

TEST REPORT

: Wireless Speaker **Product** Trade mark : 2XL by Skullcandy

Model/Type reference : KeyRinger

: N/A **Serial Number**

Report Number : EED32H000651 **FCC ID** : Y22-2XL20130003

Date of Issue : Jun. 25, 2015

Test Standards : 47 CFR Part 15 Subpart C (2014)

Test result : PASS

Prepared for:

Skullcandy

1441 W. Ute Blvd Suite 250 Park City, UT 84098 United States

Prepared by:

Centre Testing International (Shenzhen) Corporation Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan District, Shenzhen, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Reviewed by:

Approved by:

Date:

Jun. 25, 2015

Sheek Luo

Lab supervisor

Check No.: 2135108726

Version 2

Version No.	Date	Description	
00	Jun. 25, 2015	Original	

Report No.: EED32H000651 Page 3 of 58

3 Test Summary

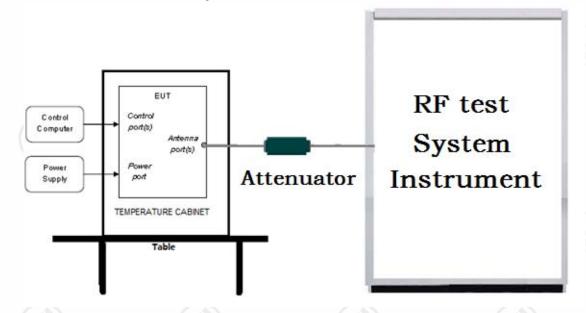
rest Summary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Report No.: EED32H000651 Page 4 of 58

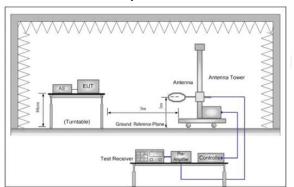
4 Content

1	1 COVER PAGE	1
2	2 VERSION	2
3	3 TEST SUMMARY	3
4	4 CONTENT	4
5	5 TEST REQUIREMENT	5
	5.1 TEST SETUP	
	5.1.1 For Conducted test setup	
	5.1.2 For Radiated Emissions test setup	
	5.13 FOI CONDUCTED EMISSIONS LEST SETUP	
	5.3 TEST CONDITION	
_		
b	6 GENERAL INFORMATION	
	6.1 CLIENT INFORMATION	
	6.2 GENERAL DESCRIPTION OF EUT.	
	6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	6.4 DESCRIPTION OF SUPPORT UNITS	
	6.5 TEST LOCATION	
	6.6 TEST FACILITY	-
	6.7 DEVIATION FROM STANDARDS	
	6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	6.10MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
_	• • •	
7	7 EQUIPMENT LIST	11
8	8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
	Appendix A): 20dB Occupied Bandwidth	
	Appendix B): Carrier Frequency Separation	17
	Appendix C): Dwell Time	
	Appendix D): Hopping Channel Number	
	Appendix E): Conducted Peak Output Power	
	Appendix F): Band-edge for RF Conducted Emissions	
	Appendix G): RF Conducted Spurious Emissions	
	Appendix H)	
	Appendix I) Antenna Requirement	44
	Appendix J) AC Power Line Conducted Emission	45
	Appendix K) Restricted bands around fundamental frequency (Radiated)/Radiated	
9	9 PHOTOGRAPHS OF TEST SETUP	52
11	10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	51
	TO THE TOURS THE OF EAT OCHOTHOGHOURAL DETAILS	



Report No.: EED32H000651 Page 5 of 58

5 Test Requirement


5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Antenna Tower

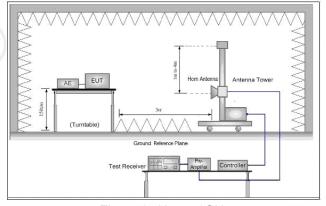
Antenna Tower

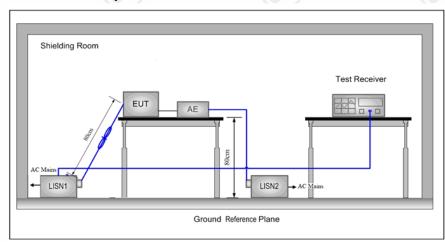
Antenna Tower

Test Receiver Angeler Controlles

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	53 % RH	
Atmospheric Pressure:	995mbar	

5.3 Test Condition

	Toot Modo	Test Mode Tx/Rx		RF Channel			
	rest Mode	TX/RX	Low(L)	Middle(M)	High(H)		
	GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79		
/	8DPSK(DH1,DH3,DH5)	2402WIFIZ ~2460 WIFIZ	2402MHz	2441MHz	2480MHz		

6 General Information

6.1 Client Information

Applicant:	Skullcandy	
Address of Applicant:	1441 W. Ute Blvd Suite 250 Park City, UT 84098 United States	
Manufacturer:	Skullcandy	
Address of Manufacturer:	1441 W. Ute Blvd Suite 250 Park City, UT 84098 United States	

6.2 General Description of EUT

Product Name:	Wireless Speaker
Model No.(EUT):	KeyRinger
Trade mark:	2XL by Skullcandy
EUT Supports Radios application:	Bluetooth V3.0+EDR
Power Supply:	Input: 5V— 500mA, Class III
Sample Received Date:	May 26, 2015
Sample tested Date:	May 26, 2015 to Jun. 26, 2015

