ThinkEco, Inc.

ThinkEco USB Receiver Model: TE1001

Report No. THKE0001 Rev 01

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: January 21, 2011 ThinkEco, Inc. Model: TE1001

Emissions				
Test Description	Specification	Test Method	Pass/Fail	
Occupied Bandwidth	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Output Power	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Band Edge Compliance	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Spurious Conducted Emissions	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Power Spectral Density	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Spurious Radiated Emissions	FCC 15.247:2011	ANSI C63.10:2009	Pass	
AC Powerline Conducted Emissions	FCC 15.207:2011	ANSI C63.10:2009	Pass	
Duty Cycle	FCC 15.247:2011	ANSI C63.10:2009	Pass	

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:

Tim O'Shea, Operations Manager

The same of

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
01	Corrected Duty Cycle Correction Factor value in Spurious Radiated Emissions data	1/30/12	31-32
01	Corrected numbering of Samples in Duty Cycle data	1/30/12	41

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. NVLAP is administered by the National Institute of Standards and Technology (NIST), an agency of the U.S. Commerce Department. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

Accreditations and Authorizations

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017).

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157, Brooklyn Park: US0175)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations



Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Product Description

Rev 11/17/06

Party Requesting the Test

Company Name:	ThinkEco, Inc.
Address:	148 Madison Avenue, 8 th Floor
City, State, Zip:	New York, NY 10016
Test Requested By:	Ben Burns
Model:	TE1001
First Date of Test:	December 21, 2010
Last Date of Test:	January 21, 2011
Receipt Date of Samples:	December 21, 2010
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functiona	al Description of the EUT (Equipment Under Test):
2.4 GHz I	SM radio, 802.15.4

Testing Objective:
To demonstrate compliance to FCC 15.247 requirements

Revision 9/21/05

CONFIGURATION 1 THKE0001

Software/Firmware Running during test		
Description Version		
Test Tool	11.2.4	

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
ThinkEco USB Receiver	ThinkEco, Inc.	TE1001	0040	

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Host PC	Dell	Vostro 3500	6J13OCL1	

Cables				
Cable Type Shield Length (m) Ferrite Connection 1 Connection 2				
USB Yes 3.0m No USB Dongle Host PC				
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.				

CONFIGURATION 1 THKE0008

Software/Firmware Running during test			
Description Version			
Test Tool	11.2.4		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
ThinkEco USB Receiver	ThinkEco, Inc.	TE1001	0042

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Host PC	Dell	Vostro 3500	6J13OCL1	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	3.0m	No	USB Dongle	Host PC
PA = Cable	is permanently	attached to the device	e. Shielding ar	nd/or presence of ferrite m	ay be unknown.

Revision 4/28/03

	Equipment modifications						
II .	Data				Discounting of FUT		
Item	Date	Test	Modification	Note	Disposition of EUT		
1	12/21/2010	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
2	12/21/2010	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
3	12/23/2010	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
4	1/3/2011	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
5	1/5/2011	Output Power	Tested as delivered to Test Station	No EMI suppression devices were added or modified during this test	EUT remained at Northwest EMC following the test.		
6	1/5/2011	Power Spectral Density	Tested as delivered to Test Station	No EMI suppression devices were added or modified during this test	Scheduled testing was completed.		
7	1/19/2011	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
8	1/21/2011	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		

OCCUPIED BANDWIDTH

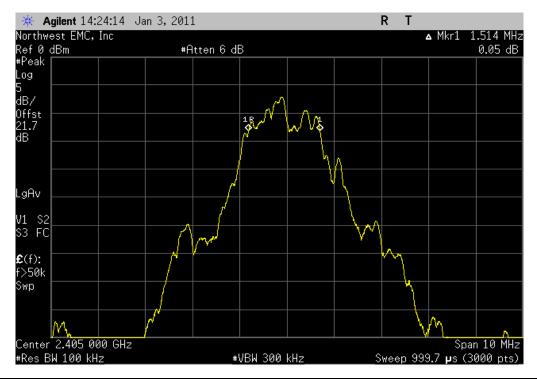
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
Attenuator 6 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-6	AUX	8/6/2010	13
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

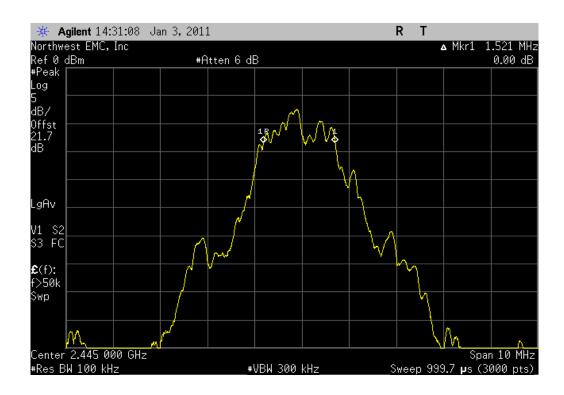
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION


The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate with the typical modulation.

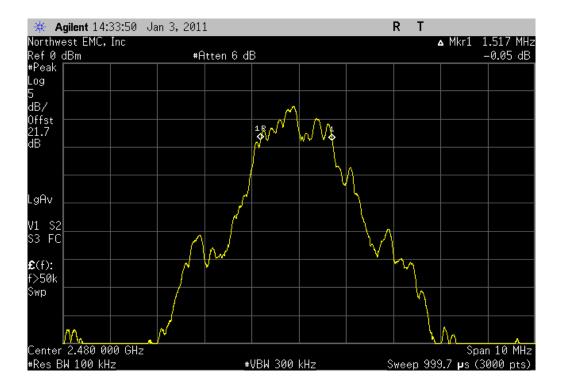
NORTHWEST		OCCUPIED D	ANDWIDTH			XMit 2010.11.0
EMC		OCCUPIED B	ANDWIDIH			
EUT:	TE1001				Work Order:	THKE0001
Serial Number:	0040					01/03/11
Customer:	ThinkEco, Inc.				Temperature:	
Attendees:	none				Humidity:	
Project:	None			В	arometric Pres.:	1003
	Rod Peloquin		Power: USB		Job Site:	EV06
TEST SPECIFICATI	IONS		Test Method			
FCC 15.247:2010			ANSI C63.10):2009		
COMMENTS						
Power setting to 11	I					
DEVIATIONS FROM	M TEST STANDARD					
No Deviations						
Configuration #	1	Signature Rocky la	Releng			
				Value	Liı	mit Results
Low Channel	•			1.514 MHz	≥ 500) kHz Pass
Mid Channel				1.521 MHz	≥ 500	kHz Pass
High Channel				1.517 MHz	≥ 500) kHz Pass

