

Report No.: EED32H000848 Page 1 of 58

TEST REPORT

Product: Wireless earphone

Trade mark

\$

Model/Type reference : XTFree with Mic

Serial Number : N/A

 Report Number
 : EED32H000848

 FCC ID
 : Y22-SK20130014

 Date of Issue
 : July 10, 2015

Test Standards : 47 CFR Part 15 Subpart C (2014)

Test result : PASS

Prepared for:

Skullcandy, Inc. 1441 W. UTE BLVD, SUITE 250 PARK CITY, UT 84098 USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Report Seal

Ware Xm

Reviewed by:

TREVEN Man

Sheek Luo

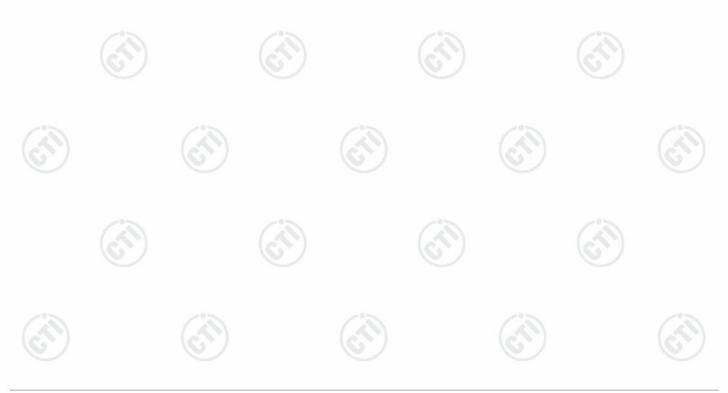
Lab supervisor

July 10, 2015

Check No.: 2211458450

2 Version

Version No.	Date	Description
00	July 10, 2015	Original



Report No.: EED32H000848 Page 3 of 58

3 Test Summary

rest Summary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS PASS PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013		
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013		
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013		
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	ANSI C63 10-20			

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Report No.: EED32H000848 Page 4 of 58

4 Content

COVER PAGE					
					•••••
2 VERSION		•••••	•••••		•••••
TEST SUMMARY	•••••	•••••	•••••	•••••	•••••
4 CONTENT		•••••	•••••	•••••	
TEST REQUIREMENT		•••••		•••••	
5.1 TEST SETUP 5.1.1 For Conducted test sett 5.1.2 For Radiated Emissions 5.1.3 For Conducted Emission 5.2 TEST ENVIRONMENT	ups test setupons test setup				
6 GENERAL INFORMATION					
6.1 CLIENT INFORMATION	UT BJECTIVE TO THIS STAND NITS BLICK STAND NITS BLICK STAND STAND CONDITIONS STED BY THE CUSTOMER	DARD			
7 EQUIPMENT LIST	•••••	•••••	•••••	•••••	1
RADIO TECHNICAL REQUIRE	MENTS SPECIFICATION	ON	•••••		1
Appendix A) 20dB Occupied Appendix B) Carrier Frequen Appendix C) Dwell Time Appendix D) Hopping Chann Appendix E) Conducted Pear Appendix F) Band-edge for F Appendix G) RF Conducted S Appendix I) Antenna Require Appendix J) AC Power Line Of Appendix K) Restricted band	cy Separation el Numberk K Output Power RF Conducted Emission Spurious Emissions ement	ns			
PHOTOGRAPHS OF TEST SETU					
PHOTOGRAPHS OF EUT CONST	TRUCTIONAL DETAIL	_S		••••••	5

Report No.: EED32H000848 Page 5 of 58

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

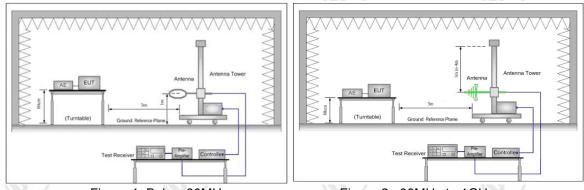
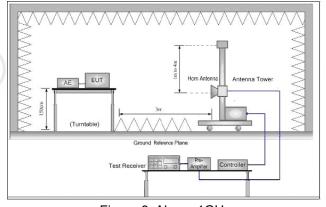
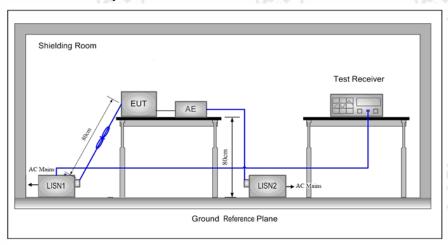


Figure 1. Below 30MHz

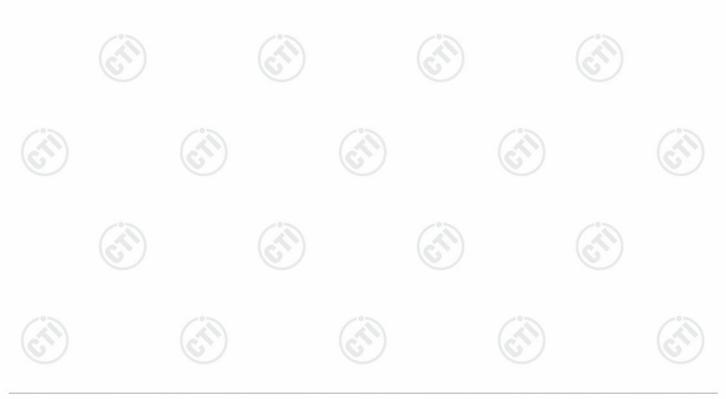
Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

Report No.: EED32H000848 Page 6 of 58

5.1.3 For Conducted Emissions test setup Conducted Emissions setup



5.2 Test Environment

Operating Environment:		\	100
Temperature:	24°C		
Humidity:	53 % RH		
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test Mode	Tx/Rx	RF Channel			
rest wode	IX/RX	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/	GFSK/π/4DQPSK/		Channel 40	Channel79	
8DPSK(DH1,DH3,DH5)	2402MHz ~2480 MHz	2402MHz	2441MHz	2480MHz	

Report No.: EED32H000848 Page 7 of 58

6 General Information

6.1 Client Information

Applicant:	Skullcandy, Inc.
Address of Applicant:	1441 W. UTE BLVD, SUITE 250 PARK CITY, UT 84098 USA
Manufacturer:	Skullcandy, Inc.
Address of Manufacturer:	1441 W. UTE BLVD, SUITE 250 PARK CITY, UT 84098 USA
Factory:	Merry Electronics (Shenzhen) Co., Ltd., BaoAn Branch
Address of Factory:	Merry Ind. Park Hua Rong Rd., Dalang St., BaoAn District, ShenZhen City

6.2 General Description of EUT

Product Name:	Wireless earphone		(3)	
Model No.(EUT):	XTFree with Mic		(0)	
Trade mark:		-05		
EUT Supports Radios application:	Bluetooth V4.1	(61)		67
Power Supply:	Input: 5V=== 500mA, Class III			
Sample Received Date:	Jun. 26, 2015			
Sample tested Date:	Jun. 26, 2015 to July 10, 2015		(3)	

