

Product Bluetooth Earphone

Trade mark skullcandy

Model/Type reference Smokin Buds 2 Wireless

Serial Number N/A

Report Number EED32H000816 **FCC ID** Y22-SK20130013

Date of Issue Aug. 11, 2015

Test Standards 47 CFR Part 15 Subpart C (2014)

Test result **PASS**

Prepared for:

Skullcandy

1441 W. Ute Blvd Suite 250 Park City, UT 84098 United States

Prepared by:

Centre Testing International (Shenzhen) Corporation Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan District, Shenzhen, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Reviewed by:

Sheek Luo

Date:

Aug. 11, 2015

Lab supervisor

Check No.: 2200590763

2 Version

Version No.	Date	Description
00	Aug. 11, 2015	Original
	- 43	
	(35)	

3 Test Summary

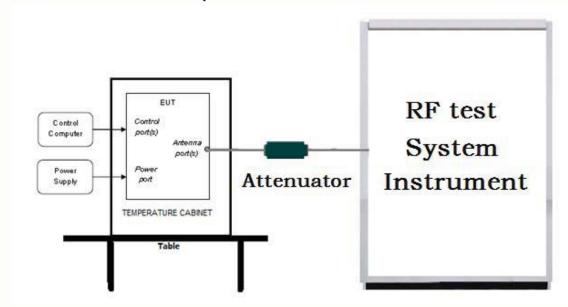
lest Sullillary		Z**		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Report No.: EED32H000816 Page 4 of 61

4 Content

1 COVER PAGE				1
2 VERSION	•••••		•••••	2
3 TEST SUMMARY		•••••	•••••	2
4 CONTENT				3
5 TEST REQUIREMENT				4
5.1 TEST SETUP 5.1.1 For Conducted test se 5.1.2 For Radiated Emissior 5.1.3 For Conducted Emissi 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION	tup ns test setup ons test setup			
6 GENERAL INFORMATION	•••••			5
6.1 CLIENT INFORMATION	BJECTIVE TO THIS STANE JNITSSSSDARD CONDITIONSSTED BY THE CUSTOMEI	DARDRREVELS, K=2)		
8 RADIO TECHNICAL REQUIRE				
Appendix A) 20dB Occupied Appendix B) Carrier Frequent Appendix C) Dwell Time Appendix D) Hopping Chant Appendix E) Conducted Pea Appendix F) Band-edge for Appendix G) RF Conducted Appendix H) Pseudorandom Appendix I) Antenna Require Appendix J) AC Power Line Appendix K) Restricted band	I Bandwidthncy Separationncy Separationnel Numbernel Number Powernel Conducted Emission Spurious Emissionsn Frequency Hopping Sement	ns		
PHOTOGRAPHS OF TEST SET	JP			54
PHOTOGRAPHS OF EUT CONS	TRUCTIONAL DETAIL	LS		56



Report No.: EED32H000816 Page 5 of 61

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

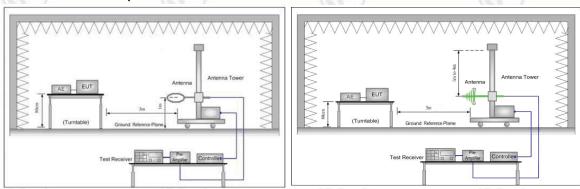
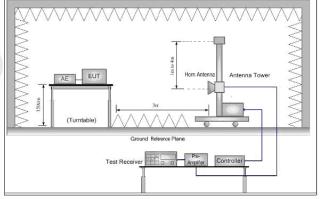
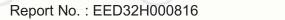
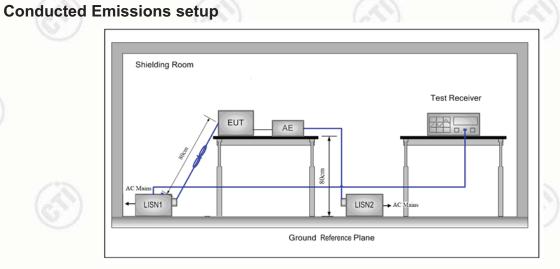
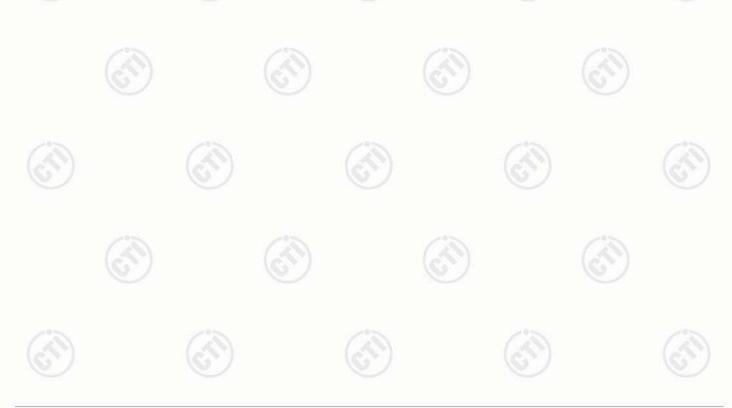


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz


Figure 3. Above 1GHz


Page 6 of 61

5.2 Test Environment

Operating Environment:	
Temperature:	24 °C
Humidity:	53 % RH
Atmospheric Pressure:	1010mbar

