

TEST REPORT

Product Name : Bluetooth Headphone

Trade mark : N/A

Mode No. : Barrel Wireless

Serial Number : N/A

Report Number : EED32H000445

FCC ID : Y22-2XL20130002

Date of Issue: : May 29, 2015

Test Standards : 47 CFR FCC Part 15.247 (2014)

Test result : PASS

Prepared for:

Skullcandy

1441 W. Ute Blvd Suite 250 Park City, UT 84098 United States

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Ware Xin

Reviewed by:

Levin lan

Approved by:

Sheek, Luo

Date:

May 29, 2015

(CTI)

Sheek Luo Lab supervisor

Check No.: 2135172165

2 Version

Version No.	Date	Description	(6)	9
00	2015-04-01	Original		
	A15	100	/05	/5
		(45)		

3 Test Summary

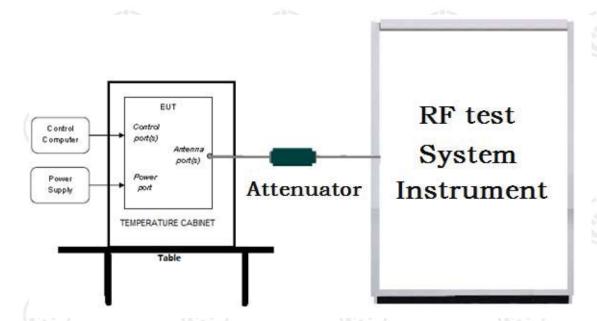
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2009	PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2009	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2009	PASS	
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2009	PASS	
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2009	PASS	
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2009	PASS	
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2009	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2009	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2009	PASS	
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2009	PASS	

Test according to ANSI C63.4-2009 & ANSI C63.10-2009.

Report No.: EED32H000445 Page 4 of 50

4 Content

		•••••	•••••	•••••	1
2	VERSION	•••••	•••••		2
3					
4					
5	TEST REQUI	REMENT		•••••	5
	5.1 TEST SET	TUP			5
	5.1.1 For C	onducted test setup			5
			setup		
			t setup		
6					
			TIVE TO THIS STANDARD		
			CONDITIONS		
			BY THE CUSTOMER		
7					
8			S SPECIFICATION		
AF	PPENDIX A: 20D	B EMISSION BANDWID	OTH (EBW)		12
ΑF	PPENDIX B: CAF	RRIER FREQUENCY SE	PARATION		16
ΑF	PPENDIX C: NUN	MBER OF HOPPING CH	IANNEL	•••••	20
ΑF	PPENDIX D: TIM	E OF OCCUPANCY (DV	VELL TIME)	•••••	21
ΑF	PPENDIX E: MAX	KIMUM PEAK CONDUC	TED OUTPUT POWER		25
ΑF	PPENDIX F: BAN	ID EDGE SPURIOUS EI	MISSION		29
ΑF	PPENDIX G) PSE	UDORANDOM FREQU	ENCY HOPPING SEQUEN	NCE	33
ΑF	PPENDIX H) ANT	ENNA REQUIREMENT		•••••	34
ΑF	PPENDIX I) AC P	OWER LINE CONDUCT	TED EMISSION	•••••	35
AF SF	PPENDIX J) RES PURIOUS EMISS	TRICTED BANDS ARO	UND FUNDAMENTAL FR	EQUENCY (RADIATED) / RADIATED 38
Pŀ	HOTOGRAPHS C	F EUT CONSTRUCTIO	NAL DETAILS		45



Report No.: EED32H000445 Page 5 of 50

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

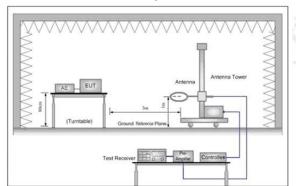


Figure 1. Below 30MHz

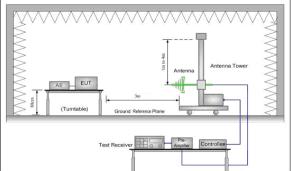


Figure 2. 30MHz to 1GHz

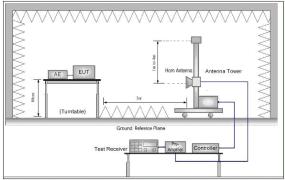
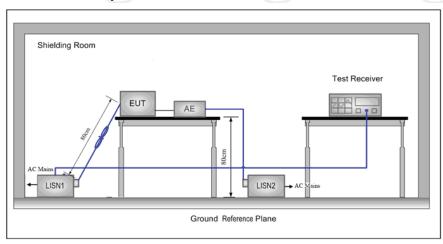
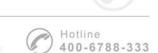



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup



5.2 Test Environment

Operating Environm	ent:	70%	195
Temperature:	25.0 °C		(20)
Humidity:	53 % RH		
Atmospheric Pressure:	995mbar		