6.3 Product Specification subjective to this standard

Frequency Range:	2402MHz to 2480MHz
Bluetooth Version:	4.1
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channels:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	0dBi
Test voltage:	DC 3.7V

Report No.: EED32H000848 Page 8 of 58

	Frequency ea			- (4)	• 1	- (20)	1
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

6.4 Description of Support Units

The EUT has been tested with associated equipment below:

Device Type	Brand	Model	Data Cable	Remark
Notebook	HP	G3	N/A	FCC DOC
Mouse	L.Selectron	M004	Un-shielded 1.2M	FCC DOC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

Report No.: EED32H000848 Page 9 of 58

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Report No.: EED32H000848 Page 10 of 58

Telecommunication Ports Conducted Disturbance Measurement of

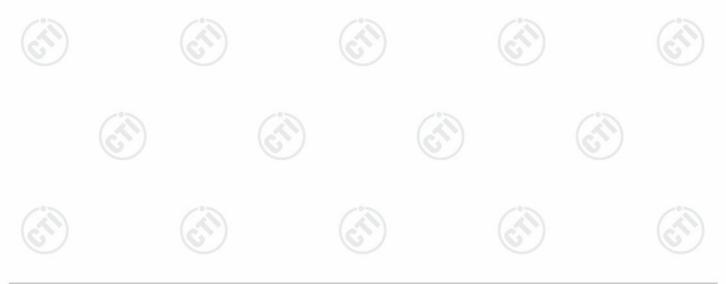
Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

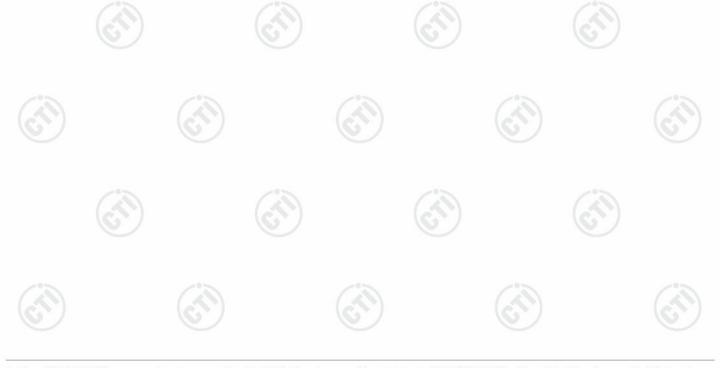

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE volves conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dadioted Courious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%



Report No. : EED32H000848 Page 11 of 58

7 Equipment List

• •		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001	(4 1)	01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32H000848 Page 12 of 58

Shielding Room No. 1 – Conduction Emission Test						
Equipment Manufacturer Mode No. Serial Cal. date (mm-dd-yyyy) (mm-dd-yyyy)						
Receiver	R&S	ESCI	100009	07-09-2014	07-08-2015	
Receiver	R&S	ESCI	100009	07-09-2015	07-08-2016	
LISN	R&S	ENV216	100098	11-12-2014	11-13-2015	

		3M Semi/full-anech	noic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber	TDK	SAC-3	(C)	06-02-2015	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-14-2014	07-13-2015
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2014	07-07-2015
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2015	07-07-2016
Loop Antenna	ETS	6502	00071730	07-23-2014	07-22-2015
Spectrum Analyzer	R&S	FSP40	100416	07-09-2014	07-08-2015
Spectrum Analyzer	R&S	FSP40	100416	07-09-2015	07-08-2016
Receiver	R&S	ESCI	100435	07-09-2014	07-08-2015
Receiver	R&S	ESCI	100435	07-09-2015	07-08-2016
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016
LISN	schwarzbeck	NNBM8125	81251547	07-09-2014	07-08-2015
LISN	schwarzbeck	NNBM8125	81251547	07-09-2015	07-08-2016
LISN	schwarzbeck	NNBM8125	81251546	07-09-2014	07-08-2015
LISN	schwarzbeck	NNBM8125	81251547	07-09-2015	07-08-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	5190	07-10-2014	07-09-2015
Temperature/ Humidity Indicator	TAYLOR	1451	5190	07-10-2015	07-09-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002		01-13-2015	01-12-2016

Report No. : EED32H000848 Page 13 of 58

High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001	(C)	01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001		01-13-2015	01-12-2016

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)

Part15C Secti	on 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix K)
(6)	(6,)

Report No. : EED32H000848 Page 15 of 58

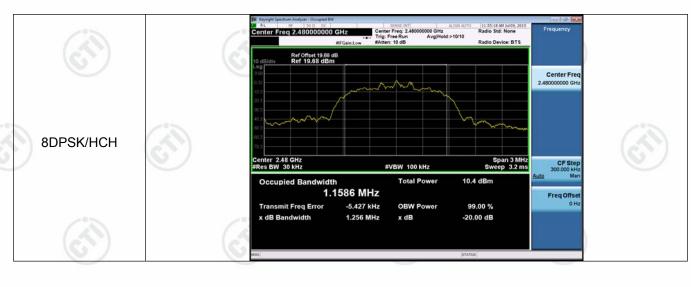
Appendix A) 20dB Occupied Bandwidth Test Result

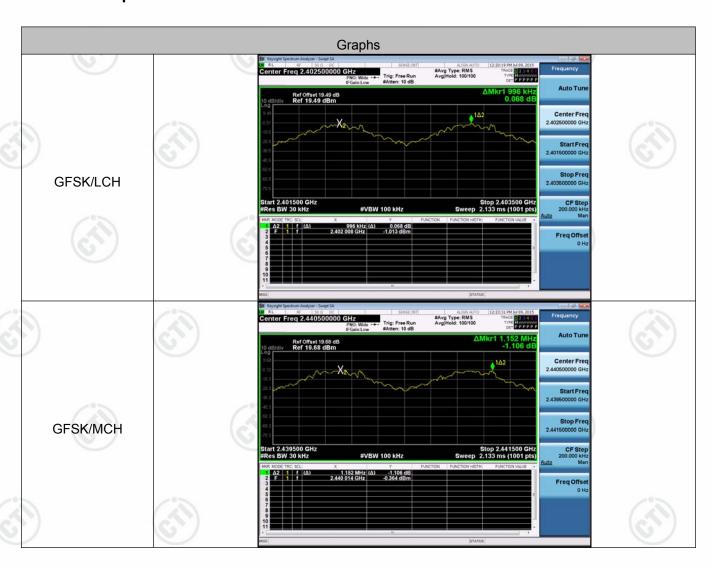

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.9422	0.86693	PASS
GFSK	MCH	0.9378	0.85761	PASS
GFSK	нсн	0.9397	0.85680	PASS
π/4DQPSK	LCH	1.230	1.1675	PASS
π/4DQPSK	MCH	1.227	1.1629	PASS
π/4DQPSK	нсн	1.229	1.1636	PASS
8DPSK	LCH	1.260	1.1565	PASS
8DPSK	MCH	1.259	1.1556	PASS
8DPSK	НСН	1.256	1.1586	PASS