OCCUPIED BANDWIDTH


 Low Channel

 Result: Pass
 Value: 1.514 MHz
 Limit: ≥ 500 kHz

 Mid Channel


 Result: Pass
 Value: 1.521 MHz
 Limit: ≥ 500 kHz

OCCUPIED BANDWIDTH

High Channel

Result: Pass Value: 1.517 MHz Limit: ≥ 500 kHz

OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

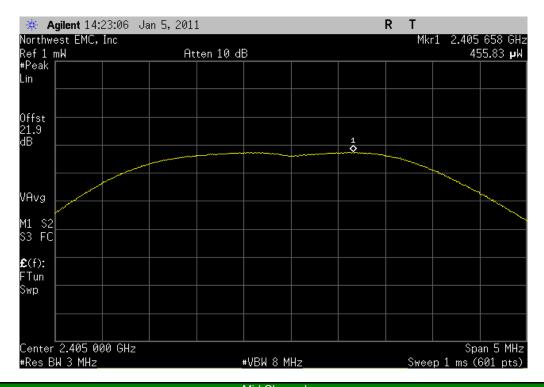
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	25

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

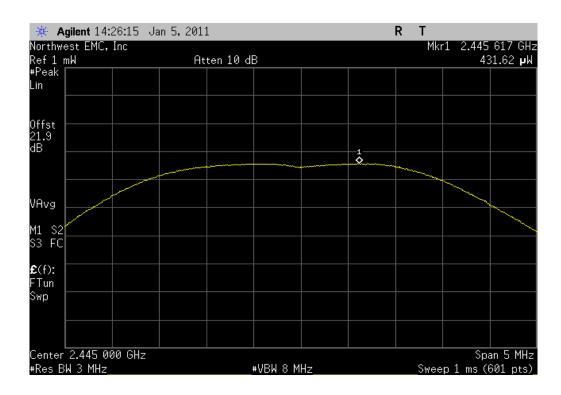
TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.


De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

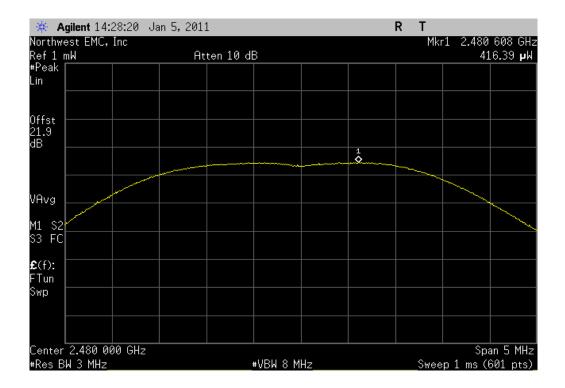
NORTHWEST		OUTPUT DOV	/ED		XMit 2010.11.03
EMC		OUTPUT POV	VER		
EUT:	TE1001			Work Order	: THKE0001
Serial Number:				Date	: 01/05/11
Customer:	ThinkEco, Inc.			Temperature	: 21.9°C
Attendees:				Humidity	
Project:	None			Barometric Pres.	: 1027.5 mb
	Rod Peloquin	Powe	er: USB	Job Site	: EV06
TEST SPECIFICATI	ONS		Test Method		
FCC 15.247:2010			ANSI C63.10:2009		
COMMENTS					
Power setting to 11					
· ·					
DEVIATIONS FROM	N TEST STANDARD				
No Deviations					
		10120			
Configuration #	1	Rolly le Reley	75		
		Signature			
			Valu	ie L	imit Results
Low Channel	•		0.456		W Pass
Mid Channel			0.432		I W Pass
High Channel			0.416	mW 1	I W Pass

OUTPUT POWER


Low Channel

Result: Pass Value: 0.456 mW Limit: 1 W

Mid Channel


Result: Pass Value: 0.432 mW Limit: 1 W

OUTPUT POWER

High Channel

Result: Pass Value: 0.416 mW Limit: 1 W

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

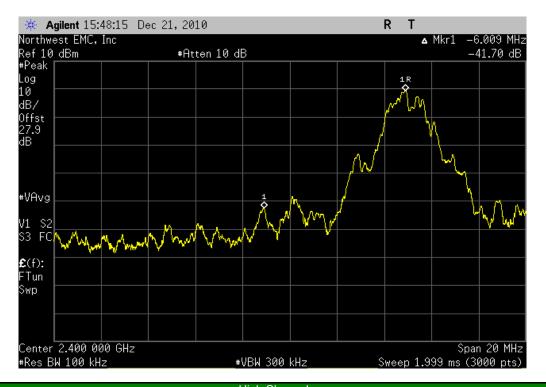
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Signal Generator	Agilent	E8257D	TGX	12/10/2008	25
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Attenuator, 26db SMA	Fairview Microwave	18B5W-26	RFZ	11/17/2010	13
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

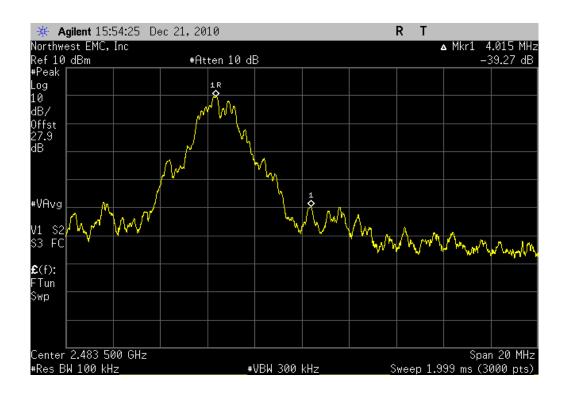
TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its only data rate available.


The spectrum was scanned across each band edge from at least 10 MHz below the band edge to 10 MHz above the band edge.