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	3.0+EDR		
Modulation Technique:	Frequency Hopping Spread Spectru	m(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK		
Number of Channel:	79		10
Sample Type:	Portable production		
Antenna Type:	Integral		6
Antenna Gain:	0dBi		
Test Voltage:	DC 3.7V		
0			

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz

Report No.: EED32H000651 Page 8 of 58

					_,		_,	
	11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
	12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
	13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
L	14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
	15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
L	16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
	17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
L	18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
	19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
	20	2421MHz	40	2441MHz	60	2461MHz	(0)	

6.4 Description of Support Units

The EUT has been tested with associated equipment below:

Device Type	Brand	Model	Data Cable	Remark
Notebook	HP	G3	N/A	FCC DOC
Mouse	L.Selectron	M004	Un-shielded 1.2M	FCC DOC

6.5 Test Location

All tests were performed at:

Centre Testing International (Shenzhen) Corporation

Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan District, Shenzhen, China Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

Report No. : EED32H000651 Page 9 of 58

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International (Shenzhen) Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nouver conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dedicted Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
-4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

-quipinent List				
Equipment	Manufacturer	Model	Serial No.	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		06/01/2016
Receiver	R&S	ESCI	100435	07/08/2015
Spectrum Analyzer	R&S	FSP40	100416	07/06/2015
Signal Generator	R&S	SMB 100A	3008A02145	01/15/2016
Vector Signal Generator	R&S	SMBV 100A	3636A01004	01/15/2016
Signal Analyzer	R&S	FSV	100263	01/15/2016
Communication test set test set	Agilent	N4010A	MY47230124	01/15/2016
Spectrum Analyzer	Keysight	N9010A	5522H-HY5KC-VL	01/15/2016
Signal Generator	Keysight	N5182B	MMAPJ-I6AC3	01/15/2016
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	618	06/16/2016
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	617	07/13/2015
Multi device Controller	maturo	NCD/070/107 11112		N/A
Horn Antenna	ETS-LINGREN	3117	00057407	07/07/2015
Horn Antenna	ETS-LINGREN	3117	00057362	07/07/2015
Microwave Preamplifier	Agilent	8449B	3008A02425	03/19/2016
ESG Vector signal generators	Agilent	E4438C	MY45095744	01/15/2016
Temperature & Humidity Chamber	ESPEC	EL-04KA	N/A	08/03/2015
Receiver	R&S	ESCI	100009	07/19/2015
LISN	R&S	ENV216	100098	07/19/2015
Cable line	Fulai(7M)	SF106	5219/6A	01/12/2016
Cable line	Fulai(6M)	SF106	5220/6A	01/12/2016
Cable line	Fulai(3M)	SF106	5216/6A	01/12/2016
Cable line	Fulai(3M)	SF106	5217/6A	01/12/2016
Attenuator HuaXiar		INMET64671	INMET64671	03/31/2016
Attenuator	HuaXiang	SHX370	15040701	03/31/2016

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix K)

Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	1.045	0.9345	PASS
GFSK	MCH	1.043	0.9401	PASS
GFSK	НСН	1.052	0.9397	PASS
π/4DQPSK	LCH	1.345	1.2594	PASS
π/4DQPSK	МСН	1.365	1.2531	PASS
π/4DQPSK	нсн	1.365	1.2612	PASS
8DPSK	LCH	1.353	1.2642	PASS
8DPSK	MCH	1.347	1.2591	PASS
8DPSK	НСН	1.350	1.2715	PASS