Test Graph



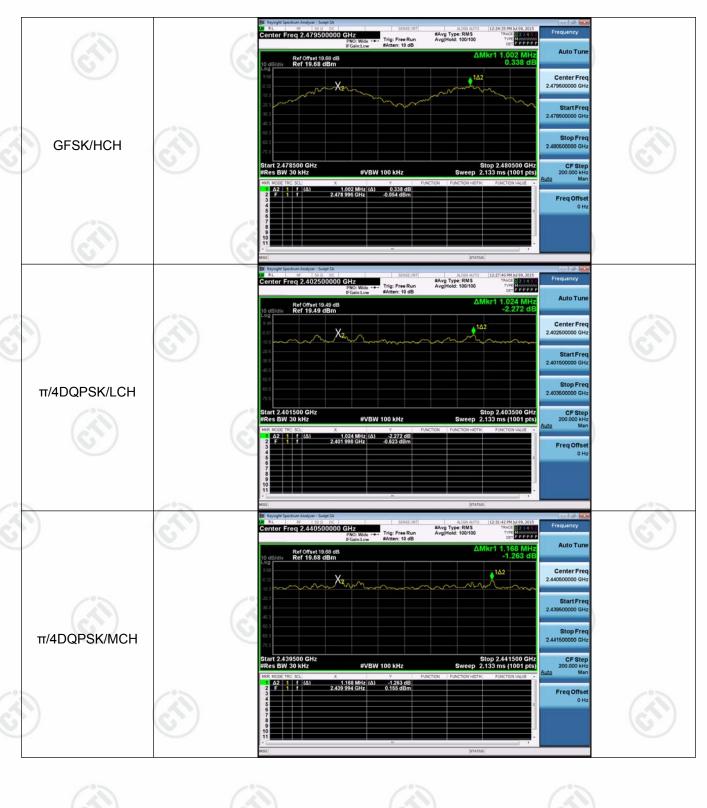





Report No. : EED32H000848 Page 19 of 58

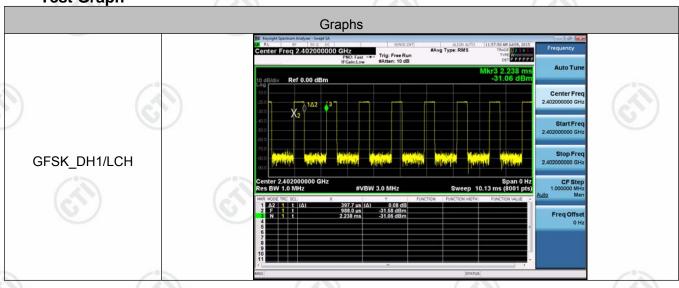
Appendix B) Carrier Frequency Separation

Result Table

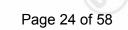

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	0.996	PASS
GFSK	MCH	1.152	PASS
GFSK	НСН	1.002	PASS
π/4DQPSK	LCH	1.024	PASS
π/4DQPSK	MCH	1.168	PASS
π/4DQPSK	нсн	1.006	PASS
8DPSK	LCH	1.000	PASS
8DPSK	MCH	1.004	PASS
8DPSK	НСН	1.342	PASS

Test Graph

Page 20 of 58

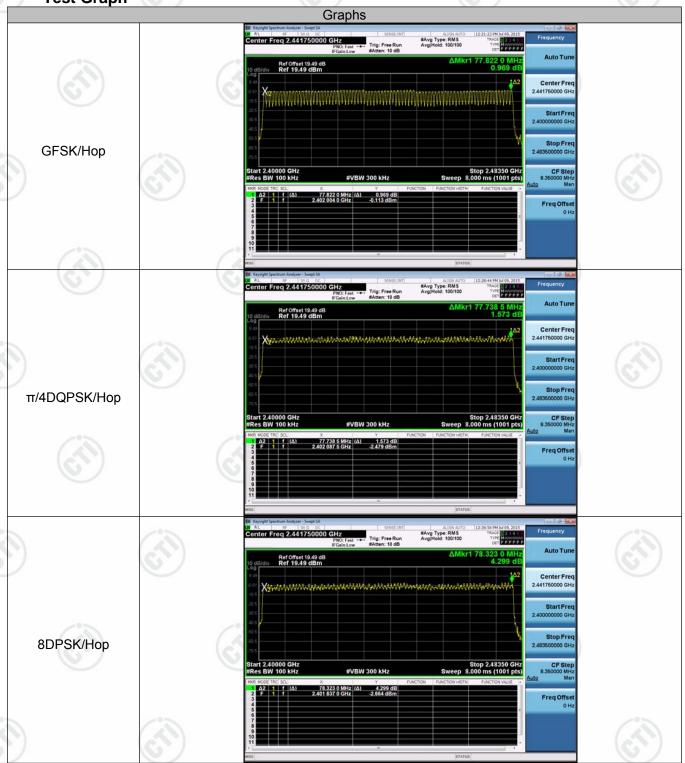

Report No. : EED32H000848 Page 23 of 58

Appendix C) Dwell Time Result Table


Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Verdict
GFSK	DH1	LCH	0.398	320	0.127	PASS
GFSK	DH1	мсн	0.398	320	0.127	PASS
GFSK	DH1	нсн	0.398	320	0.127	PASS
GFSK	DH3	LCH	1.653	160	0.264	PASS
GFSK	DH3	мсн	1.654	160	0.265	PASS
GFSK	DH3	нсн	1.654	160	0.265	PASS
GFSK	DH5	LCH	2.902	106.7	0.31	PASS
GFSK	DH5	мсн	2.901	106.7	0.31	PASS
GFSK	DH5	нсн	2.902	106.7	0.31	PASS

Remark: All the modes of GFSK , π /4-DQPSK and 8DPSK have been tested. The worst case is GFSK mode, and the worst data of GFSK mode is below.