5.3 Test Condition

Test Mode	Tx/Rx	RF Channel			
rest wode	I X/KX	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/		Channel 1	Channel 40	Channel79	
8DPSK(DH1,DH3,DH5)	2402MHz ~2480 MHz	2402MHz	2441MHz	2480MHz	

6 General Information

6.1 Client Information

Applicant:		Skullcandy	
Address of Applic	cant:	1441 W. Ute Blvd Suite 250 Park City, UT 84098 United States	
Manufacturer:	/3	Skullcandy	13
Address of Manufacturer:	6	1441 W. Ute Blvd Suite 250 Park City, UT 84098 United States	(0)

6.2 General Description of EUT

Product Name:	Bluetooth Headphone			
Model No.(EUT):	Barrel Wireless			
Tark mark:	N/A			
EUT Supports Radios application	Bluetooth V3.0+EDR			
PowerSupply:	Charging input: 5V ===, 500mA lithium Battery: 3,7V === 260mAh, IPX0, Class III			
Sample Received Date:	Apr. 15, 2015			
Sample tested Date:	Apr. 15, 2015 to May 29, 2015			

6.3 Product Specification subjective to this standard

Operation	Frequency:	2402MHz	~2480MHz	(6))	(6))	
Bluetooth Version:		3.0+EDR	3.0+EDR					
Modulatio	n Technique:	Frequency	/ Hopping Spre	ead Spectrur	n(FHSS)			
Modulatio	n Type:	GFSK, π/4	4DQPSK, 8DP	SK	75		100	
Number o	f Channel:	79	(25))	(2))	(3)	
Sample T	уре:	Portable p	roduction				6	
Antenna T	Гуре:	Integral ar	ntenna					
Antenna C	Gain:	0dBi		200		25%		
Test Volta	ige:	DC 3.7V)	(20)	4)	(2))	
Operation	Frequency ea	ch of channe	ſ	6	/	6	/-	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz	
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz	

Report No. : EED32H000445 Page 8 of 50

7/	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

6.4 Description of Support Units

The EUT has been tested with associated equipment below:

Device Type	Brand	Model	Data Cable	Remark
Notebook	HP	G3	N/A	FCC DOC
Mouse	L.Selectron	M004	Un-shielded 1.2M	FCC DOC

6.5 Test Location

All tests were performed at:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Report No. : EED32H000445 Page 9 of 50

FCC-Registration No.: 756231

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 756231.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International (Shenzhen) Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

Report No. : EED32H000445 Page 10 of 50

7 Equipment List

Equipment List			(2.7)		
Equipment	Manufacturer	Model	Serial No.	Due Date	
3M Chamber & Accessory Equipment	TDK	SAC-3		06/01/2016	
Receiver	R&S	ESCI	100435	07/08/2015	
Spectrum Analyzer	R&S	FSP40	100416	07/06/2015	
Signal Generator	R&S	SMB 100A	3008A02145	01/15/2016	
Vector Signal Generator	R&S	SMBV 100A	3636A01004	01/15/2016	
Signal Analyzer	R&S	FSV	100263	01/15/2016	
Communication test set test set	Agilent	N4010A	MY47230124	01/15/2016	
Spectrum Analyzer	Keysight	N9010A	5522H-HY5KC-VL	01/15/2016	
Signal Generator	Keysight	N5182B	MMAPJ-I6AC3	01/15/2016	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	618	06/17/2015	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	617	07/13/2015	
Multi device Controller	maturo	NCD/070/107 11112		N/A	
Horn Antenna	ETS-LINGREN	3117	00057407	07/07/2015	
Horn Antenna	ETS-LINGREN	3117	00057362	07/07/2015	
Microwave Preamplifier	Agilent	8449B	3008A02425	03/19/2016	
ESG Vector signal generators	Agilent	E4438C	MY45095744	01/15/2016	
Temperature & Humidity Chamber	ESPEC	EL-04KA	N/A	08/03/2015	
Receiver	R&S	ESCI	100009	07/19/2015	
LISN	R&S	ENV216	100098	07/19/2015	