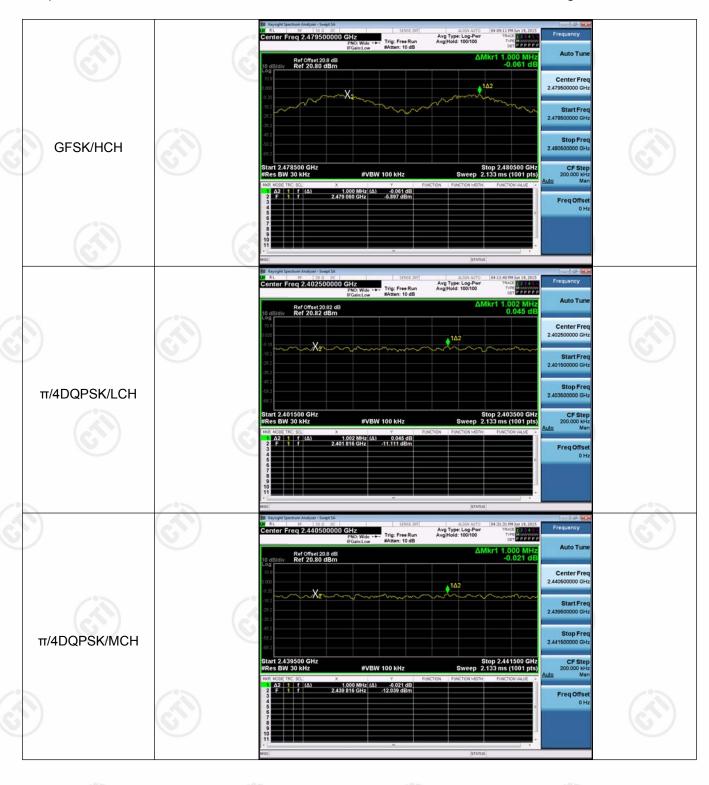
Test Graph

Page 16 of 58

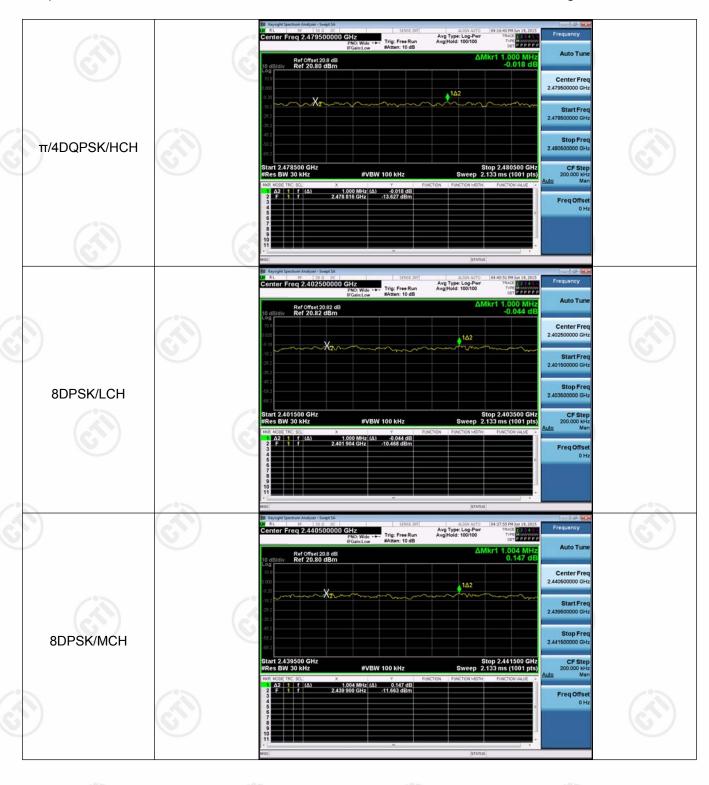
Page 17 of 58 Report No.: EED32H000651

Appendix B): Carrier Frequency Separation

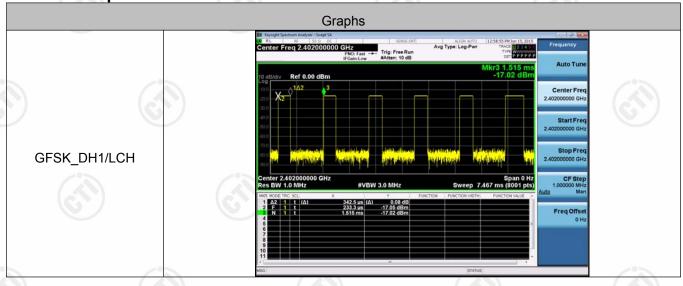
Result Table


Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.002	PASS
GFSK	MCH	1.066	PASS
GFSK	нсн	1.000	PASS
π/4DQPSK	LCH	1.002	PASS
π/4DQPSK	MCH	1.000	PASS
π/4DQPSK	HCH	1.000	PASS
8DPSK	LCH	1.000	PASS
8DPSK	MCH	1.004	PASS
8DPSK	НСН	1.002	PASS