Test Graph

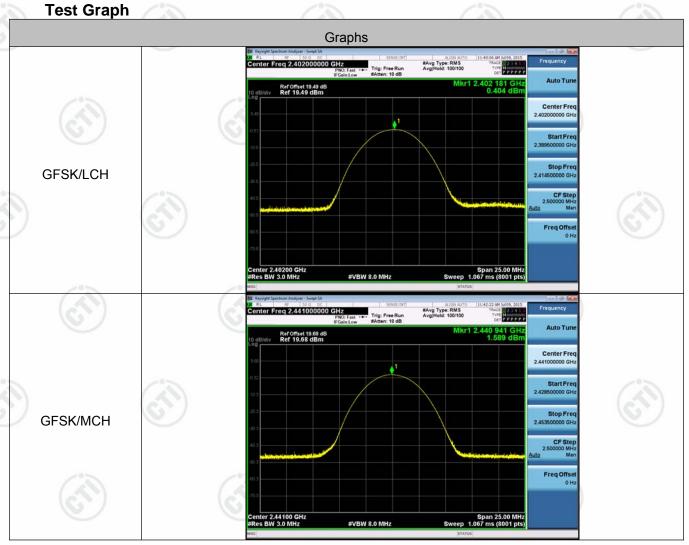


Page 27 of 58 Report No.: EED32H000848

Appendix D) Hopping Channel Number Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

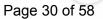
Test Graph

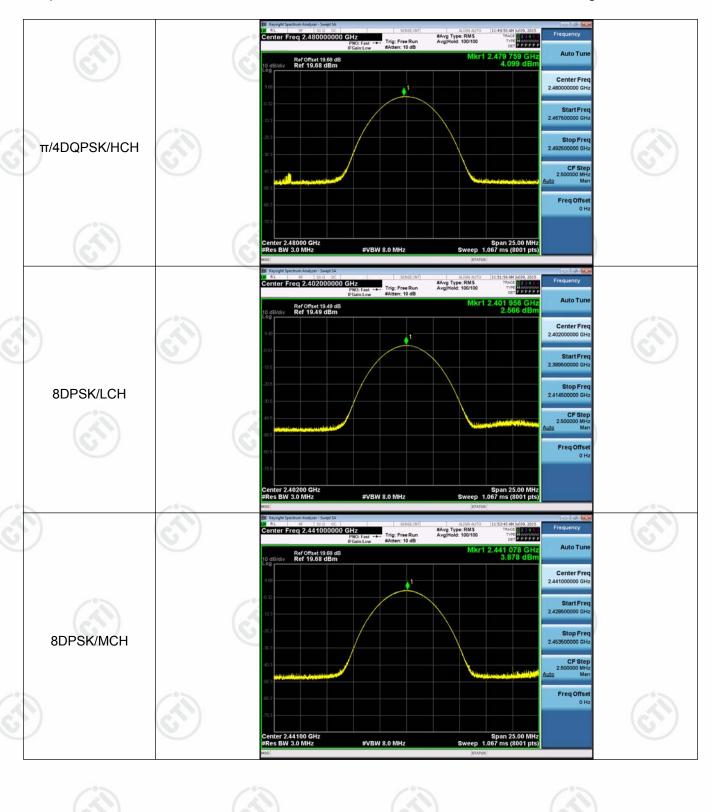


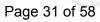
Report No.: EED32H000848 Page 28 of 58

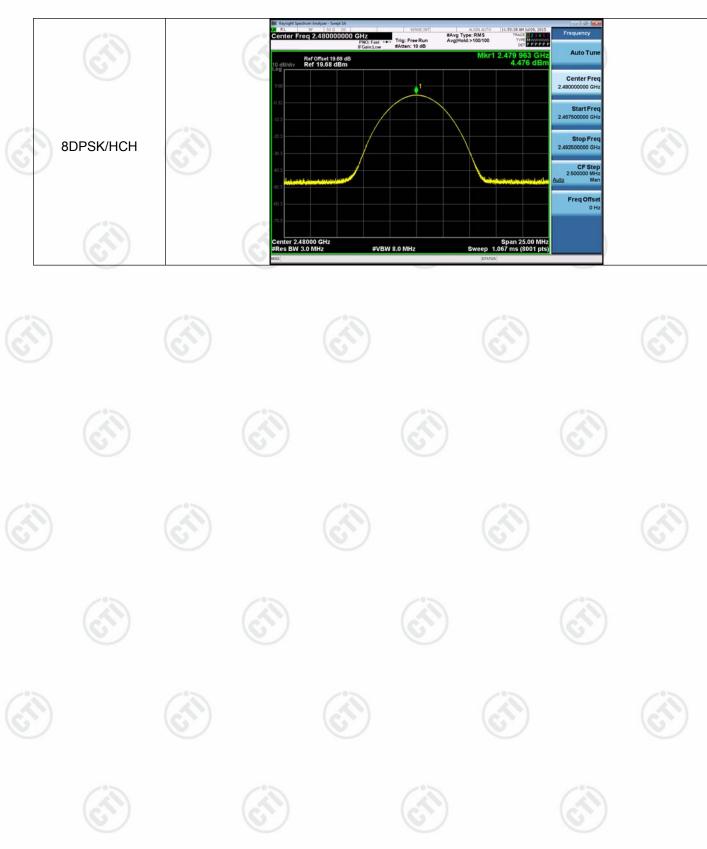
Appendix E) Conducted Peak Output Power Result Table

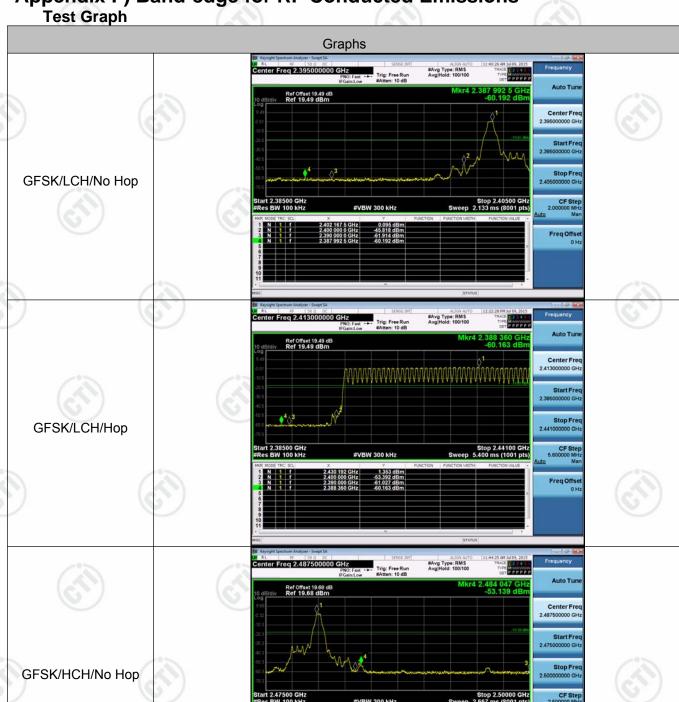
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	0.404	PASS
GFSK	MCH	1.589	PASS
GFSK	нсн	1.947	PASS
π/4DQPSK	LCH	2.132	PASS
π/4DQPSK	MCH	3.478	PASS
π/4DQPSK	НСН	4.099	PASS
8DPSK	LCH	2.566	PASS
8DPSK	MCH	3.878	PASS
8DPSK	НСН	4.476	PASS