5.3 Test Condition

Test Mode	Tx/Rx	RF Channel			
rest Mode	IX/KX	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/	2402MUz - 2490 MUz	Channel 1	Channel 40	Channel79	
8DPSK(DH1,DH3,DH5)	PSK(DH1,DH3,DH5) 2402MHz ~2480 MHz		2441MHz	2480MHz	

Report No.: EED32H000816 Page 7 of 61

6 General Information

6.1 Client Information

Applicant:	Skullcandy	
Address of Applicant:	1441 W. Ute Blvd Suite 250 Park City, UT 84098 United States	
Manufacturer:	Skullcandy	_0_
Address of Manufacturer: 1441 W. Ute Blvd Suite 250 Park City, UT 84098 United		(20)

6.2 General Description of EUT

Product Name:	Bluetooth Earphone			
Model No.(EUT):	Smokin Buds 2 Wireless		200	
Trade mark:	skullcandy		(1	
EUT Supports Radios application:	Bluetooth V3.0+EDR		0	
Power Supply:	Input: 5V 500mA, Class III			
Sample Received Date:	Jun. 19, 2015	(3)		(3)
Sample tested Date:	Jun. 19, 2015 to Aug. 11, 2015	(C2)		(6,2)

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	3.0+EDR	130	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	(83)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK		
Number of Channel:	79		
Hopping Channel Type:	Adaptive Frequency Hopping systems		
Sample Type:	Portable production		(20)
Test Software of EUT:	CSR blue suite		6
Antenna Type:	Integral		
Antenna Gain:	0dBi		
Test Voltage:	DC 3.7V	(3)	
100000		16767	

Operation Frequency each of channel

Operation requestey each of charine							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz

Report No.: EED32H000816 Page 8 of 61

	11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
	12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
	13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
	14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
	15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
L	16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
	17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
	18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
	19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
	20	2421MHz	40	2441MHz	60	2461MHz	(6,))

6.4 Description of Support Units

The EUT has been tested with associated equipment below:

Device Type	Brand	Model	Data Cable	Remark
Notebook	HP	G3	N/A	FCC DOC
Mouse	L.Selectron	M004	Un-shielded 1.2M	FCC DOC

6.5 Test Location

All tests were performed at:

Centre Testing International (Shenzhen) Corporation

Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan District, Shenzhen, China Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International (Shenzhen) Corporation EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

Report No.: EED32H000816 Page 9 of 61

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

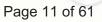
None

6.9 Other Information Requested by the Customer

None

6.10Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE novembre de desta d	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3 Ra	Dedicted Spurious emission test	4.5dB (30MHz-1GHz)
	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%



7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(A)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

Shielding Room No. 1 – Conduction Emission Test							
Equipment Manufacturer Mode No. Serial C (mm					Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	07-09-2014	07-08-2015		
Receiver	R&S	ESCI	100009	07-09-2015	07-08-2016		
LISN	R&S	ENV216	100098	11-12-2014	11-13-2015		

Page 12 of 61

		3M Semi/full-anech	noic Chamber	•	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber	TDK	SAC-3		06-02-2015	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-14-2014	07-13-2015
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-14-2015	07-13-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2014	07-07-2015
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2015	07-07-2016
Loop Antenna	ETS	6502	00071730	07-23-2014	07-22-2015
Loop Antenna	ETS	6502	00071730	07-23-2015	07-22-2016
Spectrum Analyzer	R&S	FSP40	100416	07-09-2014	07-08-2015
Spectrum Analyzer	R&S	FSP40	100416	07-09-2015	07-08-2016
Receiver	R&S	ESCI	100435	07-09-2014	07-08-2015
Receiver	R&S	ESCI	100435	07-09-2015	07-08-2016
Receiver	R&S	ESCI	100435	07-09-2014	07-08-2015
Receiver	R&S	ESCI	100435	07-09-2015	07-08-2016
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016
LISN	schwarzbeck	NNBM8125	81251547	07-09-2014	07-08-2015
LISN	schwarzbeck	NNBM8125	81251547	07-09-2015	07-08-2016
LISN	schwarzbeck	NNBM8125	81251546	07-09-2014	07-08-2015
LISN	schwarzbeck	NNBM8125	81251547	07-09-2015	07-08-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	5190	07-10-2014	07-09-2015
Temperature/ Humidity Indicator	TAYLOR	1451	5190	07-10-2015	07-09-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002		01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL1		01-13-2015	01-12-2016

Page 13 of 61

		2-0395-001		100	
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001	(43)	01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001		01-13-2015	01-12-2016