Test Graph



Report No.: EED32H000651 Page 21 of 58

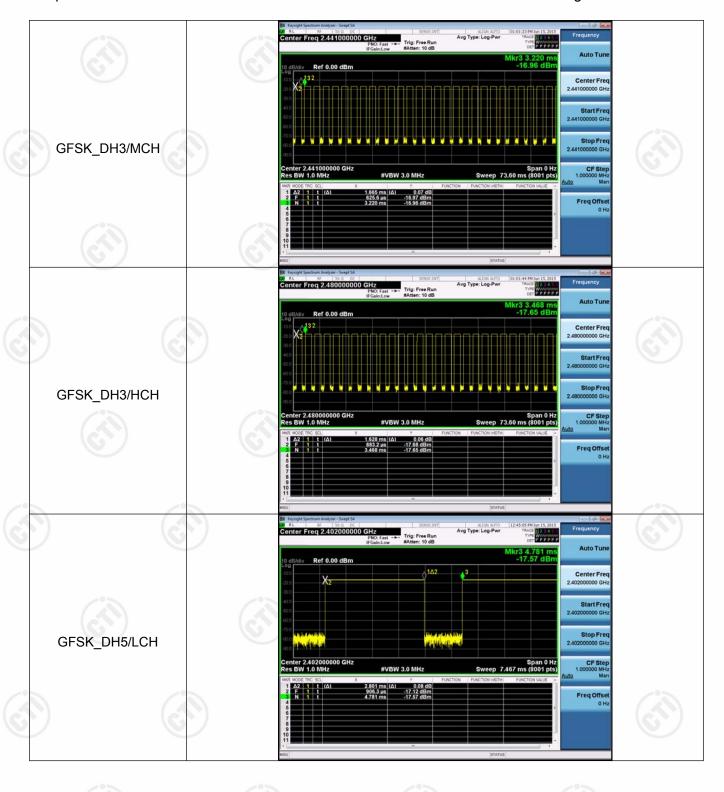

Appendix C): Dwell Time

Result Table

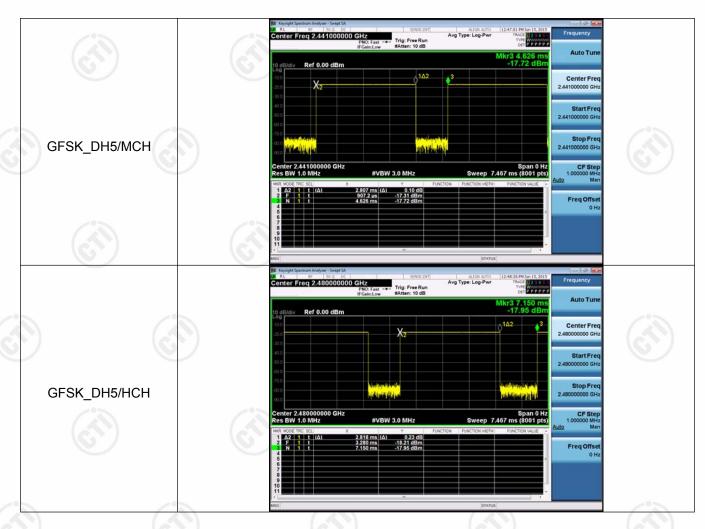
Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Verdict
GFSK	DH1	LCH	0.343	320	109.76	PASS
GFSK	DH1	MCH	0.363	320	116.16	PASS
GFSK	DH1	НСН	0.331	320	105.92	PASS
GFSK	DH3	LCH	1.674	160	267.84	PASS
GFSK	DH3	MCH	1.665	160	266.4	PASS
GFSK	DH3	НСН	1.628	160	260.48	PASS
GFSK	DH5	LCH	2.801	106.7	298.867	PASS
GFSK	DH5	MCH	2.807	106.7	299.507	PASS
GFSK	DH5	НСН	2.818	106.7	300.681	PASS

Remark: All the modes of GFSK , π /4-DQPSK and 8DPSK have been tested. The worst case is GFSK mode, and the worst data of GFSK mode is below.