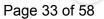


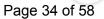


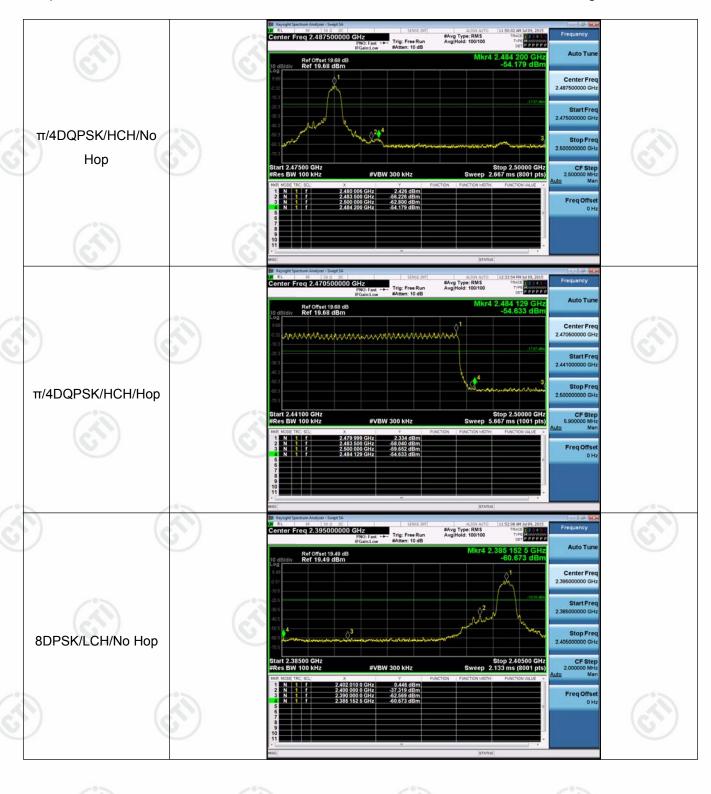


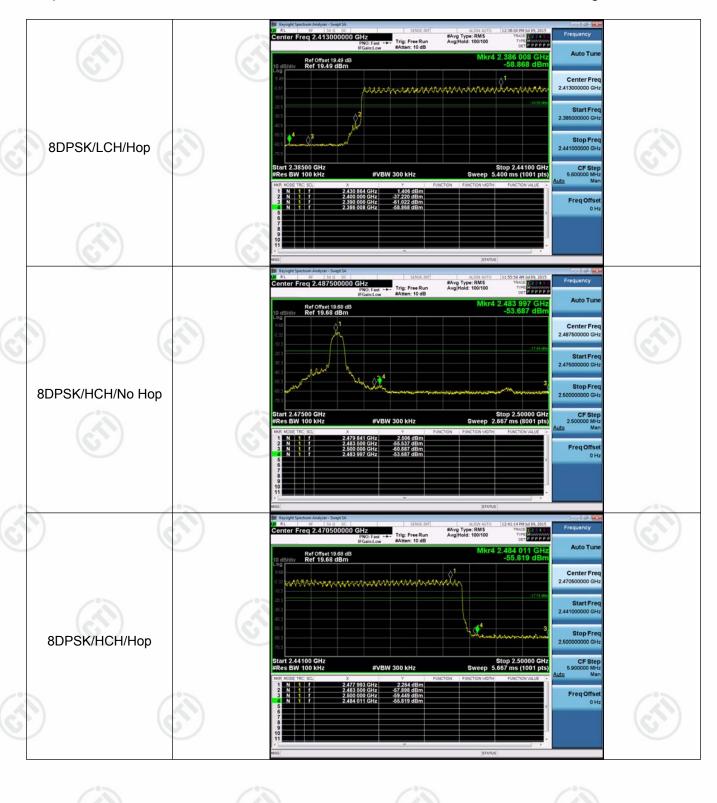
Report No. : EED32H000848 Page 32 of 58

Appendix F) Band-edge for RF Conducted Emissions







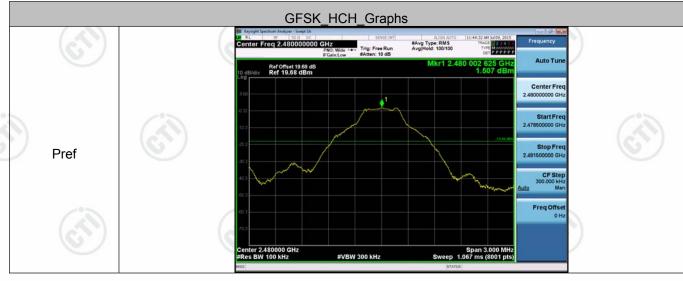


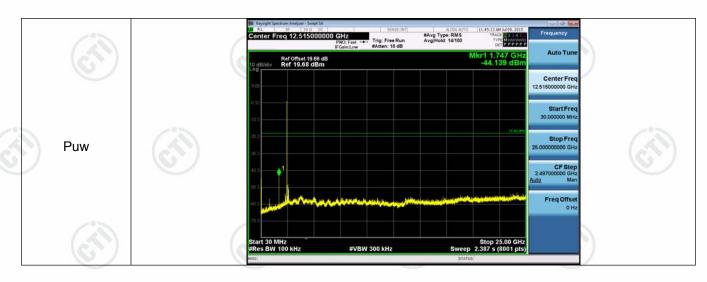
Page 35 of 58

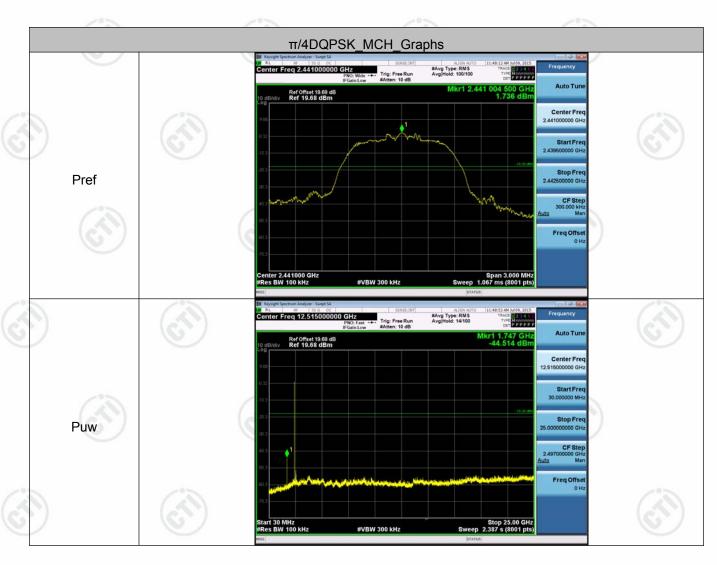


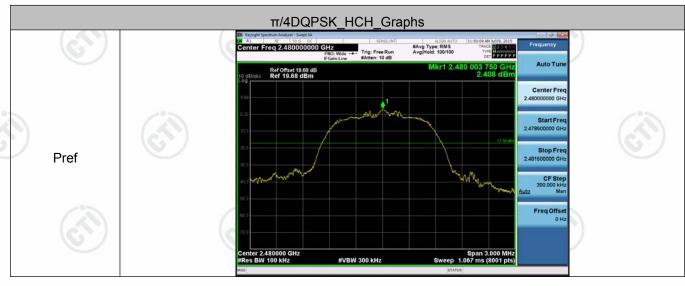


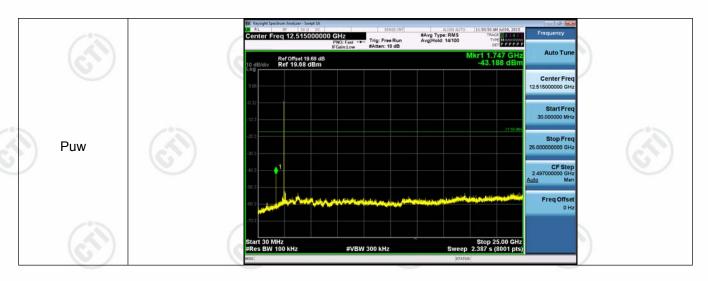

Appendix G) RF Conducted Spurious Emissions

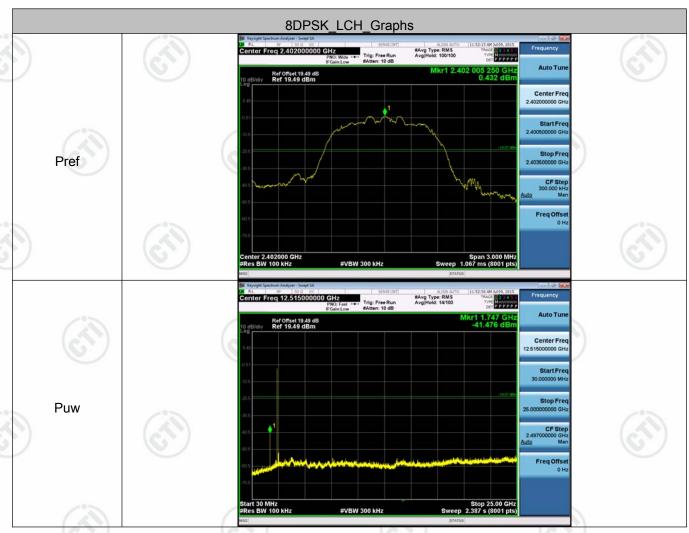


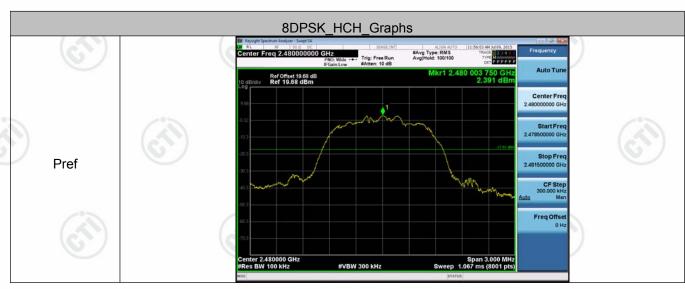


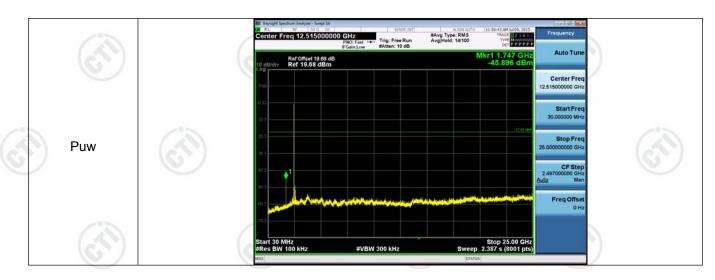






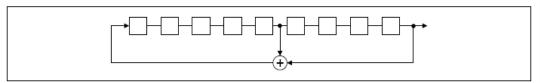






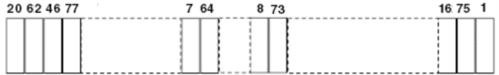
Appendix H) Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

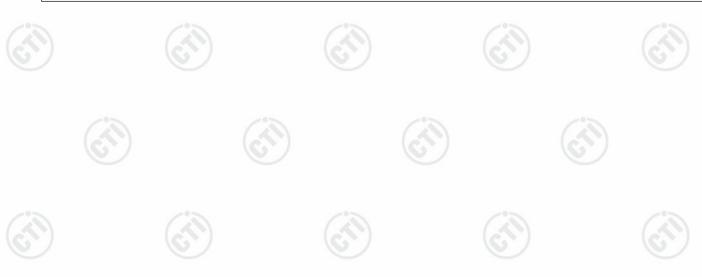
Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence


An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No. : EED32H000848 Page 44 of 58

Appendix I) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No. : EED32H000848 Page 45 of 58

Appendix J) AC Power Line Conducted Emission

1)The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The rear of the a ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Limit: Frequency range (MHz) Cuasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency leasurement Data in initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were	(4)					
2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 500/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Limit: Frequency range (MHz)	Test Procedure:	Т	est frequency range :150KH	z-30MHz	(0,	
Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Frequency range (MHz) Cuasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 50 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency		1)The mains terminal disturba	ance voltage test was cor	nducted in a shield	ded room.
3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Emit: Frequency range (MHz)		2	Stabilization Network) wh power cables of all other which was bonded to the for the unit being measur multiple power cables to a	ich provides a 50Ω/50μl units of the EUT were c ground reference plane i ed. A multiple socket ou	$H + 5\Omega$ linear imponnected to a secon the same way a state that the strip was used	edance. The cond LISN 2, s the LISN 1 d to connect
EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency)The tabletop EUT was pla reference plane. And for f horizontal ground reference	loor-standing arrangeme ce plane,	nt, the EUT was p	laced on the
ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Frequency range (MHz)		4	EUT shall be 0.4 m from t reference plane was bond	he vertical ground refere led to the horizontal grou	nce plane. The ve and reference plan	ertical ground ne. The LISN