NORTHWEST		DAND EDGE	COMPLIANCE	_		XMit 2010.11.0
EMC		BAND EDGE	COMPLIANCE			
EUT:	TE1001				Work Order: THKE000	1
Serial Number:	0040				Date: 12/21/10	
Customer:	ThinkEco, Inc.				Temperature: 22.7°C	
Attendees:	Bryan Takata				Humidity: 31%	
Project:				Bard	ometric Pres.: 1003	
	Ethan Schoonover		Power: 5VDC		Job Site: EV06	
TEST SPECIFICATI	ONS		Test Method			
FCC 15.247:2010			ANSI C63.10:2	2009		
COMMENTS						
None						
]						
DEVIATIONS FROM	I TEST STANDARD					
No Deviations						
	_		17			
Configuration #	1	Signature 3				
		Gignature				
				Value	Limit	Results
Low Channel				-41.70	≤ -20 dBc	Pass
High Channel				-39.27	≤ -20 dBc	Pass

BAND EDGE COMPLIANCE


Low Channel

Result: Pass Value: -41.70 Limit: ≤ -20 dBc

High Channel

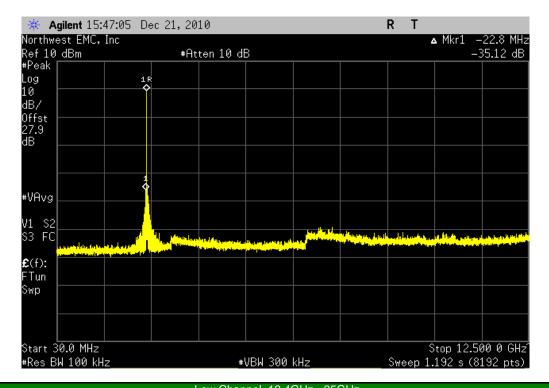
Result: Pass Value: -39.27 Limit: ≤ -20 dBc

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Signal Generator	Agilent	E8257D	TGX	12/10/2008	25
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Attenuator, 26db SMA	Fairview Microwave	18B5W-26	RFZ	11/17/2010	13
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24

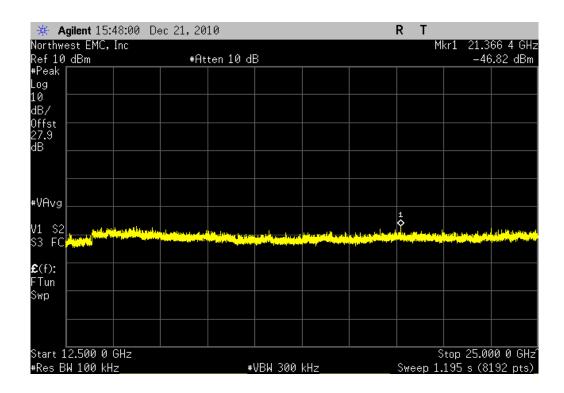
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

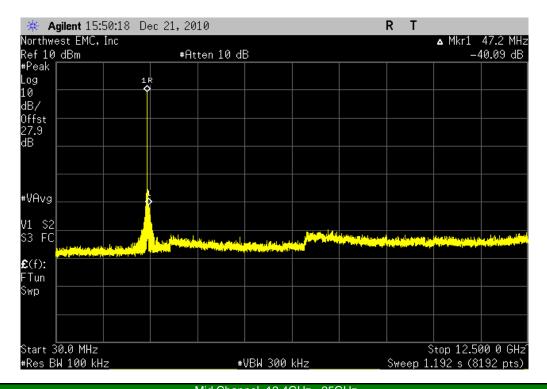

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

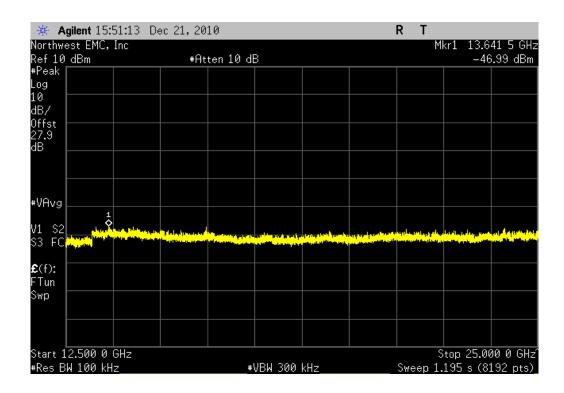
NORTHWEST		6511516116					XMit 2010.11
EMC		SPURIOUS (COND	UCTED	EMISSIONS	5	
EUT	TE1001					Work Order:	THKE0001
Serial Number:	0040					Date:	12/21/10
Customer	ThinkEco, Inc.					Temperature:	22.7°C
Attendees	: Bryan Takata					Humidity:	31%
Project	None					Barometric Pres.:	1003
	Ethan Schoonover			Power:	5VDC	Job Site:	EV06
TEST SPECIFICAT	TONS				Test Method		
FCC 15.247:2010					ANSI C63.10:2009		
COMMENTS							
None							
DEVIATIONS FRO	M TEST STANDARD						
No Deviations							
Configuration #	1	Signature	The I				
					v	alue Li	mit Results
Low Channel							
	30MHz - 12.5GHz				-35.12 dBc	≤-20 dBc	Pass
	12.4GHz - 25GHz				≤ -30dBc	≤-20 dBc	Pass
Mid Channel							
	30MHz - 12.5GHz				-40.09	≤-20 dBc	Pass
	12.4GHz - 25GHz				≤ -30dBc	≤-20 dBc	Pass
High Channel							
	30MHz - 12.5GHz				-35.19 dBc	≤-20 dBc	Pass
	12.4GHz - 25GHz				≤ -30dBc	≤-20 dBc	Pass


Low Channel, 0MHz - 12.5GHz

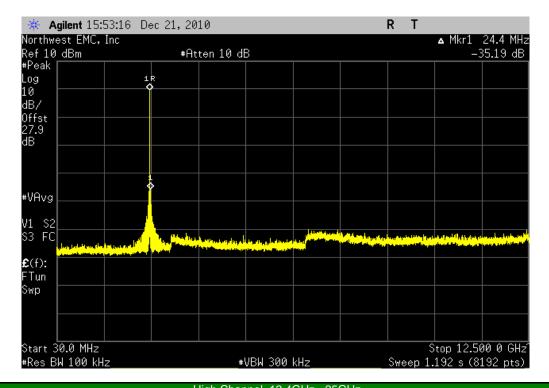
Result: Pass Value: -35.12 dBc Limit: ≤-20 dBc


 Low Channel, 12.4GHz - 25GHz

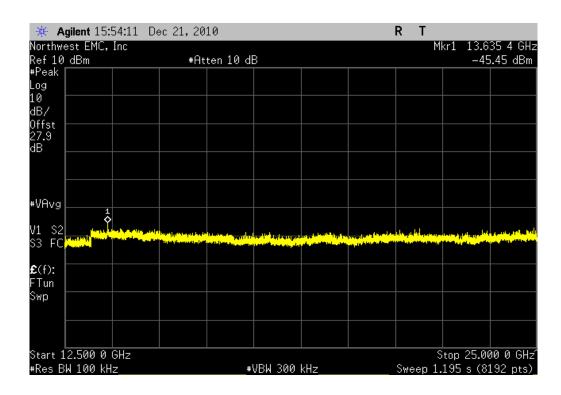
 Result: Pass
 Value: ≤ -30dBc
 Limit: ≤-20 dBc