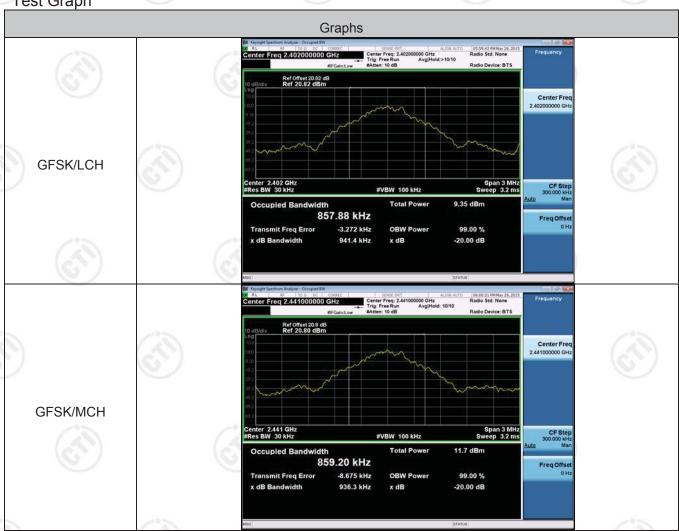
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10:2009	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10:2009	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10:2009	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10:2009	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10:2009	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10:2009	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10:2009	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247 (a)(1)	ANSI 63.10:2009	Pseudorandom Frequency Hopping Sequence	PASS	Appendix G)
Part15C Section 15.203/15.247 (c)	ANSI 63.10:2009	Antenna Requirement	PASS	Appendix H)
Part15C Section 15.207	ANSI 63.10:2009	AC Power Line Conducted Emission	PASS	Appendix I)
Part15C Section 15.205/15.209	ANSI 63.10:2009	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10:2009	Radiated Spurious Emissions	PASS	Appendix J)


Report No.: EED32H000445 Page 12 of 50

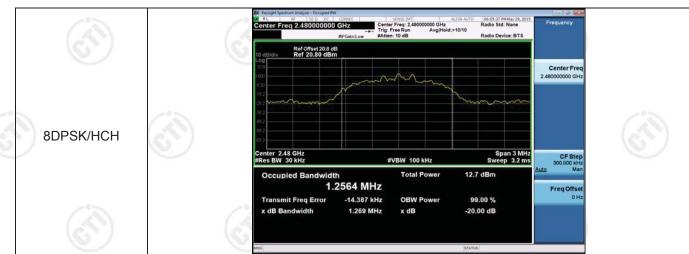
Appendix A: 20dB Emission Bandwidth (EBW)

Test Result

Mode	Channel.	EBW [MHz]	OBW [MHz]	Verdict
GFSK	LCH	0.941	0.859	PASS
GFSK	MCH	0.936	0.859	PASS
GFSK	НСН	0.935	0.859	PASS
π/4DQPSK	LCH	1.273	1.1904	PASS
π/4DQPSK	MCH	1.244	1.2668	PASS
π/4DQPSK	НСН	1.250	1.2973	PASS
8DPSK	LCH	1.277	1.1699	PASS
8DPSK	MCH	1.268	1.2377	PASS
8DPSK	НСН	1.269	1.2564	PASS