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

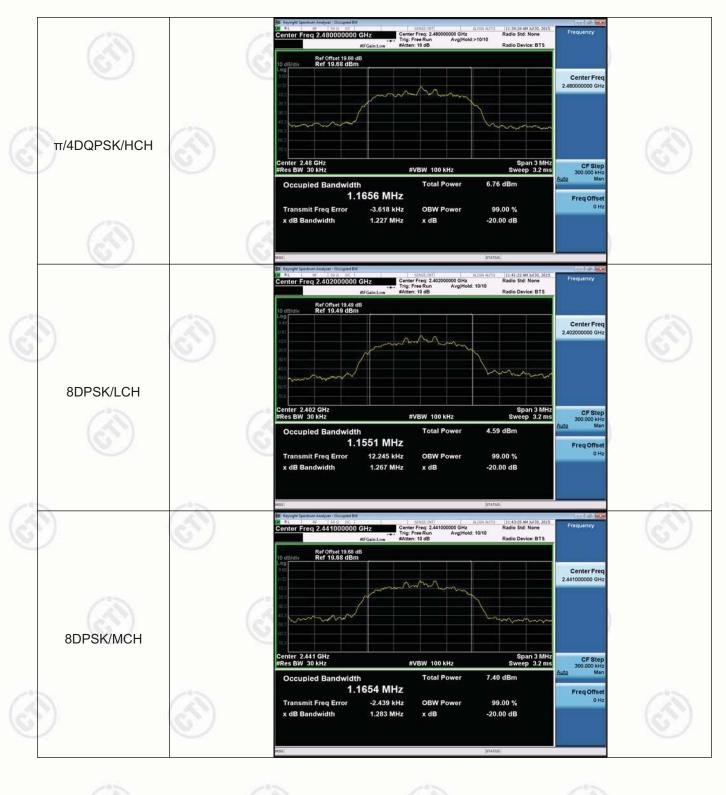
oot itoodito Elot.	6 / /			10.4
Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix K)

Appendix A) 20dB Occupied Bandwidth Test Result

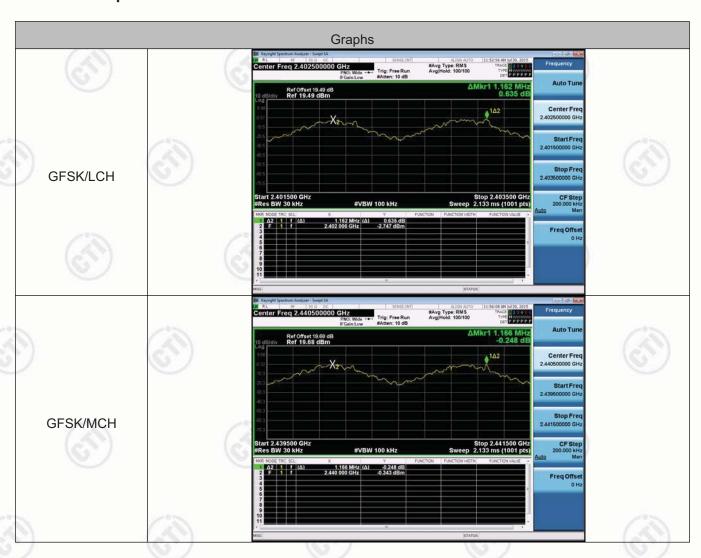
Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	
GFSK	LCH	0.9447	0.86405	PASS	
GFSK	МСН	0.9429	0.85485	PASS	
GFSK	HCH	0.9491	0.85775	PASS	
π/4DQPSK	LCH	1.258	1.1692	PASS	
π/4DQPSK	MCH	1.229	1.1666	PASS	
π/4DQPSK	нсн	1.227	1.1656	PASS	
8DPSK	LCH	1.267	1.1551	PASS	
8DPSK	МСН	1.283	1.1654	PASS	
8DPSK	НСН	1.260	1.1603	PASS	

Test Graph





Report No.: EED32H000816



Report No. : EED32H000816 Page 19 of 61

Appendix B) Carrier Frequency Separation Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.162	PASS
GFSK	MCH	1.166	PASS
GFSK	НСН	0.990	PASS
π/4DQPSK	LCH	0.998	PASS
π/4DQPSK	MCH	0.992	PASS
π/4DQPSK	НСН	1.018	PASS
8DPSK	LCH	0.998	PASS
8DPSK	MCH	1.008	PASS
8DPSK	НСН	1.004	PASS