Mid Channel, 0MHz - 12.5GHz

Result: Pass Value: -40.09 Limit: ≤-20 dBc


 Mid Channel, 12.4GHz - 25GHz

 Result: Pass
 Value: ≤ -30dBc
 Limit: ≤-20 dBc


High Channel, 0MHz - 12.5GHz

Result: Pass Value: -35.19 dBc Limit: ≤-20 dBc

 High Channel, 12.4GHz - 25GHz

 Result: Pass
 Value: ≤ -30dBc
 Limit: ≤-20 dBc

POWER SPECTRAL DENSITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	25

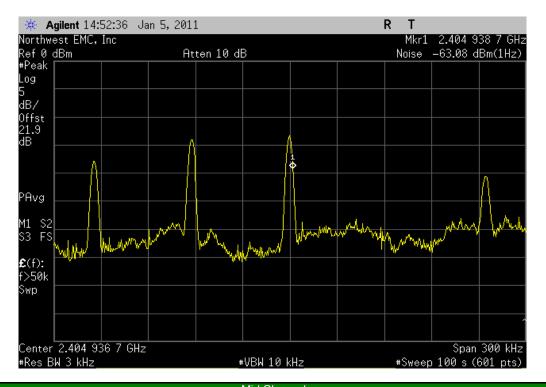
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

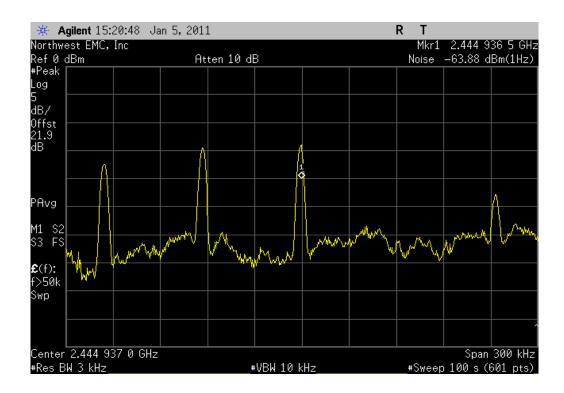
The power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate for each modulation type available. While the average output power was measured as defined in section ANSI C63.10:2009, Section 6.11.2.3 was followed.

The spectrum analyzer was set as follows:

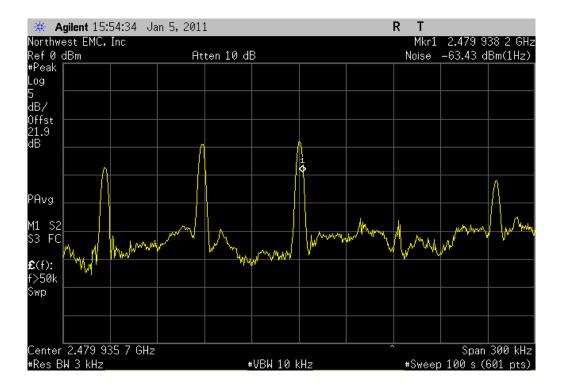

The emission peak was located and zoomed in on within the passband.

- a) RBW = 3 kHz
- b) VBW = 10 kHz
- c) Span = 300 kHz
- d) Sweep time = 100s
- e) Trace set to MAX
- f) The 1 hz Marker Noise function on the analyzer was used. The data was corrected to 3 kHz by adding 34.8 dB to the reading.

NORTHWEST						XMit 2010.11.03
EMC		POWER SPECT	RAL DENS	ITY		
EUT:	TE1001				Work Order: THKE000	1
Serial Number:	0040				Date: 01/05/11	
Customer:	ThinkEco, Inc.				Temperature: 21.9°C	
Attendees:	none				Humidity: 27%	
Project:				Baro	metric Pres.: 1027.5 ml	b
	Rod Peloquin		Power: USB		Job Site: EV06	
TEST SPECIFICAT	IONS		Test Metho	d		
FCC 15.247:2010			ANSI C63.1	0:2009		
COMMENTS						
Power setting to 1	1					
DEVIATIONS FROM	M TEST STANDARD					
No Deviations						
Configuration #	1	Signature Rocky le	Reling			
				Value	Limit	Results
Low Channel	-	_		-28.3 dBm / 3 kHz	8 dBm / 3 kHz	Pass
Mid Channel				-29.0 dBm / 3 kHz	8 dBm / 3 kHz	Pass
High Channel				-28.6 dBm / 3 kHz	8 dBm / 3 kHz	Pass


POWER SPECTRAL DENSITY

	Low Channel			
Result: Pass	Value: -28.3 dBm / 3 kHz	Limit:	8 dBm / 3 kHz	


Mid Channel

Result: Pass Value: -29.0 dBm / 3 kHz Limit: 8 dBm / 3 kHz

POWER SPECTRAL DENSITY

High Channel							
Result: Pass	Value: -28.6 dBm / 3 kHz	Limit: 8 dBm / 3 kHz					

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Continuous Tx, power level 11.