Test Graph

CENTRE TESTING INTERNATIONAL CORPORATION

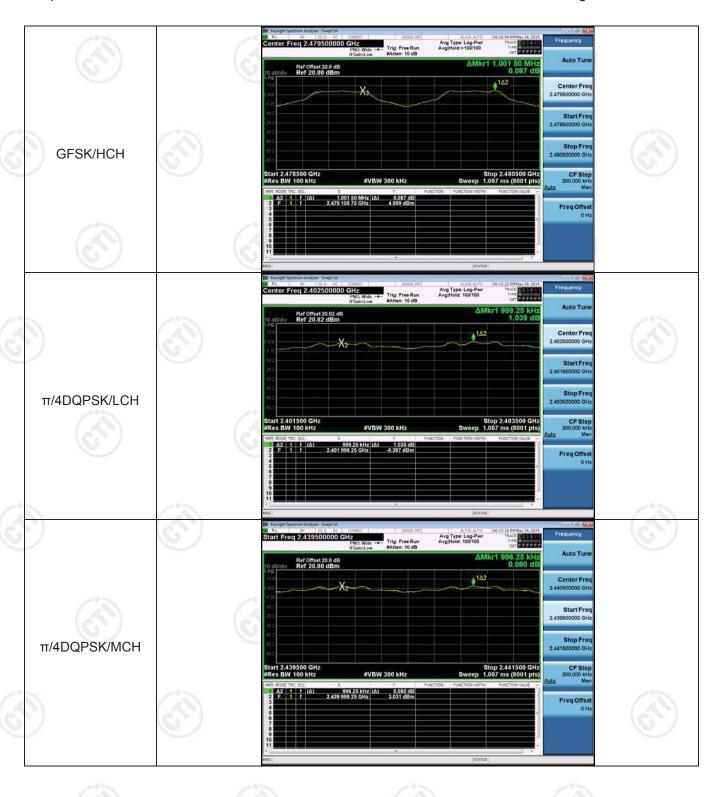


E-mail:info@cti-cert.com

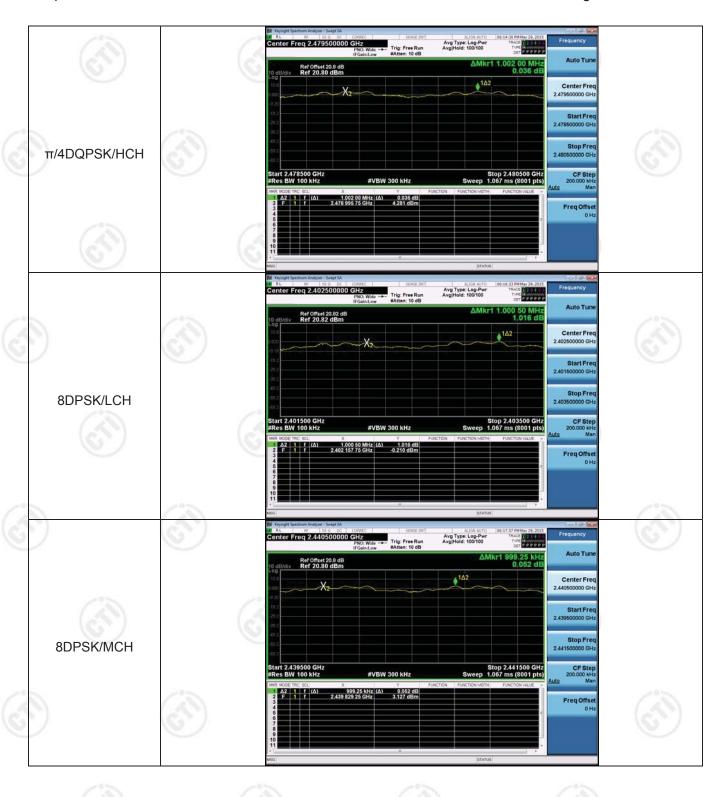
Page 16 of 50 Report No.: EED32H000445

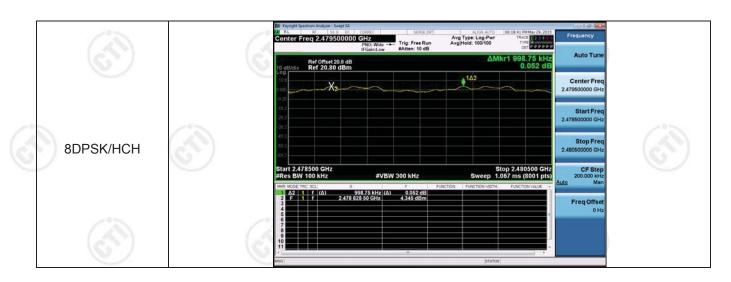
Appendix B: Carrier Frequency Separation

Result Table

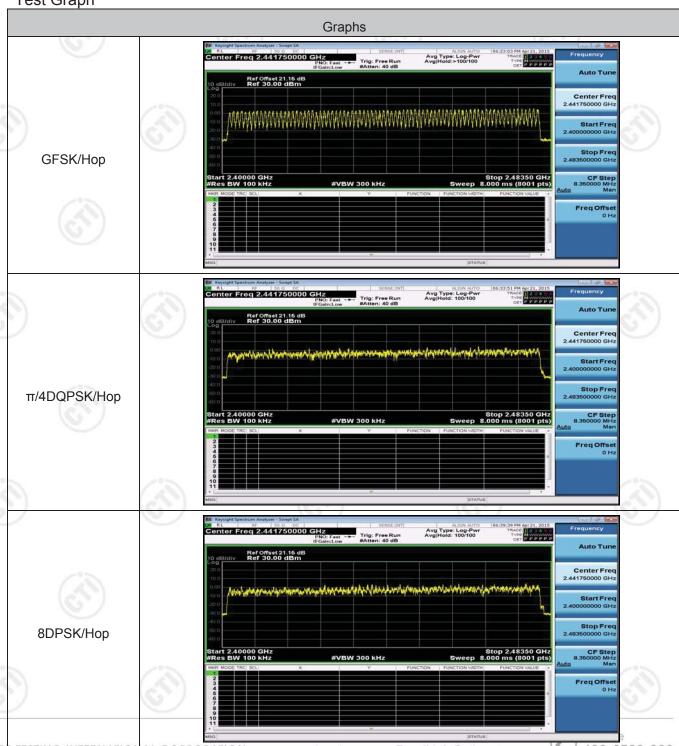

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	0.999	PASS
GFSK	MCH	0.999	PASS
GFSK	HCH	1.001	PASS
π/4DQPSK	LCH	0.999	PASS
π/4DQPSK	MCH	0.996	PASS
π/4DQPSK	HCH	1.002	PASS
8DPSK	LCH	1.001	PASS
8DPSK	MCH	0.999	PASS
8DPSK	HCH	0.999	PASS

Test Graph





Page 19 of 50


Report No.: EED32H000445 Page 20 of 50

Appendix C: Number of Hopping Channel

Result Table

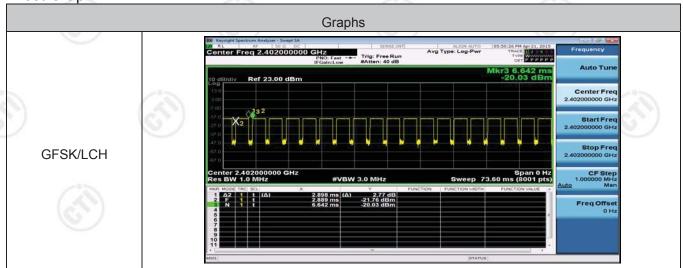
Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Test Graph