Test Graph



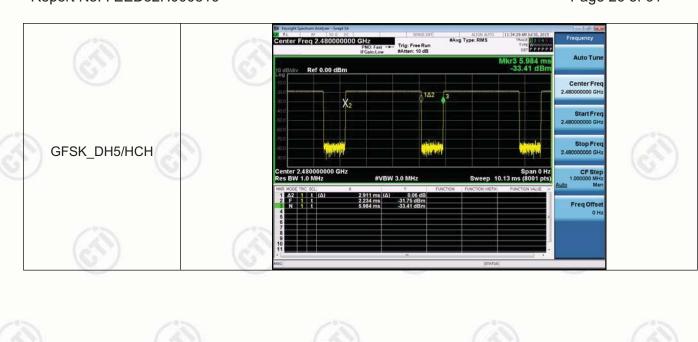
Report No. : EED32H000816 Page 23 of 61

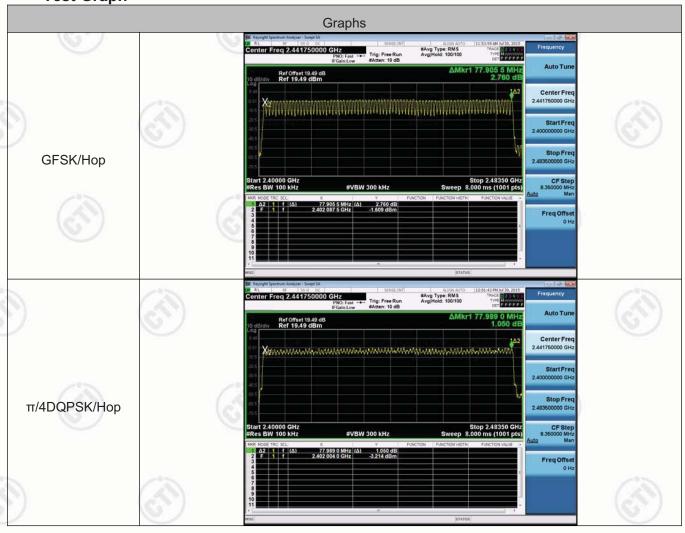
Appendix C) Dwell Time Result Table

Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Verdict
GFSK	DH1	LCH	0.408	320	0.131	PASS
GFSK	DH1	MCH	0.408	320	0.131	PASS
GFSK	DH1	HCH	0.408	320	0.131	PASS
GFSK	DH3	LCH	1.663	160	0.266	PASS
GFSK	DH3	MCH	1.664	160	0.266	PASS
GFSK	DH3	HCH	1.663	160	0.266	PASS
GFSK	DH5	LCH	2.912	106.7	0.311	PASS
GFSK	DH5	MCH	2.912	106.7	0.311	PASS
GFSK	DH5	HCH	2.911	106.7	0.311	PASS

Test Graph



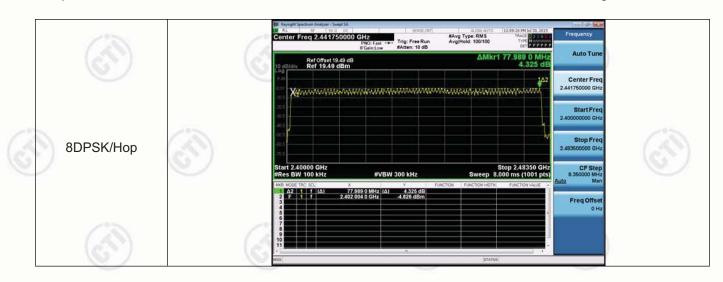




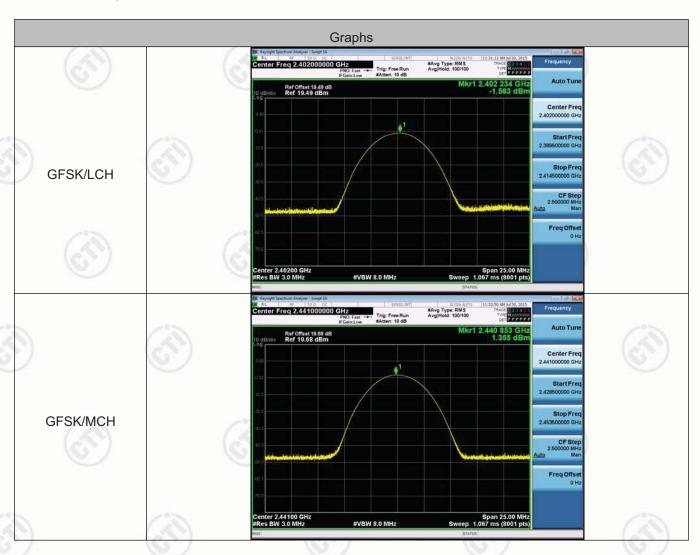
Appendix D) Hopping Channel Number Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Test Graph