POWER SETTINGS INVESTIGATED

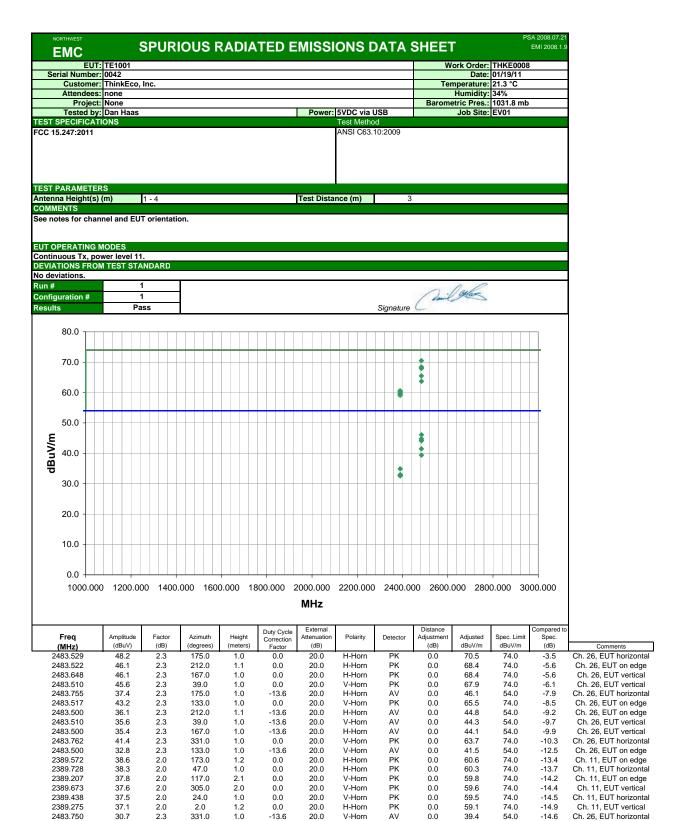
5VDC via USB

FREQUENCY RANGE INVESTIGATED								
Start Frequency	30 MHz	Stop Frequency	25 GHz					

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Duty Cycle Correction Factor + Distance Adjustment Factor + Ext Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	1/6/2010	12
High Pass Filter	Micro-Tronics	HPM50111	HFO	7/9/2010	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/9/2010	13
Antenna, Biconilog	EMCO	3141	AXE	1/14/2010	13
EV01 Cables	N/A	Bilog Cables	EVA	7/9/2010	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/9/2010	13
Antenna, Horn	EMCO	3115	AHC	7/8/2010	24
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	7/9/2010	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	8/25/2010	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	8/25/2010	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	8/25/2010	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	8/25/2010	13
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Pre-Amplifier	Miteq	AM-1616-1000	AVY	7/19/2010	13


/IzU=\		
(kHz)	(kHz)	(kHz)
1.0	0.2	0.2
10.0	9.0	9.0
100.0	120.0	120.0
1000.0	N/A	1000.0
	100.0 1000.0	100.0 120.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

2389.858

2389 983

2389.828

2389.910

2389 847

2389.952

26.5

24.6

24.3

24.3

24 2

24.2

2.0

20

2.0

2.0

20

2.0

173.0

24 0

47.0

2.0

117 0

305.0

1.2

1.0

1.0

1.2

21

2.0

-13.6

-13 6

-13.6

-13.6

-13 6

-13.6

20.0

20.0

20.0

20.0

20.0

20.0

H-Horn

V-Horn

H-Horn

H-Horn

V-Horn

V-Horn

ΑV

ΑV

ΑV

ΑV

ΑV

ΑV

0.0

0.0

0.0

0.0

0.0

34.9

33.0

32.7

32.7

326

32.6

54.0

54.0

54.0

54.0

54.0

54.0

-19.1

-21 0

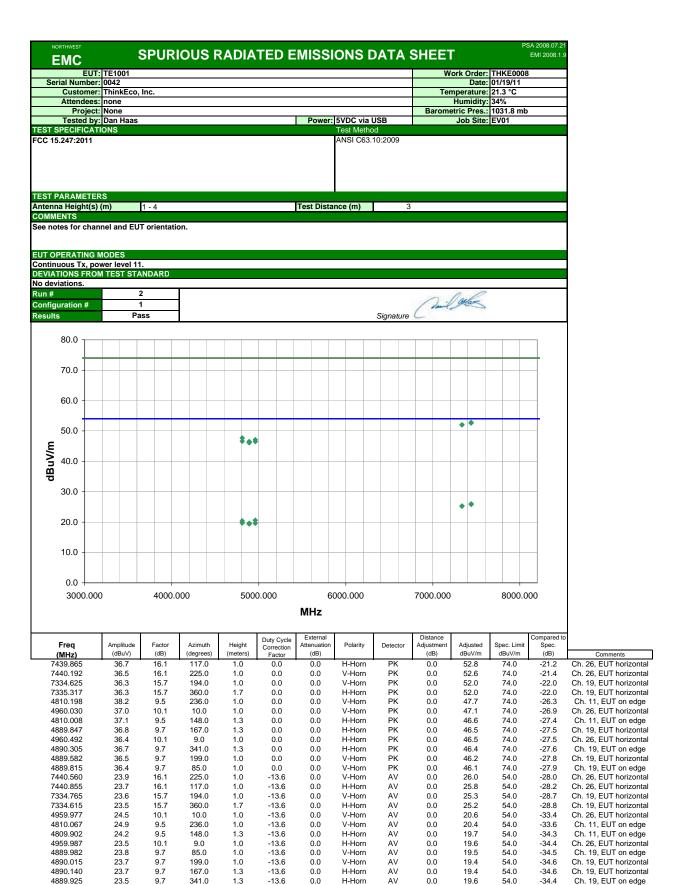
-21.3

-21.3

-21 4

-21.4

Ch. 11, EUT on edge


Ch. 11. EUT horizontal

Ch. 11, EUT horizontal

Ch. 11, EUT vertical

Ch. 11. EUT on edge

Ch. 11, EUT vertical

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx High Channel, 2480

tx Mid Channel, 2445

tx Low Channel, 2405

POWER SETTINGS INVESTIGATED

5VDC

CONFIGURATIONS INVESTIGATED

THKE0001 - 1

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

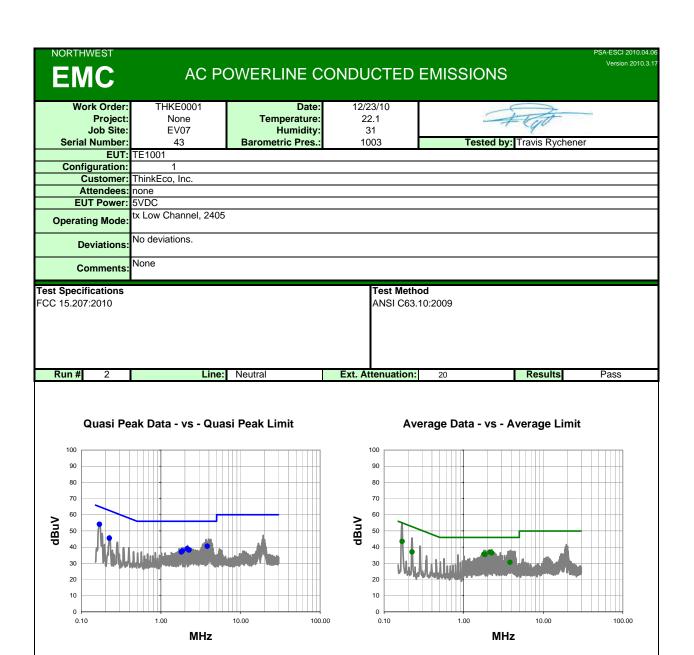
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESCI	ARE	4/29/2010	12 mo
High Pass Filter	TTE	H97-100K-50-720B	HFX	2/16/2010	13 mo
Attenuator	Coaxicom	66702 2910-20	ATO	8/6/2010	13 mo
EV07 Cables	N/A	Conducted Cables	EVG	6/21/2010	13 mo
LISN	Solar	9252-50-R-24-BNC	LIN	5/27/2010	12 mo