Report No.: EED32H000445 Page 21 of 50

Appendix D: Time of Occupancy (Dwell Time)

Result Table

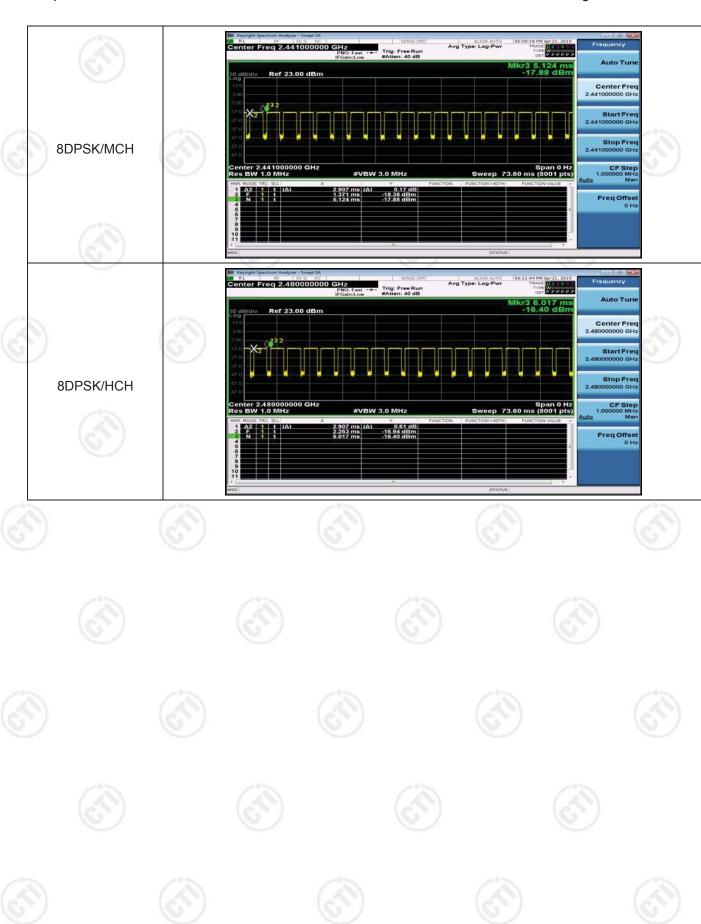

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

- The duration for dwell time calculation:0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];
- The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.
- The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s]
- The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch]=3.38 [hop/s];
- The total hops for all channels within the dwell time calculation duration:3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];
- The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

7,76,7			5.76.27	1,50,7 /	1.63		
Mode	Channel.	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Verdict		
GFSK	LCH	2.898	106.67	309.1297	PASS		
GFSK	MCH	2.898	106.67	309.1297	PASS		
GFSK	HCH	2.898	106.67	309.1297	PASS		
π/4DQPSK	LCH	2.898	106.67	309.1297	PASS		
π/4DQPSK	MCH	2.907	106.67	310.0897	PASS		
π/4DQPSK	HCH	2.907	106.67	310.0897	PASS		
8DPSK	LCH	2.907	106.67	310.0897	PASS		
8DPSK	MCH	2.907	106.67	310.0897	PASS		
8DPSK	НСН	2.907	106.67	310.0897	PASS		

DH5 is the worst case and only reported.