Report No.: EED32H000816

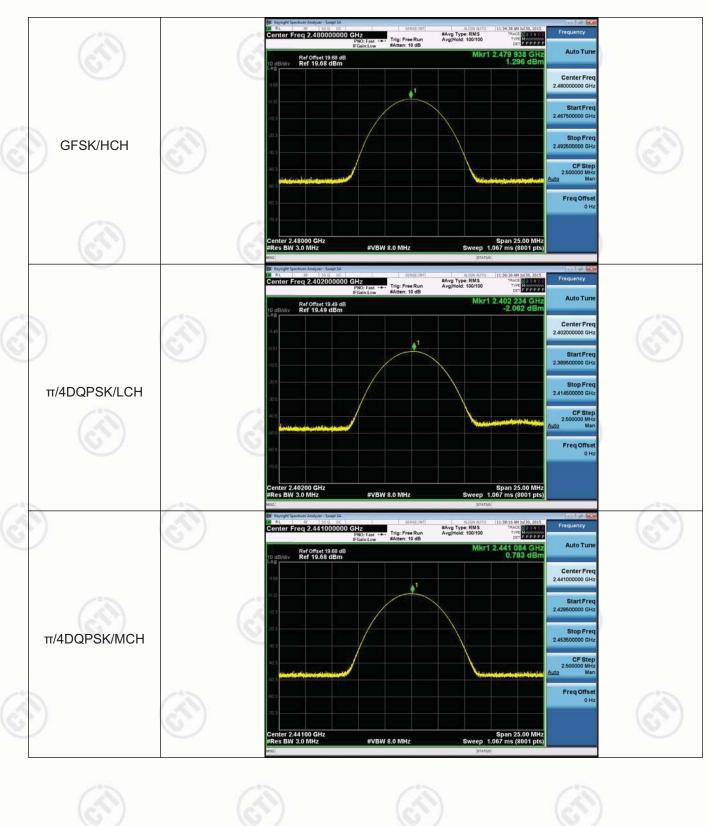


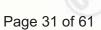
Report No. : EED32H000816 Page 29 of 61

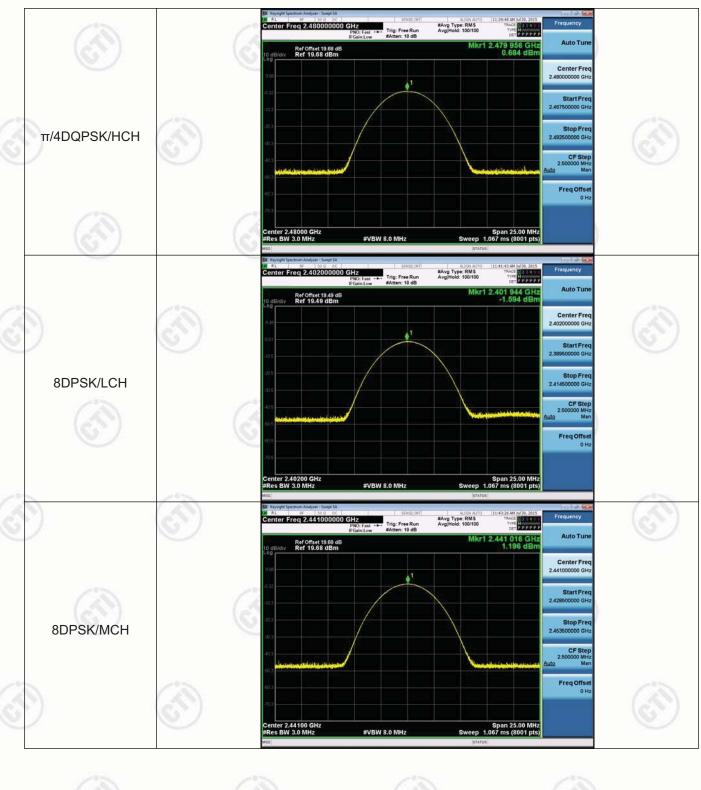
Appendix E) Conducted Peak Output Power Result Table

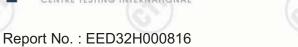
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	-1.563	PASS
GFSK	MCH	1.355	PASS
GFSK	НСН	1.296	PASS
π/4DQPSK	LCH	-2.062	PASS
π/4DQPSK	MCH	0.783	PASS
π/4DQPSK	HCH	0.684	PASS
8DPSK	LCH	-1.594	PASS
8DPSK	MCH	1.196	PASS
8DPSK	HCH	1.103	PASS