Test Graph

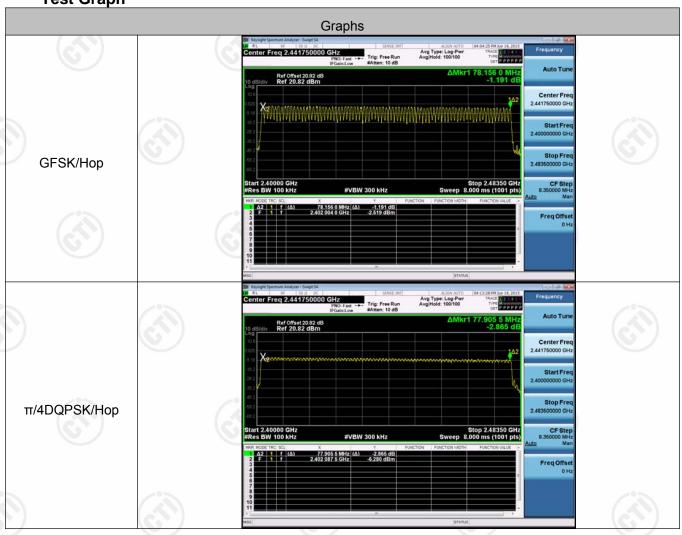


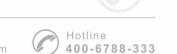
E-mail:info@cti-cert.com



E-mail:info@cti-cert.com

Report No. : EED32H000651 Page 24 of 58

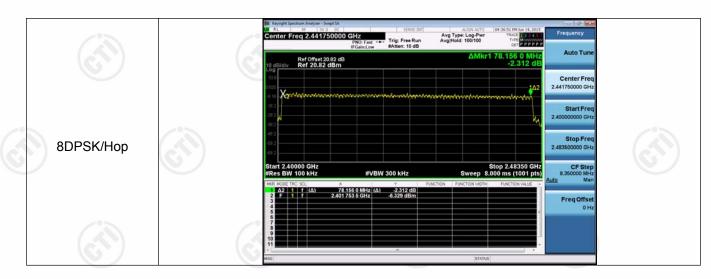

Report No. : EED32H000651 Page 25 of 58

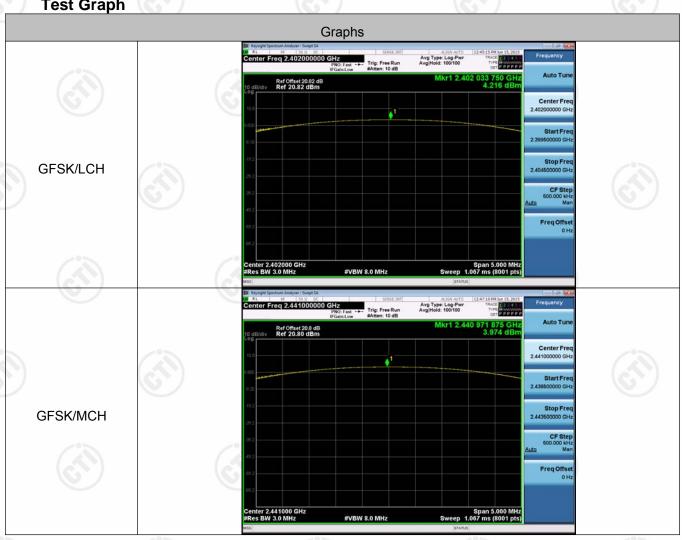

Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Test Graph



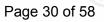

Report No.: EED32H000651 Page 27 of 58

Appendix E): Conducted Peak Output Power

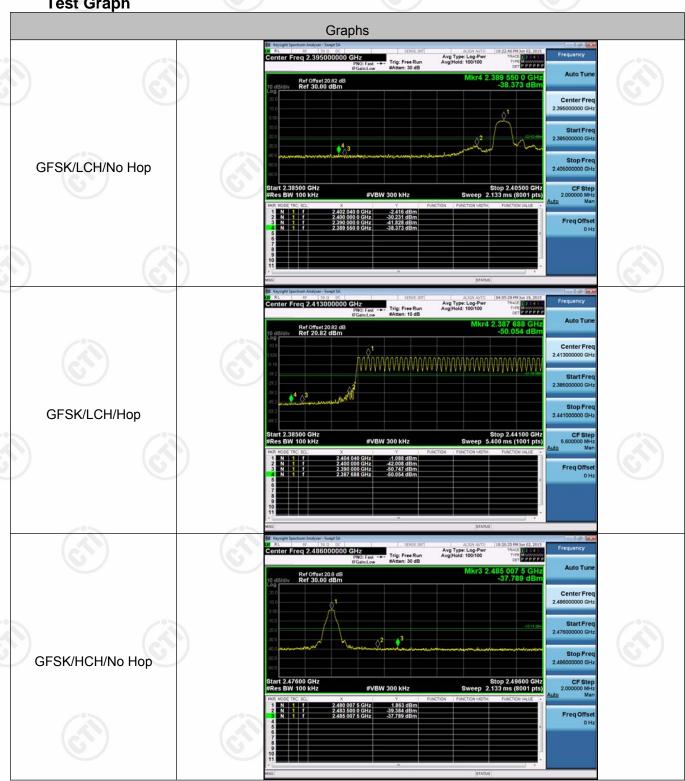
Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	4.216	PASS
GFSK	МСН	3.974	PASS
GFSK	НСН	3.291	PASS
π/4DQPSK	LCH	4.227	PASS
π/4DQPSK	MCH	3.964	PASS
π/4DQPSK	HCH	3.142	PASS
8DPSK	LCH	4.112	PASS
8DPSK	MCH	3.857	PASS
8DPSK	НСН	3.212	PASS

Test Graph



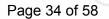


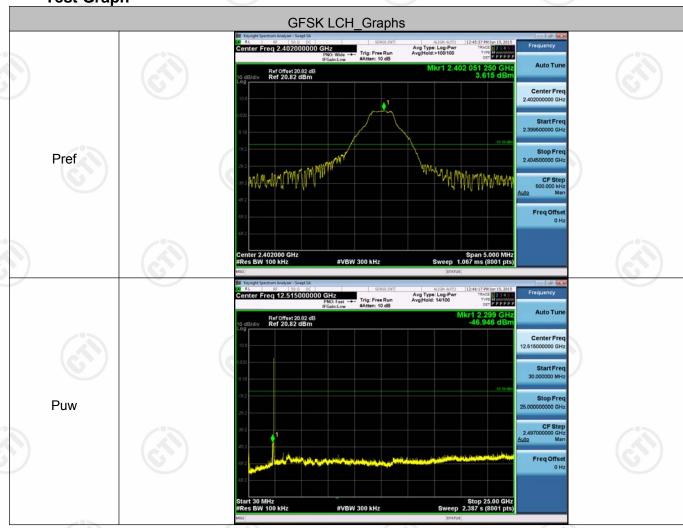


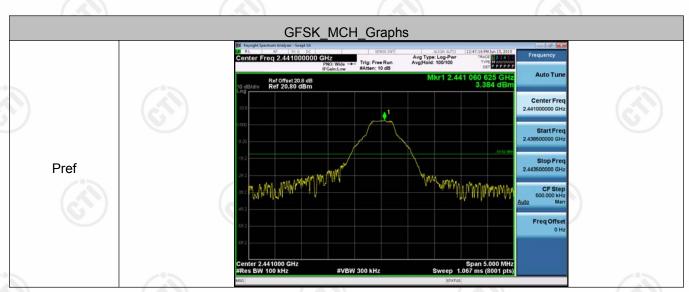
Page 31 of 58 Report No.: EED32H000651

Appendix F): Band-edge for RF Conducted Emissions

Test Graph



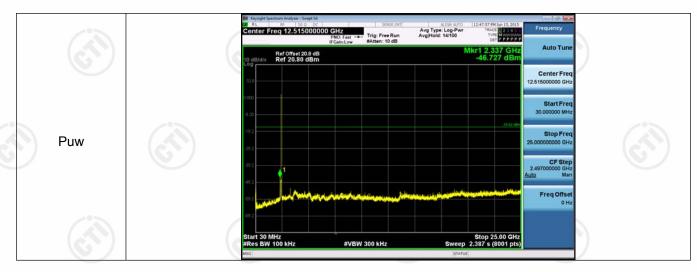


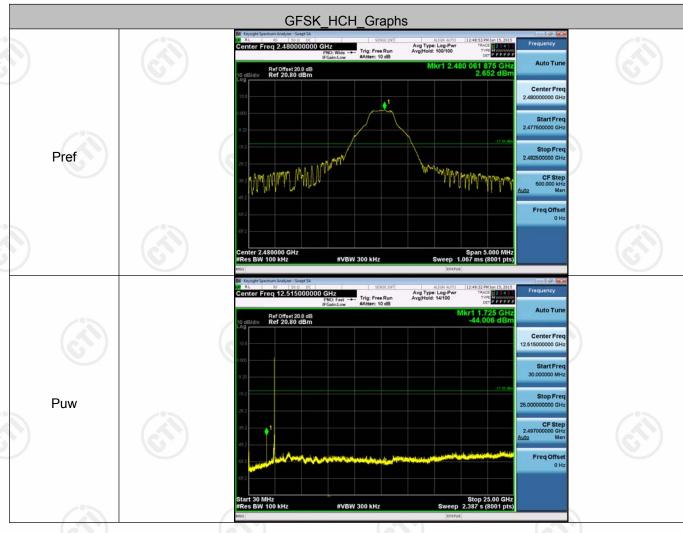


Page 35 of 58 Report No.: EED32H000651

Appendix G): RF Conducted Spurious Emissions


Test Graph



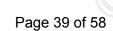


CENTRE TESTING INTERNATIONAL CORPORATION

Page 37 of 58



Page 38 of 58



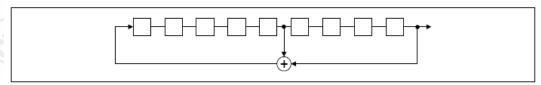
Page 41 of 58

Appendix H)

