Stop 3 ms	30.0 (400	0 MH 01 pts	Z S)	Auto	CF 2.999100	Step MHz
MKF 1 2 3 4 5 6 7 8 9 10 11 <				f				× 28	1.9 kHz		¥ -33.06 d	Bm	FUNC	CTION	FUN	CTION WID		FUNC	TION V	ALUE			Freq C	0 Hz
MSG																STA			ouple	a				

ilent Spectr	um Analyzer -	Swept SA										
	RF 51	DΩ AC	PNO: Fast G	SENS	E:INT	Avg	م Type:	LIGNAUTO Log-Pwr	09:53:4 TR T	1 AM Jul 26, 2017 ACE 123456 YPE MANNA N N	Fre	quency
0 dB/div	Ref Offset Ref 40.0	12.59 dB 0 dBm	IFGain:Low	Atten: 38 (18			Mkr	3 5.720 -25) 13 GHz .80 dBm		Auto Tun
.og 30.0 20.0 10.0	\\$1 									9.20 dBm	C 5.015	enter Fre 000000 GH
0.00 10.0 20.0					\$ ³						30.	Start Free 000000 MH
0.0 0.0 0.0											10.000	Stop Fre 000000 GH
tart 30 N Res BW	/IHz 1.0 MHz		#VBI	N 3.0 MHz			S٧	veep 18	Stop 1 .67 ms (0.000 GHz 40001 pts)	997.	CF Step 000000 MH
IN 1 2 N 1	RC SCL	× 927 3.149	.05 MHz 36 GHz	Y 30.68 dB -25.34 dB	FUNC m	CTION	FUN	CTION WIDTH	FUNC	TON VALUE	Auto	
3 N 1 4 5 6 9		5.720	0 13 GHZ	-25.80 dB	m							0 H
7 8 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10												
11				ш						>		

Highest Channel

8. Transmitter AC Power Line Conducted Emission

8.1 Test Setup

Comply

8.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

	Conducted Limit (dBuV)			
Frequency Range (MHZ)	Quasi-Peak	Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

* Decreases with the logarithm of the frequency

8.3 Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

8.4. Test Results

AC Line Conducted Emissions (Graph)_ANT 1

Results of Conducted Emission

AC Line Conducted Emissions (List)_ANT 1

Results of Conducted Emission

Date 2017-07-26

Model Function Mode Test condition RED5 900MHz RFID Temp/Humi. Power Supply Operator 23 'C 48 % AC 120 V 60 Hz J.W.Kim

Memo

DT&C

LIMIT : FCC P15.207 QP FCC P15.207 AV

NC	FREQ	READING	C.FACTOR	RESULT	LIMIT	MARGIN	PHASE
	[MHz]	[dBuV] [dBuV] [dB]	[dBuV] [dBuV] [dBuV] [dBuV] [dBuV][dBuV]	7]
1	0.15544	58.5844.06	0.22	58.8044.28	65.70 55.70	6.9011.42	Ν
2	0.17589	53.3237.92	0.21	53.5338.13	64.68 54.68	11.15 16.55	Ν
3	0.20628	48.4834.46	0.20	48.6834.66	63.35 53.35	14.6718.69	Ν
4	0.54021	32.73 25.02	0.22	32.95 25.24	56.00 46.00	23.05 20.76	N
5	2.65720	28.26 22.52	0.34	28.60 22.86	56.00 46.00	27.40 23.14	Ν
6	12.00440	27.05 20.48	0.85	27.9021.33	60.00 50.00	32.10 28.67	Ν
7	17.82800	26.07 19.00	1.24	27.31 20.24	60.00 50.00	32.6929.76	Ν
8	0.15154	60.3046.32	0.18	60.4846.50	65.92 55.92	5.44 9.42	L1
9	0.16456	57.7645.12	0.18	57.94 45.30	65.23 55.23	7.29 9.93	L1
10	0.21413	48.6736.46	0.17	48.8436.63	63.04 53.04	14.20 16.41	L1
11	0.58671	32.19 22.81	0.21	32.40 23.02	56.00 46.00	23.60 22.98	L1
12	2.55380	30.8325.61	0.32	31.15 25.93	56.00 46.00	24.85 20.07	L1
13	9.38060	21.46 15.01	0.77	22.23 15.78	60.00 50.00	37.7734.22	L1
14	18.34280	28.77 22.81	1.36	30.1324.17	60.00 50.00	29.87 25.83	L1

9. Antenna Requirement

9.1 Procedure

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

9.2 Conclusion

: Comply

The external antennas (ANT1&2&3) employs a unique antenna connector (CMJ type) using the cable.

Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

10. Occupied Bandwidth (99 %)

10.1 Test Setup

Refer to the APPENDIX I.

10.2 Limit

Limit : Not Applicable

10.3 Test Procedure

The 99 % power bandwidth was measured with a calibrated spectrum analyzer.

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 × RBW.

Spectrum analyzer plots are included on the following pages.

10.4 Test Results

Not Applicable

APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (MHz)	Path Loss (dB)	Frequency (MHz)	Path Loss (dB)
30	10.37	1000	11.09
500	10.84	5000	12.25
917.1 & 921.9 & 926.9	11.06	10000	12.59
-	-	-	-

Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.

Path loss (S/A's Correction factor) = Cable A + Attenuator

Detector Mode : AV

APPENDIX II

Unwanted Emissions (Radiated) Test Plot

<ANT 1>

<ANT 2>

Highest & Z & Hor

<ANT 3>

Highest & Y & Hor

Detector Mode : AV