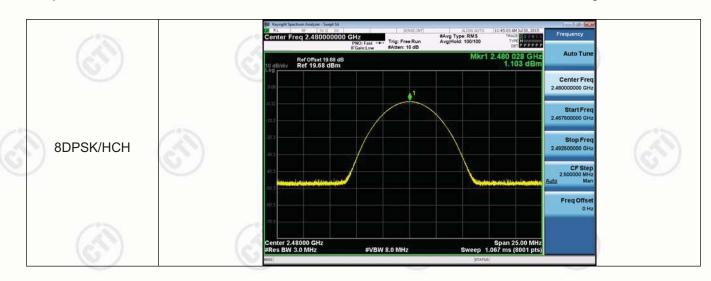
Test Graph











Report No. : EED32H000816 Page 33 of 61

Appendix F) Band-edge for RF Conducted Emissions

Result Table

GFSK/LCH/No Hop

GFSK/L

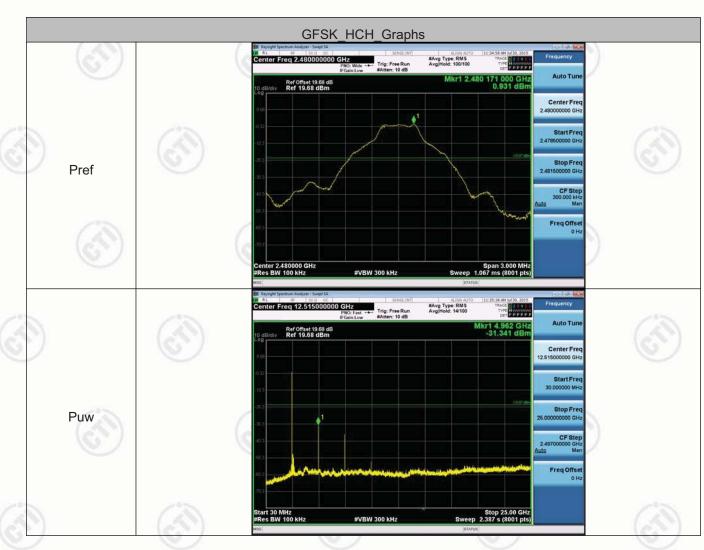


Appendix G) RF Conducted Spurious Emissions Result Table

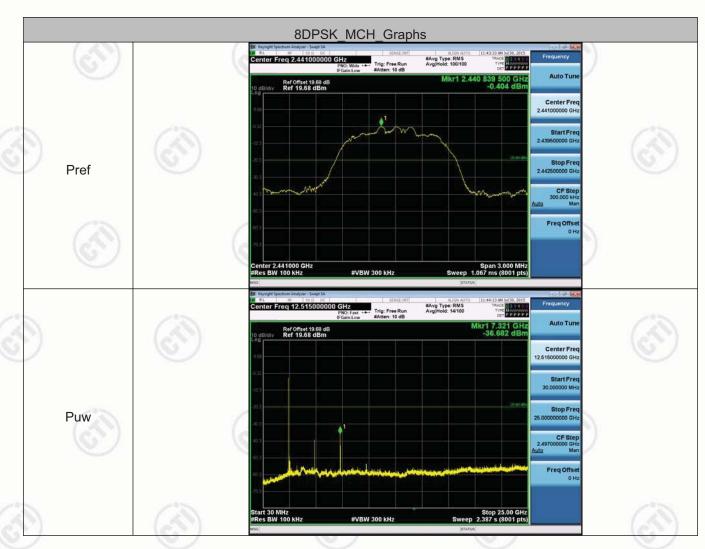
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	-1.784	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	1.019	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	0.931	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-3.588	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	-0.593	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	-0.761	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-3.433	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	-0.404	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	-0.471	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com







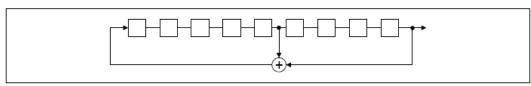
Page 47 of 61

Report No.: EED32H000816

Appendix H) Pseudorandom Frequency Hopping Sequence

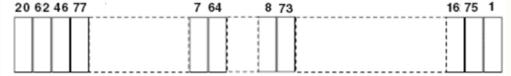
Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No. : EED32H000816 Page 48 of 61

Appendix I) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

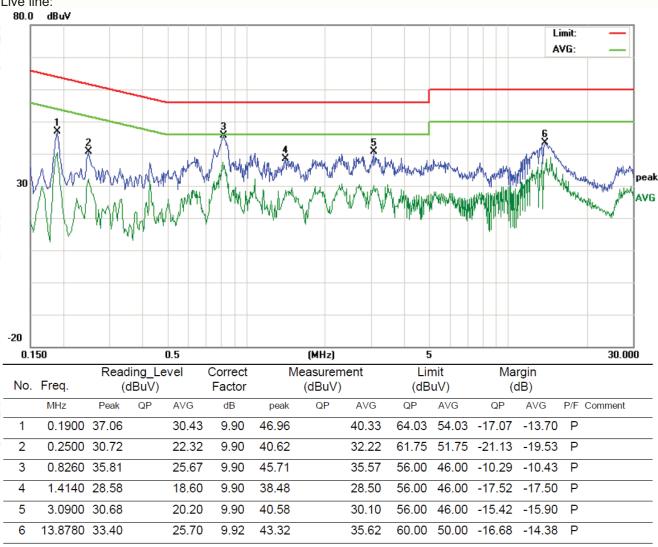
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test Procedure:	1)The ma 2) The El Stabili power which for the	UT was connected to ization Network) which cables of all other unwas bonded to the good unit being measure	:-30MHz ance voltage test was on AC power source through provides a 50Ω/50μ mits of the EUT were round reference planed. A multiple socket of single LISN provided to	ough a LISN 1 (Linuth $_{\rm H}$ + 5Ω linear imple connected to a section the same way aboutlet strip was use	e Impedance pedance. The cond LISN 2 as the LISN 1 ed to connec
	excee 3)The tab refere	ded. bletop EUT was plac	ed upon a non-metalli por-standing arrangem	ic table 0.8m abov	e the ground
	EUT s refere 1 was	shall be 0.4 m from the nce plane was bonder placed 0.8 m from	th a vertical ground refered to the horizontal ground are the horizontal ground the boundary of the upper LISNs mounted on	rence plane. The ve ound reference plar unit under test and	ertical ground ne. The LISN bonded to a
	plane. All oth LISN 2 5) In orde	This distance was be ner units of the EUT a 2. er to find the maximur	etween the closest pound associated equipment of the emission, the relative to be changed according the changed according to the changed according	oints of the LISN 1 anent was at least 0. e positions of equip	and the EUT .8 m from the oment and all
	plane. All oth LISN 2 5) In orde of the	This distance was be ner units of the EUT a 2. er to find the maximur	etween the closest po and associated equipm n emission, the relative	oints of the LISN 1 anent was at least 0. e positions of equip	and the EUT .8 m from the oment and all
Limit:	plane. All oth LISN 2 5) In orde of the	This distance was been units of the EUT at 2. The to find the maximur interface cables mus	etween the closest pound associated equipment of emission, the relative to be changed according	e positions of equip	and the EUT .8 m from the oment and all
_imit:	plane. All oth LISN: 5) In orde of the condu	This distance was been units of the EUT at 2. The to find the maximur interface cables must acted measurement.	etween the closest po and associated equipm n emission, the relative	e positions of equip	and the EUT 8 m from the ement and all
Limit:	plane. All oth LISN: 5) In orde of the condu	This distance was been units of the EUT at 2. The to find the maximur interface cables mus	etween the closest pound associated equipment of emission, the relative to be changed according	e positions of equip	and the EUT .8 m from the oment and all
Limit:	plane. All oth LISN: 5) In orde of the condu	This distance was been units of the EUT at 2. The to find the maximur interface cables must acted measurement.	etween the closest pound associated equipment of emission, the relative to be changed according the Limit (c	pints of the LISN 1 anent was at least 0. e positions of equiping to ANSI C63.10 of the control	and the EUT .8 m from the oment and all
_imit:	plane. All oth LISN: 5) In orde of the condu	This distance was bener units of the EUT at 2. The to find the maximur interface cables must acted measurement. This distance was bener units of the EUT at 2.	etween the closest pound associated equipment of emission, the relative to be changed according the Limit (conditions).	eints of the LISN 1 anent was at least 0. e positions of equiping to ANSI C63.10 of the	and the EUT .8 m from the oment and all
Limit:	plane. All oth LISN: 5) In orde of the condu	This distance was beer units of the EUT at 2. The to find the maximum interface cables must acted measurement. This distance was been acted to the EUT at 2. This d	etween the closest pound associated equipment of emission, the relative to be changed according to the change of t	oints of the LISN 1 anent was at least 0. e positions of equiping to ANSI C63.10 of the control	and the EUT .8 m from the oment and all
Limit:	Frequents * The lim MHz t	This distance was bener units of the EUT at 2. The to find the maximum interface cables must acted measurement. The control of the EUT at 2. The to find the maximum interface cables must acted measurement. This distance was bener as better to find the maximum interface cables must acted measurement. This distance was bener was bener as better to find the EUT at 2. This distance was bener as better to find the EUT at 2. This distance was bener as better to find the EUT at 2. This distance was bener as better to find the EUT at 2. This distance was bener as better to find the EUT at 2. This distance was bener at 2. This distance was b	etween the closest pound associated equipment emission, the relative to be changed according Limit (conclusion) Quasi-peak 66 to 56*	e positions of equipment was at least 0. e positions of equipment to ANSI C63.10 of the ANSI C63.10 of the ANSI C63.10 of the frequency in th	and the EUT .8 m from the ment and all on