5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Limit: Frequency range (MHz) Limit (dBμV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE : The lower limit is applicable at the transition frequency Reasurement Data In initial pre-scan was performed on the live and neutral lines with peak detector. In initial pre-scan was performed on the live and neutral lines with peak detector. In initial pre-scan was performed on the live and neutral lines with peak detector. In initial pre-scan was performed on the live and neutral lines with peak detector. In initial pre-scan was performed on the live and neutral lines with peak detector. In initial pre-scan was performed on the live and neutral lines with peak detector. In initial pre-scan was performed on the live and neutral lines with peak detector. In initial pre-scan was performed on the live and neutral lines with peak detector. In initial pre-scan was performed on the live and neutral lines with peak detector. In initial pre-scan was performed on the live and neutral lines with peak detector. In initial pre-scan was performed on the live and neutral lines with peak detector.		(A)	ground reference plane plane. This distance was All other units of the EUT	for LISNs mounted on between the closest poir	top of the grour its of the LISN 1 a	nd reference and the EUT.
Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency leasurement Data In initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were		5) In order to find the maximul of the interface cables mu			
Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency leasurement Data In initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were	Limit:			(b)		
Prequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Pleasurement Data				Limit (dB	BuV)	
0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency leasurement Data In initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were			Frequency range (MHz)	· ·	· ·	
* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency leasurement Data n initial pre-scan was performed on the live and neutral lines with peak detector. nuasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were		(4)	0.15-0.5			
* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency **reasurement Data** n initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were		(C)	/ \6*\	164	, , , , , , , , , , , , , , , , , , , ,	(0,)
* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency easurement Data In initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were						
leasurement Data n initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were			The limit decreases linearly MHz to 0.50 MHz.	with the logarithm of th	e frequency in the	e range 0.15
n initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were	(67)	N	IOTE: The lower limit is app	licable at the transition tr	equency	
	An initial pre-scan	was perfo				mission were