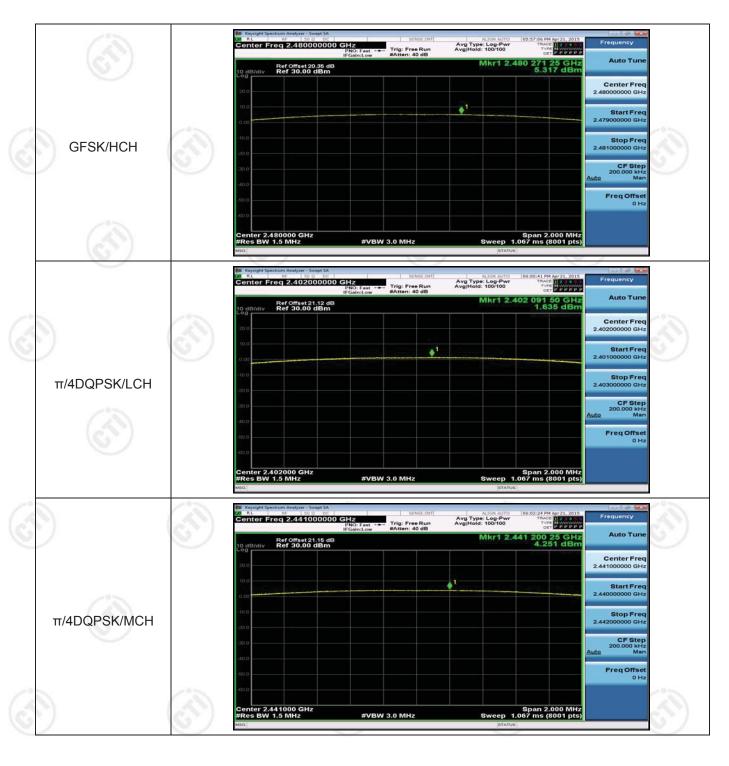
Test Graph



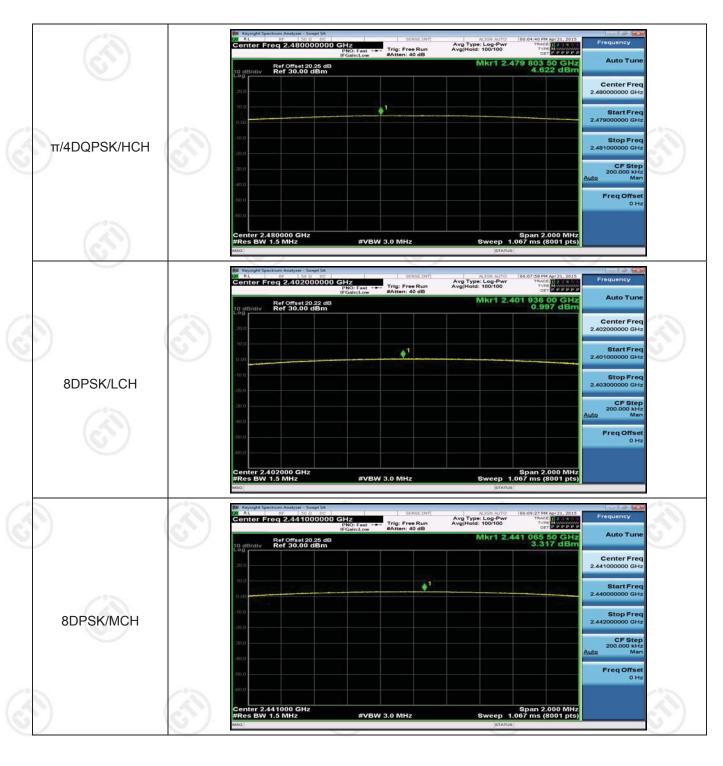

Report No. : EED32H000445 Page 25 of 50

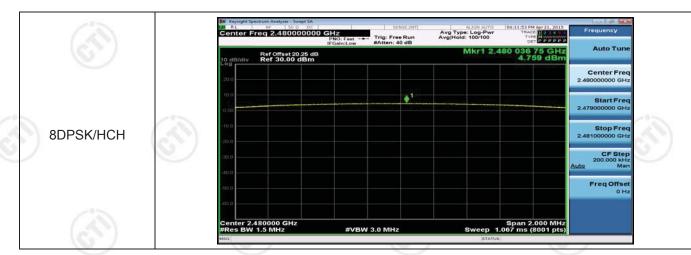
Appendix E: Maximum Peak Conducted Output Power