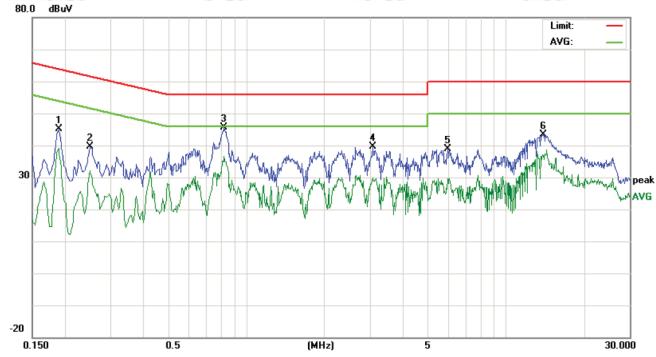


Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were detected.

Live line:



No.	Freq.		ling_Le dBuV)	vel	Correct Factor	М	easurem (dBuV)	ent	Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1900	35.27		29.10	9.90	45.17		39.00	64.03	54.03	-18.86	-15.03	Р	
2	0.2500	29.62		22.20	9.90	39.52		32.10	61.75	51.75	-22.23	-19.65	Р	
3	0.8220	35.77		26.81	9.90	45.67		36.71	56.00	46.00	-10.33	-9.29	Р	
4	3.0900	29.60		19.97	9.90	39.50		29.87	56.00	46.00	-16.50	-16.13	Р	
5	5.9860	26.69		6.70	9.90	36.59		16.60	60.00	50.00	-23.41	-33.40	Р	
6	13.9660	33.57		27.05	9.92	43.49		36.97	60.00	50.00	-16.51	-13.03	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix K) Restricted bands around fundamental frequency (Radiated)/Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

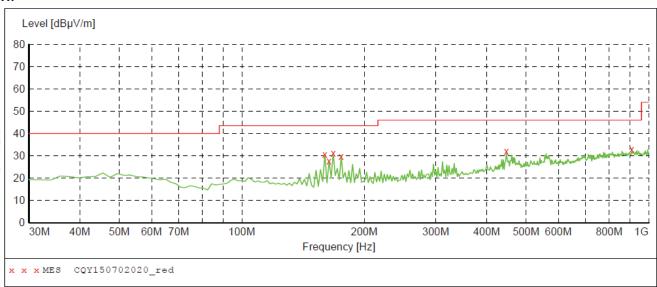
- g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

	ı	ı		

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data:

All the modes of operation (X, Y, Z) were investigated and the worst-case emissions are reported.


A. Below 30MHz:

No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

B. $30MHz \sim 1GHz$:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel (GFSK mode) are chosen as representative in below:

H:

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
159.980000	30.60	11.8	43.5	12.9		100.0	11.00	HORIZONTAL
163.860000 167.740000	27.60 31.30	12.1 12.3	43.5 43.5	15.9 12.2		100.0	358.00 37.00	HORIZONTAL HORIZONTAL
175.500000	29.70	12.7	43.5	13.8		100.0	197.00	HORIZONTAL
447.100000 908.820000	31.90 33.00	20.0 26.7	46.0 46.0	14.1 13.0		100.0 100.0	88.00 301.00	HORIZONTAL HORIZONTAL

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



V:

Frequency MHz				Margin dB	Height cm	Azimuth deg	Polarization	
51.340000 59.100000		16.3 15.3		8.5 19.0			VERTICAL VERTICAL	
159.980000	19.30	11.8	43.5				VERTICAL	
191.020000	28.40	13.4	43.5	15.1	 100.0	266.00	VERTICAL	
522.760000	27.20	21.7	46.0	18.8	 100.0	282.00	VERTICAL	
928.220000	33.00	26.7	46.0	13.0	 100.0	29.00	VERTICAL	