Pseudorandom Frequency Hopping Sequence

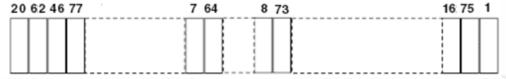
Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9thstage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

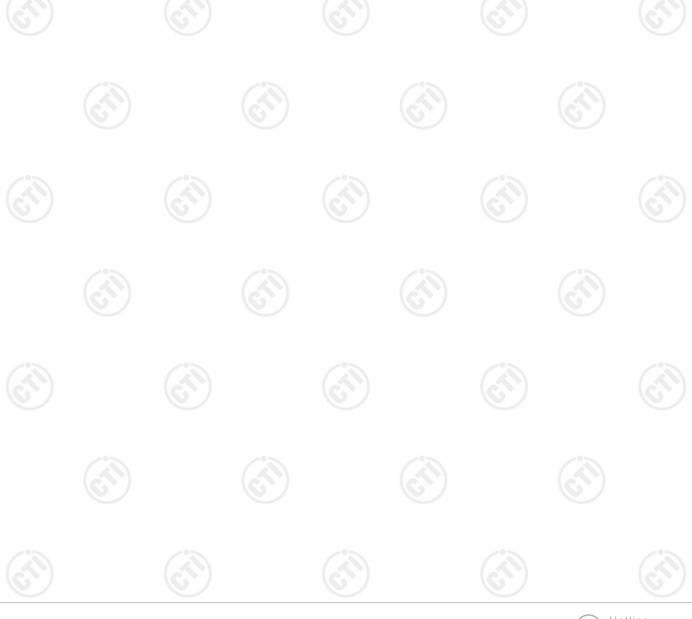
Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix I) Antenna Requirement

15.203 requirement:

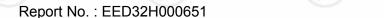

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi.



Appendix J) AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz 1) The mains terminal disturba 2) The EUT was connected to Stabilization Network) which power cables of all other uni which was bonded to the gre for the unit being measured multiple power cables to a s exceeded. 3) The tabletop EUT was place reference plane. And for floc horizontal ground reference 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for L This distance was between other units of the EUT and a LISN 2. 5) In order to find the maximum of the interface cables must measurement.	ance voltage test was a AC power source through provides a 50Ω/50μH test of the EUT were cound reference plane. A multiple socket out ingle LISN provided the dupon a non-metallic prestanding arrangement of the test of the horizontal ground reference to the horizontal ground reference boundary of the unit LISNs mounted on top the closest points of the sociated equipment of emission, the relative	bugh a LISN 1 (Line H + 5Ω linear impedation in the same way as let strip was used to be rating of the LISN at table 0.8m above ent, the EUT was played and reference plane. The vertical reference plane under test and bond of the ground reference of the EUSN 1 and the Ewasat least 0.8 m free positions of equipres of equipres of the positions of equipres of the same context.	Impedance ance. The d LISN 2, the LISN 1 o connect I was not the ground aced on the tical ground. The LISN ded to a ence plane. UT. All om the
Limit:		Limit (d	IRu\/\	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	-0-
	5-30	60	50	
	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applic	with the logarithm of	the frequency in the	range 0.