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

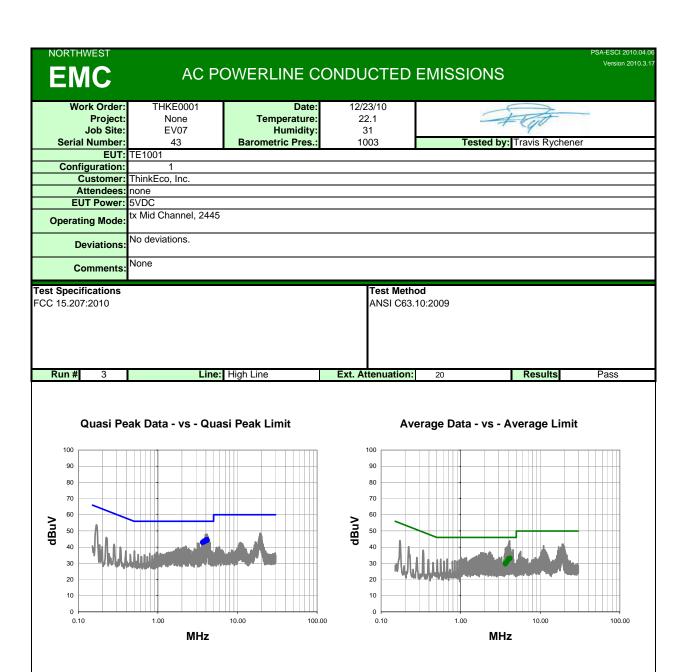
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

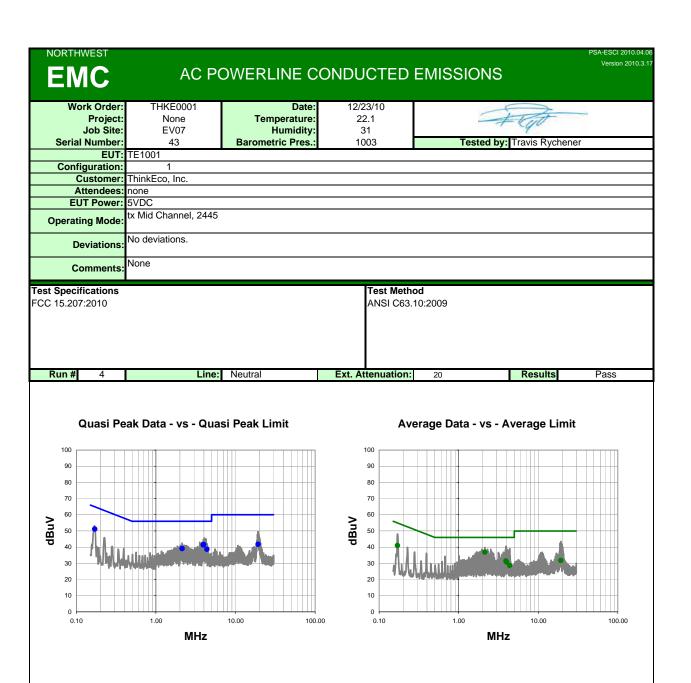

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2009.

Quasi Peak Data - vs - Quasi Peak Limit

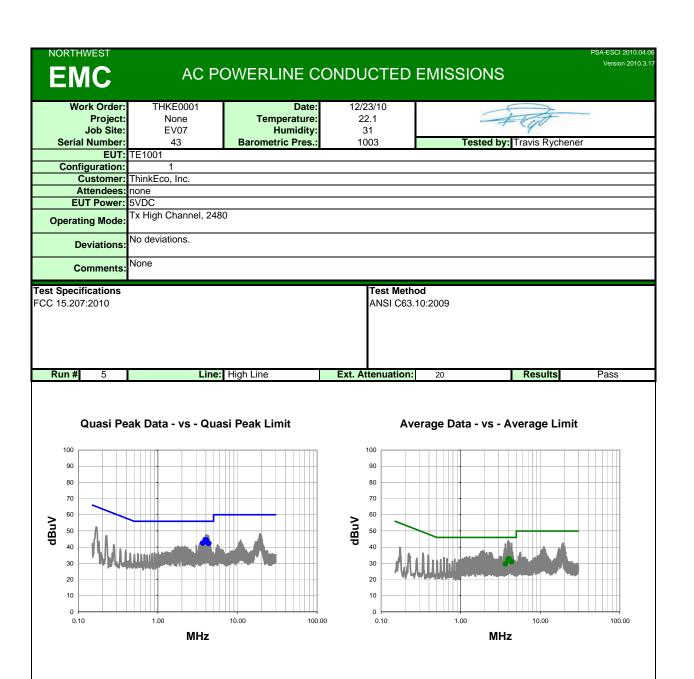

Average	Data -	vs -	Average	Limit	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.169	35.8	20.2	56.0	65.0	-9.0	0.169	24.6	20.2	44.8	55.0	-10.2
0.169	34.9	20.2	55.1	65.0	-9.9	0.169	23.9	20.2	44.1	55.0	-10.9
4.140	24.6	20.2	44.8	56.0	-11.2	4.140	12.5	20.2	32.7	46.0	-13.3
4.080	23.5	20.2	43.7	56.0	-12.3	4.080	12.2	20.2	32.4	46.0	-13.6
4.252	23.2	20.2	43.4	56.0	-12.6	4.252	11.5	20.2	31.7	46.0	-14.3
0.284	22.2	20.2	42.4	60.7	-18.3	0.284	15.6	20.2	35.8	50.7	-14.9

Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit

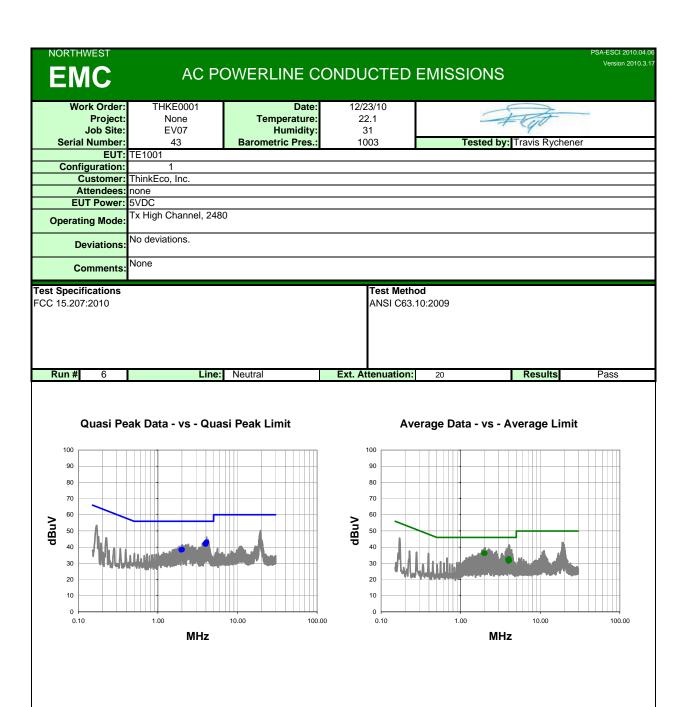

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.169	33.9	20.2	54.1	65.0	-10.9	-	2.140	16.7	20.2	36.9	46.0	-9.1
3.832	20.3	20.2	40.5	56.0	-15.5		2.256	16.2	20.2	36.4	46.0	-9.6
2.140	18.8	20.2	39.0	56.0	-17.0		1.804	15.5	20.2	35.7	46.0	-10.3
0.225	25.3	20.2	45.5	62.6	-17.2		1.860	15.2	20.2	35.4	46.0	-10.6
2.256	18.0	20.2	38.2	56.0	-17.8		0.169	23.4	20.2	43.6	55.0	-11.4
1.860	17.4	20.2	37.6	56.0	-18.4		3.832	10.3	20.2	30.5	46.0	-15.5
1.804	16.8	20.2	37.0	56.0	-19.0		0.225	16.8	20.2	37.0	52.6	-15.7

Quasi Peak Data - vs - Quasi Peak Limit


Average	Data -	vs -	Average	Limit	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
4.108	24.4	20.2	44.6	56.0	-11.4	4.160	12.9	20.2	33.1	46.0	-12.9
4.160	24.0	20.2	44.2	56.0	-11.8	4.108	12.6	20.2	32.8	46.0	-13.2
4.048	24.0	20.2	44.2	56.0	-11.8	4.048	12.6	20.2	32.8	46.0	-13.2
3.992	23.6	20.2	43.8	56.0	-12.2	3.992	12.3	20.2	32.5	46.0	-13.5
3.824	23.1	20.2	43.3	56.0	-12.7	3.824	10.7	20.2	30.9	46.0	-15.1
3.652	22.7	20.2	42.9	56.0	-13.1	3.652	9.4	20.2	29.6	46.0	-16.4

Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.170	31.0	20.2	51.2	65.0	-13.8	_	2.132	16.7	20.2	36.9	46.0	-9.1
3.984	21.4	20.2	41.6	56.0	-14.4		0.170	20.8	20.2	41.0	55.0	-14.0
3.928	21.1	20.2	41.3	56.0	-14.7		3.928	11.2	20.2	31.4	46.0	-14.6
2.132	18.9	20.2	39.1	56.0	-16.9		3.984	10.6	20.2	30.8	46.0	-15.2
4.376	18.4	20.2	38.6	56.0	-17.4		4.376	8.4	20.2	28.6	46.0	-17.4
19.208	20.9	20.9	41.8	60.0	-18.2		19.208	10.9	20.9	31.8	50.0	-18.2

Quasi Peak Data - vs - Quasi Peak Limit

A	verage	Data -	vs - A	Average	Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
4.040	24.3	20.2	44.5	56.0	-11.5	·	4.040	12.7	20.2	32.9	46.0	-13.1
3.928	24.1	20.2	44.3	56.0	-11.7		3.928	12.3	20.2	32.5	46.0	-13.5
3.984	23.3	20.2	43.5	56.0	-12.5		3.984	11.8	20.2	32.0	46.0	-14.0
3.644	22.3	20.2	42.5	56.0	-13.5		4.320	11.0	20.2	31.2	46.0	-14.8
4.376	22.1	20.2	42.3	56.0	-13.7		4.376	10.7	20.2	30.9	46.0	-15.1
4.320	22.1	20.2	42.3	56.0	-13.7		3.644	9.3	20.2	29.5	46.0	-16.5

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
4.092	22.8	20.2	43.0	56.0	-13.0	2.016	16.0	20.2	36.2	46.0	-9.8
4.036	22.6	20.2	42.8	56.0	-13.2	1.960	16.0	20.2	36.2	46.0	-9.8
3.924	21.8	20.2	42.0	56.0	-14.0	4.036	12.5	20.2	32.7	46.0	-13.3
3.980	21.6	20.2	41.8	56.0	-14.2	3.924	12.1	20.2	32.3	46.0	-13.7
2.016	18.3	20.2	38.5	56.0	-17.5	4.092	11.5	20.2	31.7	46.0	-14.3
1.960	18.1	20.2	38.3	56.0	-17.7	3.980	11.1	20.2	31.3	46.0	-14.7

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

Duty Cycle = On time/100 milliseconds

Where "On time" = N1L1 +N2L2 +....

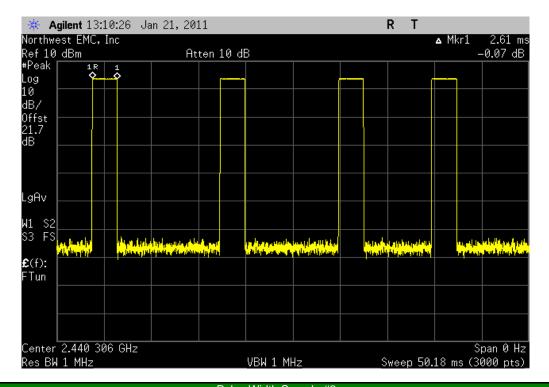
Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec

Pulsewidth of Pulse= 2.61 mSec

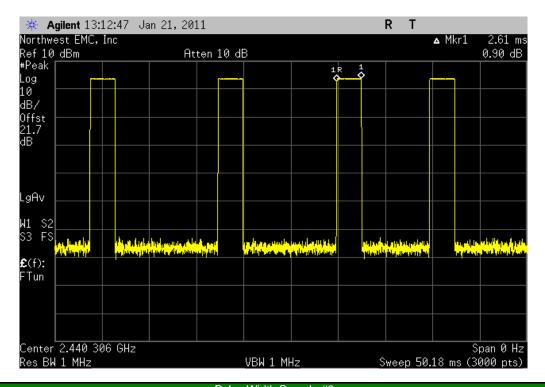

Number of Pulses = 8

Duty Cycle = $20 \log [(8)(2.61)/100] = -13.6 dB$

The duty cycle correction factor of -13.6 dB was added to the Average measurements from Radiated Spurious Emissions

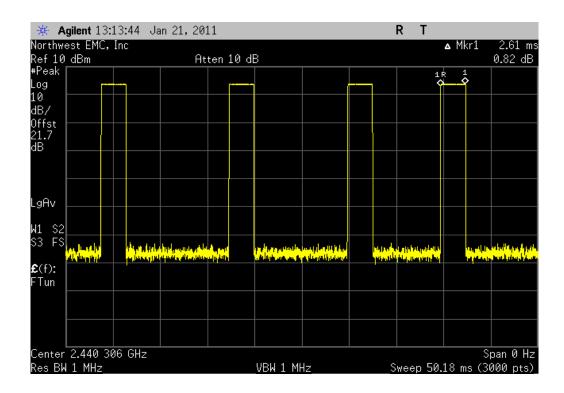

NORTHWEST EMC		DUTY (CYCLE			XMit 2010.11.03
_	TE1001				Work Order: THKE000	18
Serial Number:					Date: 01/21/11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	ThinkEco, Inc.			-	Temperature: 21.9°C	
Attendees:					Humidity: 35%	
Project:	None			Baro	metric Pres.: 30.21 in	
Tested by:	Rod Peloquin		Power: 5VDC via USB		Job Site: EV06	
TEST SPECIFICATI	ONS		Test Method			
FCC 15.247:2011			ANSI C63.10:2009			
COMMENTS						
DEVIATIONS FROM	MITEST STANDARD	7.0				
Configuration #	2	Signature Rocky le	Keling			
			,	Value	Limit	Results
Pulse Width Sample				61ms	100 ms	20.88%
Pulse Width Sample				.61 ms	100 ms	20.88%
Pulse Width Sample			_	.61 ms	100 ms	20.88%
Pulse Width Sample			2	.61 ms	100 ms	20.88%
100ms Period Samp				pulses	100 ms	20.88%
100ms Period Samp				pulses	100 ms	20.88%
100ms Period Samp				pulses	100 ms	20.88%
100ms Period Samp	le #4		8	pulses	100 ms	20.88%

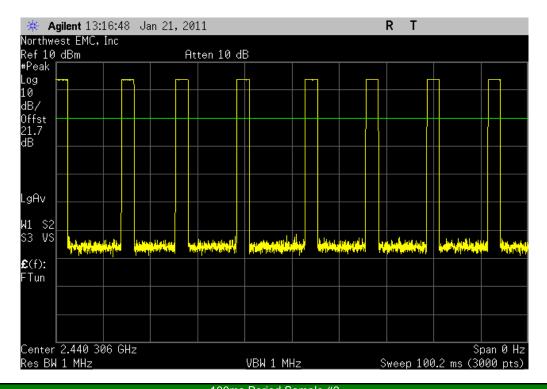
	Pulse Width Sample #1								
Result:	20.88%	Value:	2.61ms	Limit:	100 ms				



Pulse Width Sample #2

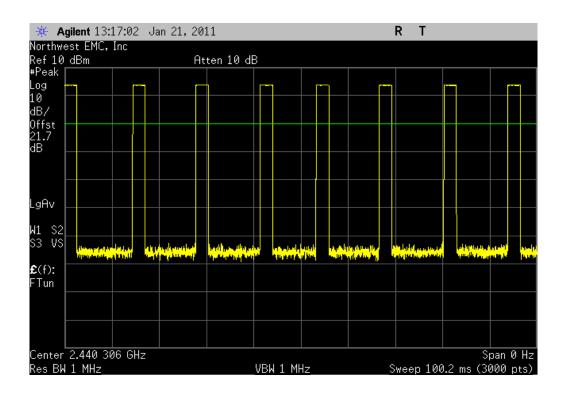
Result: 20.88% Value: 2.61 ms Limit: 100 ms

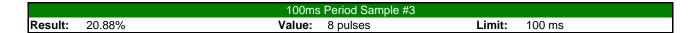


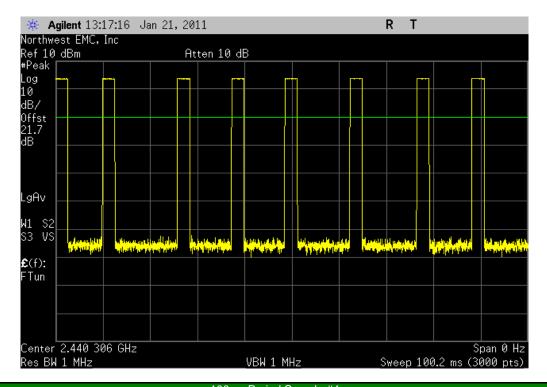


Pulse Width Sample #3

Result: 20.88% Value: 2.61 ms Limit: 100 ms

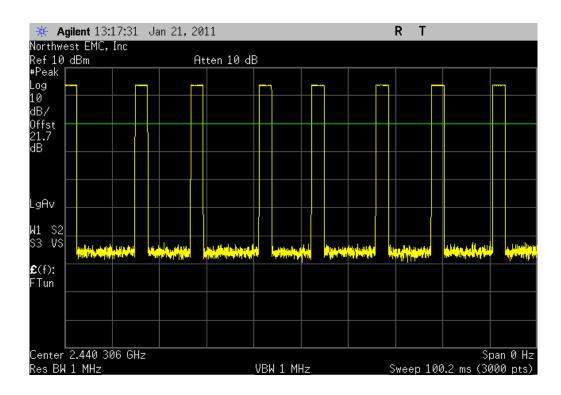



	100ms Period Sample #1									
Result:	20.88%	Value:	8 pulses	Limit:	100 ms					



Tooms Period Sample #2

Result: 20.88% Value: 8 pulses Limit: 100 ms



100ms Period Sample #4

Result: 20.88% Value: 8 pulses Limit: 100 ms