Report No. : EED32H000816 Page 55 of 61

C. Above 1GHz:

Test Results-(Measurement Distance: 3m)_Channel low_2402MHz_GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2390.0	35.72	74	PK	Н	Р
2400.0	43.45	74	PK	Н	P
2402.0*	82.41		PK	H	Р
4804.0	47.98	74	PK	Н	Р
2390.0	36.51	74	PK	V	Р
2400.0	41.66	74	PK	V	P
2402.0*	83.95	/ 	PK	V	Р
4804.0	46.33	74	PK	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel middle_2441MHz_GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2441.0*	84.91		PK	Н	Р
4882.0	47.34	74	PK	н	P
2441.0*	85.63		PK	V	Р
4882.0	46.63	74	PK	V	Р

^{*:} fundamental frequency

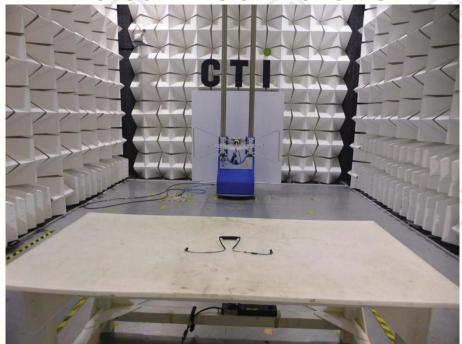
Test Results-(Measurement Distance: 3m)_Channel high_2480MHz_GFSK mode:

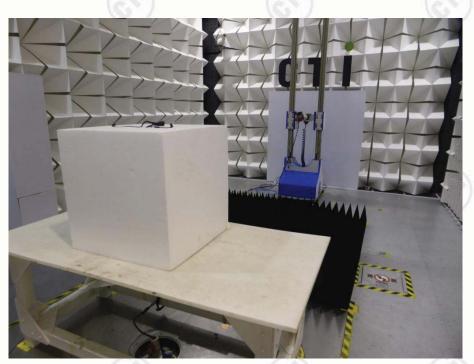
	Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
	2480.0*	84.21	<u> </u>	PK	н (2	Р
	2483.5	40.63	74	PK	н	Р
	4960.0	47.58	74	PK	Н	Р
	2480.0*	85.64		PK	V	Р
Š	2483.5	40.57	74	PK	V	Р
2	4960.0	46.66	74	PK	V	P 🔍

^{*:} fundamental frequency

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. All the modes of GFSK, π /4-DQPSK and 8DPSK have been tested. The worst case is GFSK mode, and the worst data of GFSK mode are chosen as above.
- 3. No emission found from 18GHz to 25GHz.
- 4. All outside of operating frequency band and restricted band specified are below 15.209.





PHOTOGRAPHS OF TEST SETUP

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32H000816 Page 57 of 61



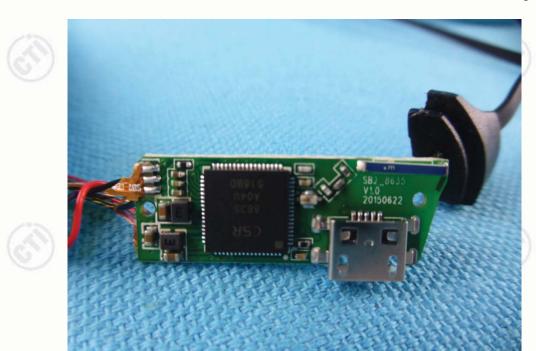
PHOTOGRAPHS OF EUT Constructional Details

View of External Product-1

View of External Product-2

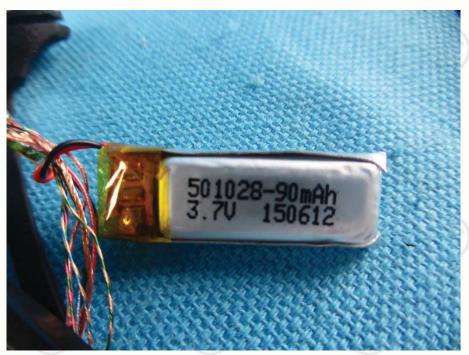
View of Internal Product-1

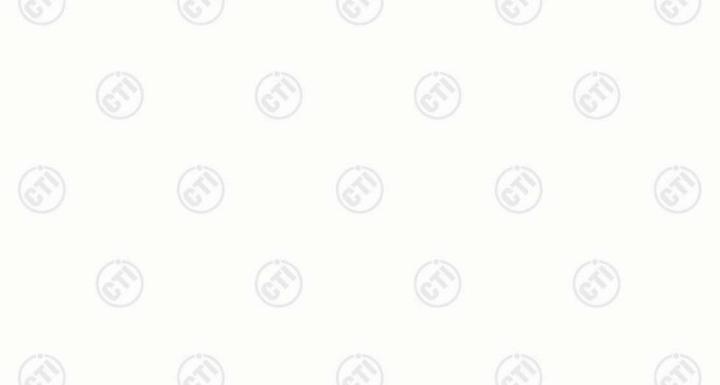
View of Internal Product-2



View of Internal Product-3

View of Internal Product-4





View of Internal Product-5

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