5

25.0500 32.10

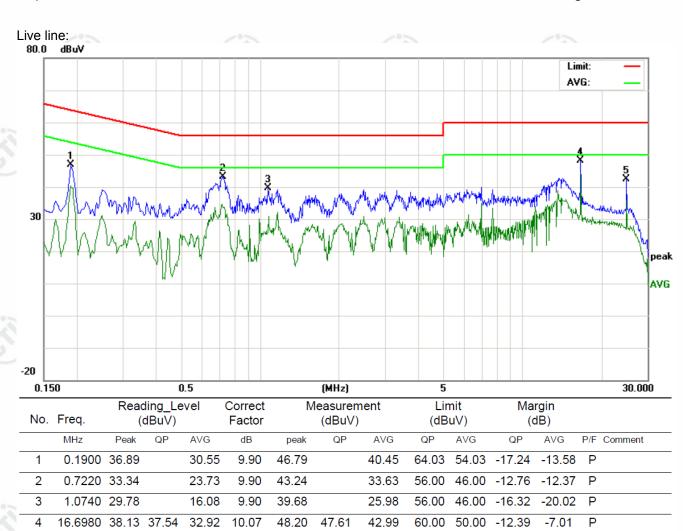
25.68

10.30

42.40

35.98

60.00

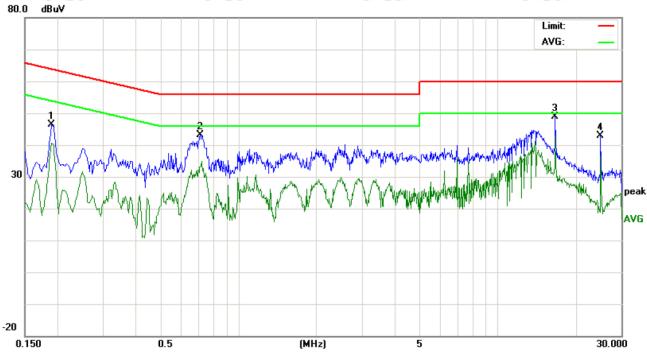

50.00 -17.60

-14.02

Ρ

Report No.: EED32H000848

Page 46 of 58



Report No. : EED32H000848 Page 47 of 58

Neutral line:

No.	Freq.		ling_Le dBuV)	evel	Correct Factor	M	easuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1900	36.39		30.80	9.90	46.29		40.70	64.03	54.03	-17.74	-13.33	Р	
2	0.7140	33.33		23.22	9.90	43.23		33.12	56.00	46.00	-12.77	-12.88	Р	
3	16.6980	38.69		32.81	10.07	48.76		42.88	60.00	50.00	-11.24	-7.12	Р	
4	25.0500	32.54		26.28	10.30	42.84		36.58	60.00	50.00	-17.16	-13.42	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32H000848 Page 48 of 58

Appendix K) Restricted bands around fundamental frequency (Radiated)/Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

NΙT:

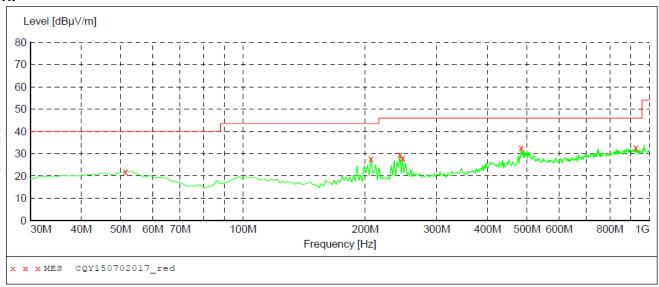
Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	- ()	300
0.490MHz-1.705MHz	24000/F(kHz)) -	-(6)	30
1.705MHz-30MHz	30	<u>-</u>	- (30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32H000848 Page 49 of 58

Radiated Spurious Emissions test Data:

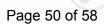
All the modes of operation (X, Y, Z) were investigated and the worst-case emissions are reported.

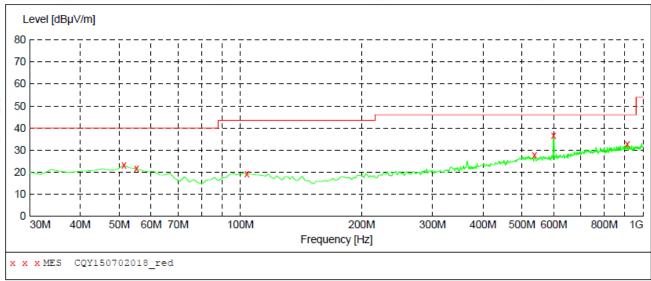

A. Below 30MHz:

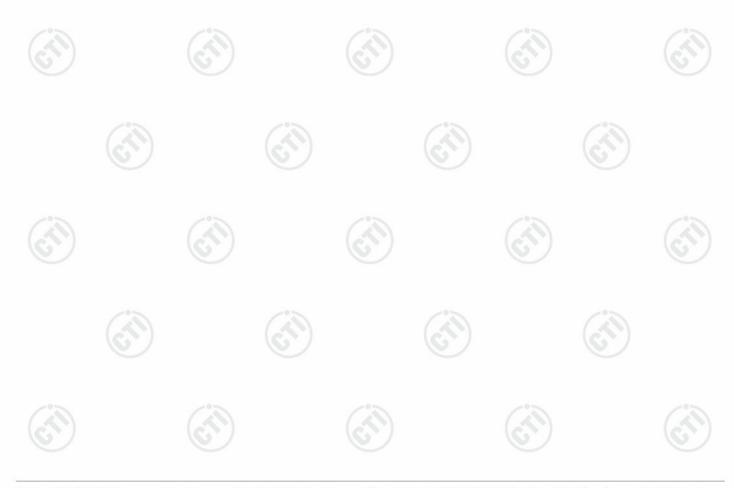
No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

B. $30MHz \sim 1GHz$:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel (GFSK mode) are chosen as representative in below:


H:


Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
51.340000	22.00	16.3	40.0	18.0		100.0	267.00	HORIZONTAL
206.540000	27.80	13.9	43.5	15.7		100.0	10.00	HORIZONTAL
243.400000	29.50	14.6	46.0	16.5		100.0	202.00	HORIZONTAL
247.280000	27.90	14.7	46.0	18.1		100.0	202.00	HORIZONTAL
483.960000	32.50	21.1	46.0	13.5		100.0	54.00	HORIZONTAL
926.280000	32.70	26.7	46.0	13.3		100.0	106.00	HORIZONTAL



V:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
51.340000	23.20	16.3	40.0	16.8		100.0	29.00	VERTICAL
55.220000	21.70	15.8	40.0	18.3		100.0	363.00	VERTICAL
103.720000	19.40	14.5	43.5	24.1		100.0	10.00	VERTICAL
536.340000	27.90	21.7	46.0	18.1		100.0	227.00	VERTICAL
598.420000	36.50	22.3	46.0	9.5		100.0	255.00	VERTICAL
912.700000	32.70	26.7	46.0	13.3		100.0	42.00	VERTICAL

Report No.: EED32H000848 Page 51 of 58

C. Above 1GHz:

Test Results-(Measurement Distance: 3m)_Channel low_2402MHz_GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2390.0	36.21	74	PK	Н	Р
2400.0	44.07	74	PK	H	Р
2402.0*	83.08		PK	Н	Р
4804.0	40.28	74	PK	Н	Р
2390.0	37.09	74	PK	V	Р
2400.0	42.28	74	PK	V	Р
2402.0*	84.63	/	PK	V	Р
4804.0	41.97	74	PK	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel middle_2441MHz_GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)	
2441.0*	85.63		PK	н	P	
4882.0	42.97	74	PK	н (с	P	
2441.0*	86.28		PK	V	Р	
4882.0	43.28	74	PK	V	Р	

^{*:} fundamental frequency

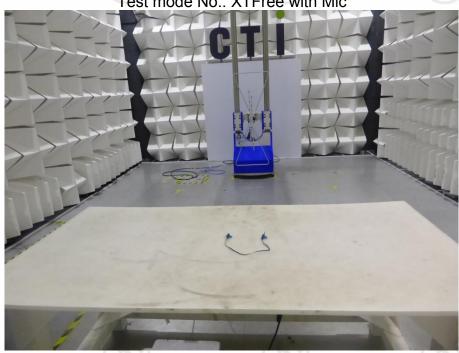
Test Results-(Measurement Distance: 3m)_Channel high_2480MHz_GFSK mode:

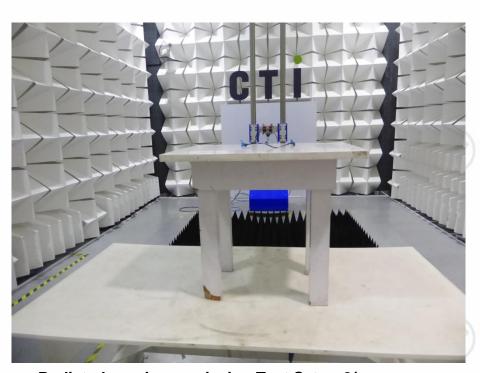
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2480.0*	85.06	<u></u>	PK	н	Р
2483.5	41.31	74	PK	Н	Р
4960.0	40.17	74	PK	Н	Р
2480.0*	86.31		PK	V	Р
2483.5	41.16	74	PK	V	Р
4960.0	42.28	74	PK	V	P 🔍

^{*:} fundamental frequency

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. All the modes of GFSK, π /4-DQPSK and 8DPSK have been tested. The worst case is GFSK mode, and the worst data of GFSK mode are chosen as above.
- 3. No emission found from 18GHz to 25GHz.
- 4. All outside of operating frequency band and restricted band specified are below 15.209.





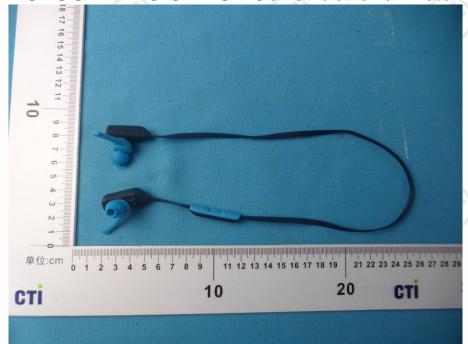
PHOTOGRAPHS OF TEST SETUP

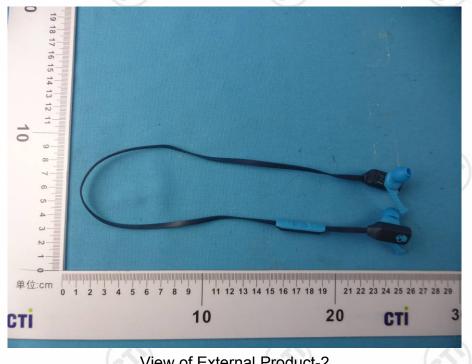
Test mode No.: XTFree with Mic

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 53 of 58





Report No.: EED32H000848 Page 54 of 58

PHOTOGRAPHS OF EUT Constructional Details

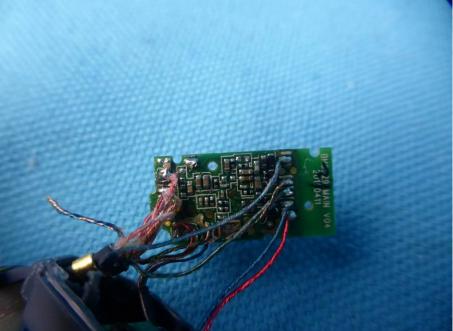
View of External Product-1

View of External Product-2



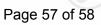
View of Internal Product-1

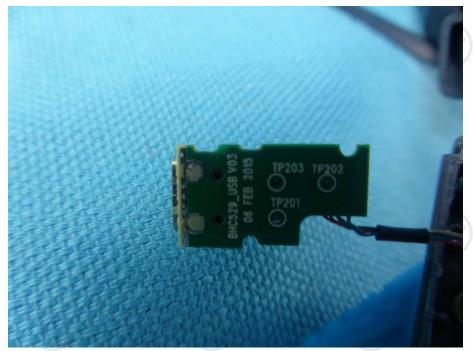
View of Internal Product-2




View of Internal Product-3

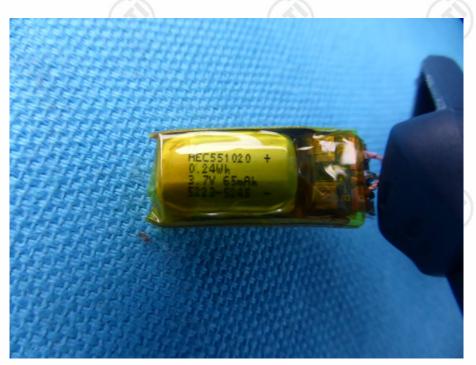
View of Internal Product-4





View of Internal Product-5

View of Internal Product-6



Report No. : EED32H000848 Page 58 of 58

View of Internal Product-7

View of Internal Product-8

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.