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

5

6

4.8540 29.95

13.8740 34.63

18.31

27.24

9.90

9.92

39.85

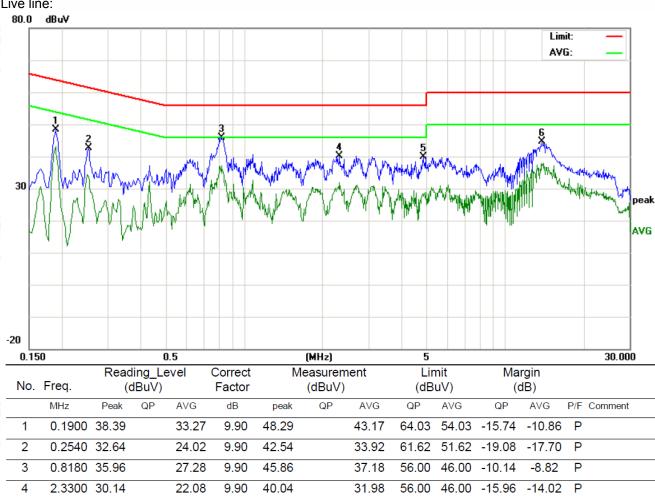
44.55

28.21

37.16

56.00

60.00

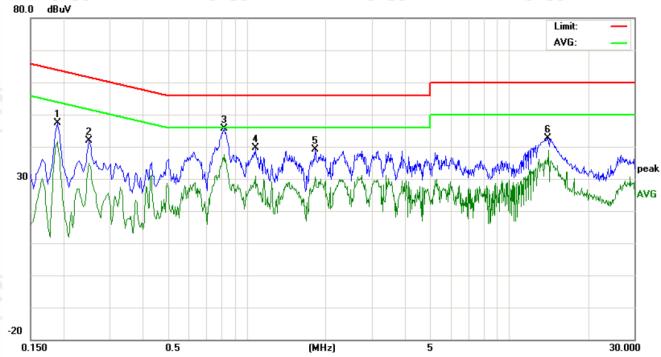

46.00

-16.15

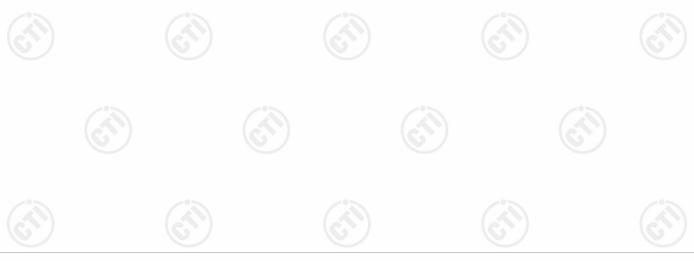
50.00 -15.45 -12.84

-17.79

Ρ



Page 47 of 58



No.	Freq.		ling_Le dBuV)	vel	Correct Factor	М	easurem (dBuV)	ent	Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1900	37.48		31.67	9.90	47.38		41.57	64.03	54.03	-16.65	-12.46	Р	
2	0.2500	32.04		25.01	9.90	41.94		34.91	61.75	51.75	-19.81	-16.84	Ρ	
3	0.8180	35.60		25.80	9.90	45.50		35.70	56.00	46.00	-10.50	-10.30	Р	
4	1.0859	21.49		5.94	9.90	31.39		15.84	56.00	46.00	-24.61	-30.16	Р	
5	1.8260	29.26		20.63	9.90	39.16		30.53	56.00	46.00	-16.84	-15.47	Р	
6	14.1260	32.73		24.77	9.92	42.65		34.69	60.00	50.00	-17.35	-15.31	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix K) Restricted bands around fundamental frequency (Radiated)/Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

CENTRE TESTING INTERNATIONAL CORPORATION

- g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

m	

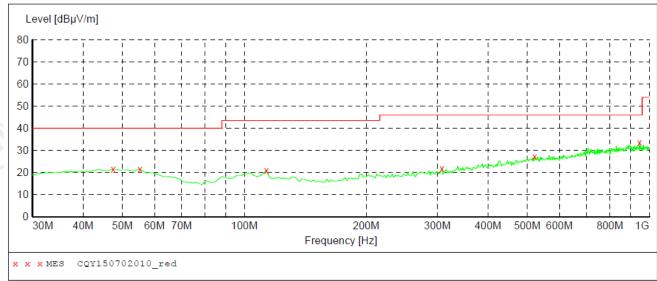
Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	\ -	-/ 4	300
0.490MHz-1.705MHz	24000/F(kHz)	<i>)</i> -	-(C)	30
1.705MHz-30MHz	30	-)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

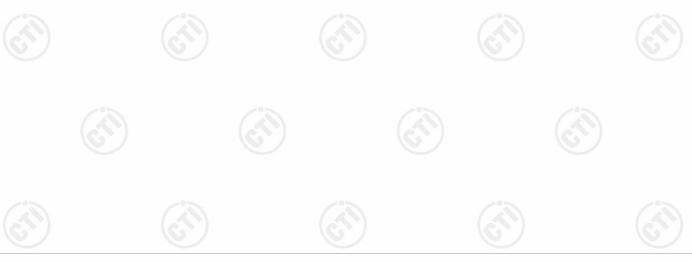
Report No.: EED32H000651 Page 49 of 58

Radiated Spurious Emissions test Data:

All the modes of operation (X, Y, Z) were investigated and the worst-case emissions are reported.

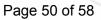

A. Below 30MHz:

No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

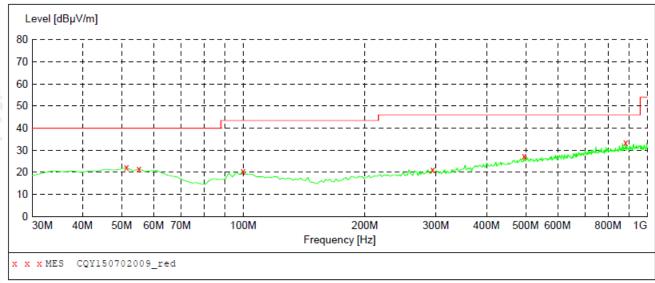

B. $30MHz \sim 1GHz$:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel (GFSK mode) are chosen as representative in below:

H:



Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MHz	dBµV/m	dB	dBµV/m	dB		cm	deg	
47.460000	21.50	16.3	40.0	18.5		100.0	179.00	HORIZONTAL
55.220000	21.50	15.8	40.0	18.5		100.0	366.00	HORIZONTAL
113.420000	21.00	13.7	43.5	22.5		100.0	37.00	HORIZONTAL
307.420000	21.90	16.1	46.0	24.1		100.0	247.00	HORIZONTAL
520.820000	27.00	21.6	46.0	19.0		100.0	37.00	HORIZONTAL
945.680000	33.40	26.7	46.0	12.6		100.0	116.00	HORIZONTAL



V:

Frequency MHz	Level dBµV/m		Limit dBµV/m	_	Det.	Height cm	Azimuth deg	Polarization
51.340000	22.30	16.3	40.0	17.7		100.0	305.00	VERTICAL
55.220000	21.60	15.8	40.0	18.4		100.0	29.00	VERTICAL
99.840000	20.50	14.7	43.5	23.0		100.0	122.00	VERTICAL
293.840000	21.30	15.8	46.0	24.7		100.0	146.00	VERTICAL
495.600000	27.30	21.4	46.0	18.7		100.0	334.00	VERTICAL
883.600000	33.60	26.5	46.0	12.4		100.0	334.00	VERTICAL

Report No. : EED32H000651 Page 51 of 58

C. Above 1GHz:

Test Results-(Measurement Distance: 3m)_Channel low_2402MHz_GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2390.0	35.09	74	PK	Н	Р
2400.0	42.88	74	PK	Н	Р
2402.0*	81.89		PK	Н	Р
4804.0	39.09	74	PK	Н	Р
2390.0	36.09	74	PK	V	Р
2400.0	41.09	74	PK	V	Р
2402.0*	83.44	/	PK	V	Р
4804.0	40.78	74	PK	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel middle_2441MHz_GFSK mode:

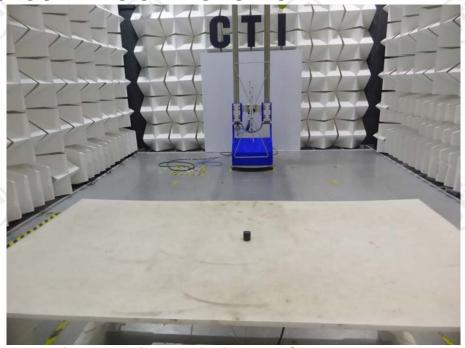
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)			Result (P/F)	
2441.0*	84.44		PK	Н	Р	
4882.0	41.78	74	PK	Н	Р	
2441.0*	85.09		PK	V	Р	
4882.0	42.09	74	PK	V	Р	

^{*:} fundamental frequency

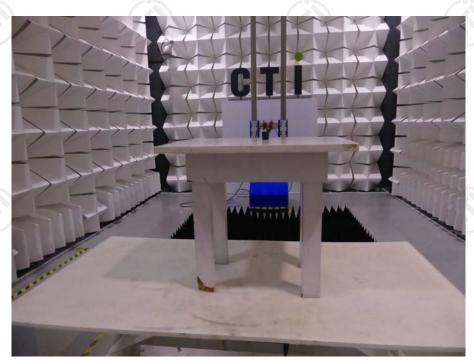
Test Results-(Measurement Distance: 3m) Channel high 2480MHz GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2480.0*	83.87		PK	Н (Р
2483.5	40.12	74	PK	Н	Р
4960.0	38.98	74	PK	Н	Р
2480.0*	85.12		PK	V	Р
2483.5	39.99	74	PK	V	Р
4960.0	41.09	74	PK	V	Р

^{*:} fundamental frequency


Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. All the modes of GFSK, π /4-DQPSK and 8DPSK have been tested. The worst case is GFSK mode, and the worst data of GFSK mode are chosen as above.
- 3. No emission found from 18GHz to 25GHz.
- 4. All outside of operating frequency band and restricted band specified are below 15.209.



Report No.: EED32H000651 Page 52 of 58

PHOTOGRAPHS OF TEST SETUP 9


Radiated spurious emission Test Setup-1 (Below 1GHz)

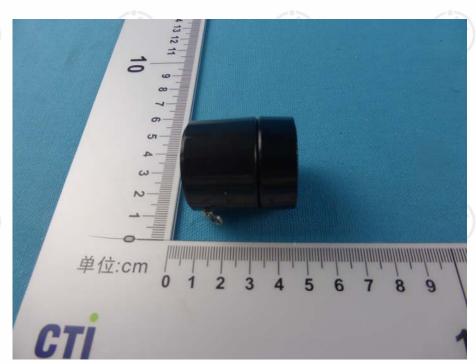
Radiated spurious emission Test Setup-2(Above 1GHz)

Conducted emission Test Setup

Report No. : EED32H000651 Page 54 of 58

10 PHOTOGRAPHS OF EUT Constructional Details

View of External Product-1



View of External Product-2

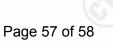
View of External Product-3

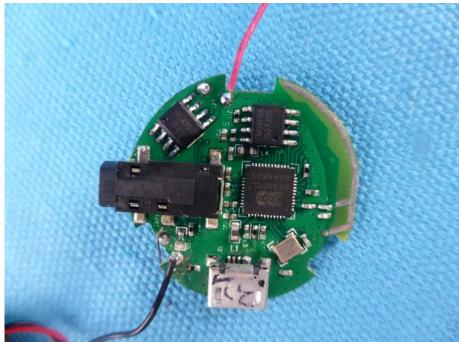
View of External Product-4

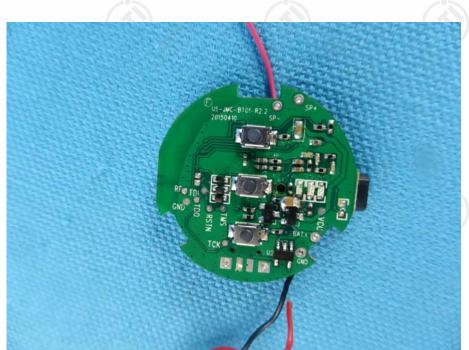
Page 56 of 58

View of External Product-5

View of Internal Product-1







View of Internal Product-2

View of Internal Product-3

View of Internal Product-4

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