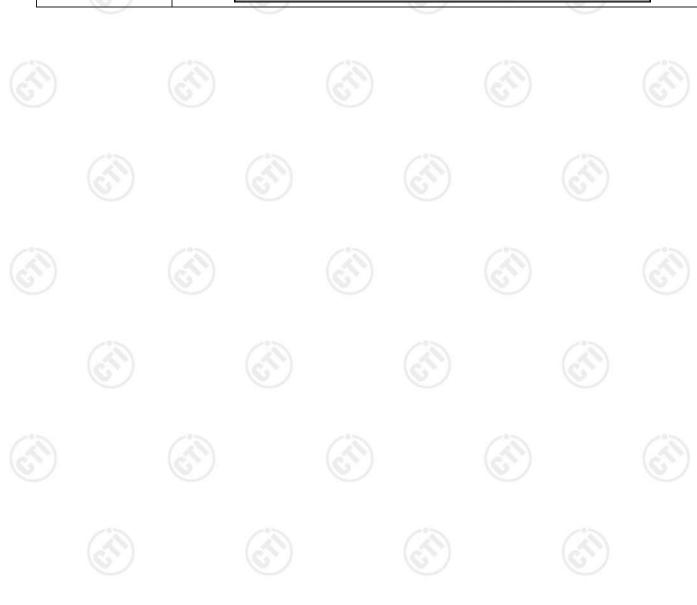
Result Table

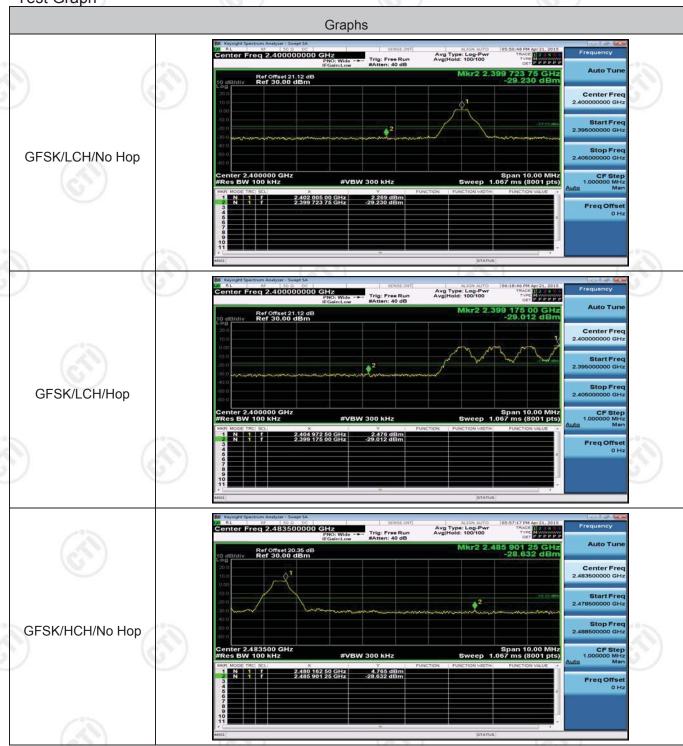

		/			
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict		
GFSK	LCH	2.97	PASS		
GFSK	MCH	4.77	PASS		
GFSK	HCH	5.317	PASS		
π/4DQPSK	LCH	1.64	PASS		
π/4DQPSK	MCH	4.25	PASS		
π/4DQPSK	HCH	4.62	PASS		
8DPSK	LCH		PASS		
8DPSK	MCH	3.32	PASS		
8DPSK	НСН	4.76	PASS		

Test Graph

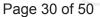




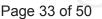




Report No.: EED32H000445 Page 29 of 50

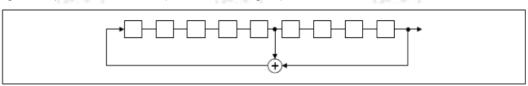

Appendix F: Band Edge Spurious Emission


Test Graph



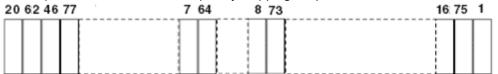
Appendix G) Pseudorandom Frequency Hopping Sequence

47 CFR Part 15C Section 15.247 (a)(1) requirement: Test Requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence


An example of Pseudorandom Frequency Hopping Sequence as follow:

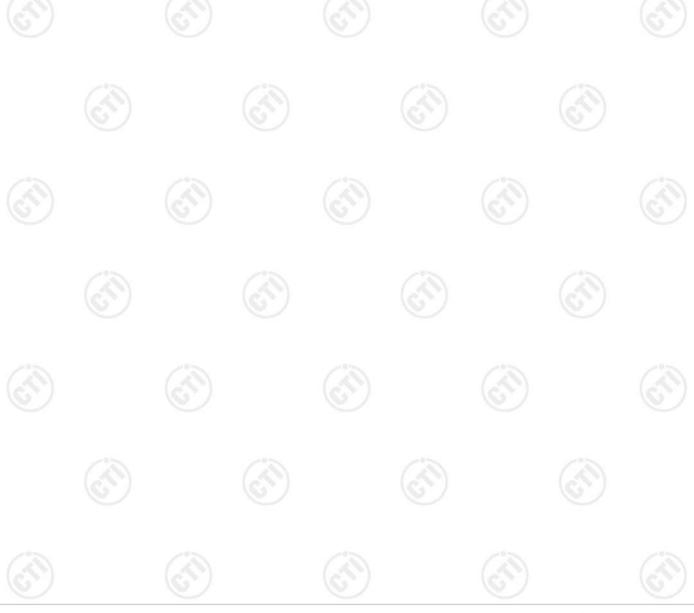
Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix H) Antenna Requirement

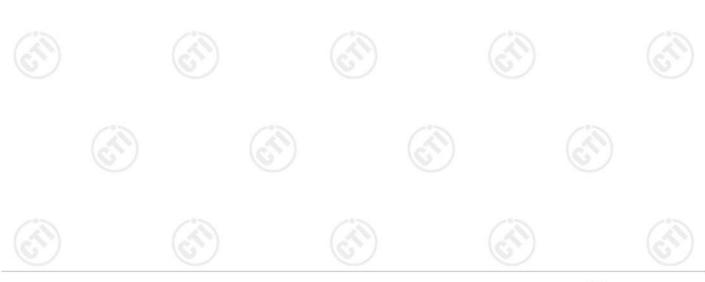
15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:


The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: EED32H000445 Page 35 of 50

Ap	pendix I) AC	Power Line Conduct	ed Emission	13						
	Test Procedure:	Test frequency range :150KHz	-30MHz	(5.70)						
		 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2 which was bonded to the ground reference plane in the same way as the LISN 1 								
)		for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.								
		The tabletop EUT was place reference plane. And for floor horizontal ground reference for the place is a second reference for the pla	or-standing arrangem							
9		4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.								
	(F)	5) In order to find the maximu all of the interface cables conducted measurement.								
	Limit:	Frequency range (MHz)	Limit (d							
		Trequency range (wiriz)	Quasi-peak	Average						
		0.15-0.5	66 to 56*	56 to 46*						
10		0.5-5	56	46						
/		5-30	60	50	(0,)					
		* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is appli	with the logarithm of	the frequency in the	e range 0.1					

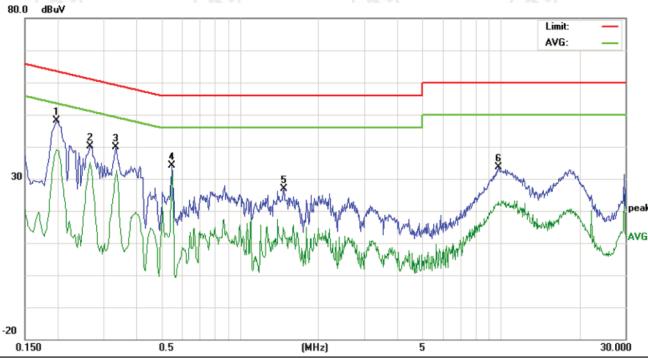
Report No. : EED32H000445 Page 36 of 50

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Product: Bluetooth Headphone

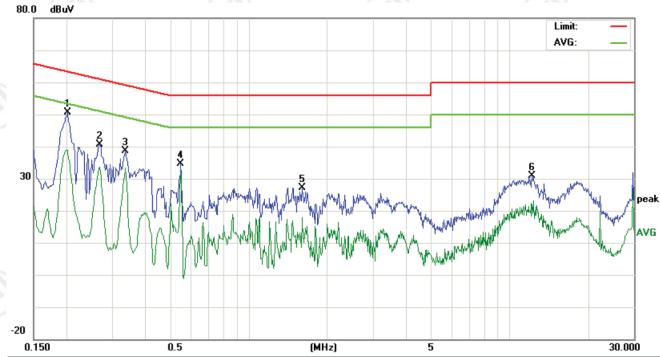

Power : AC 120V/60Hz

Mode : Keeping TX

Model/Type reference : Barrel Wireless

Temperature : 22° C Humidity : 52%

Live line:


No.	Freq.		ling_Le dBuV)	vel	Correct Factor	М	easurem (dBuV)	ent	Lin (dBı			rgin IB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1980	38.15		29.25	9.90	48.05		39.15	63.69	53.69	-15.64	-14.54	Р	
2	0.2660	30.33		25.34	9.90	40.23		35.24	61.24	51.24	-21.01	-16.00	Р	
3	0.3339	30.02		21.34	9.90	39.92		31.24	59.35	49.35	-19.43	-18.11	Р	
4	0.5500	24.26		22.59	9.90	34.16		32.49	56.00	46.00	-21.84	-13.51	Р	
5	1.4740	17.01		3.71	9.90	26.91		13.61	56.00	46.00	-29.09	-32.39	Р	
6	9.7580	23.55		12.78	9.99	33.54		22.77	60.00	50.00	-26.46	-27.23	Р	

Page 37 of 50

Neutral line:

	No.	Freq.		ling_Le dBuV)	vel	Correct Factor	М	easurem (dBuV)	ent	Lin (dBı			rgin dB)		
_		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.2020	40.77		29.10	9.90	50.67		39.00	63.52	53.52	-12.85	-14.52	Р	
_	2	0.2700	30.84		23.83	9.90	40.74		33.73	61.12	51.12	-20.38	-17.39	Р	
8	3	0.3379	28.65		23.42	9.90	38.55		33.32	59.25	49.25	-20.70	-15.93	Р	
þ	4	0.5500	24.76		22.65	9.90	34.66		32.55	56.00	46.00	-21.34	-13.45	Р	
	5	1.6060	17.34		8.03	9.90	27.24		17.93	56.00	46.00	-28.76	-28.07	Р	
_	6	12.2220	20.88		11.67	9.96	30.84		21.63	60.00	50.00	-29.16	-28.37	Р	

Report No. : EED32H000445 Page 38 of 50

Appendix J) Restricted bands around fundamental frequency (Radiated) / Radiated Spurious Emissions

Receiver Setup:					(a)	
Neceiver Setup.	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
-)	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	(3)
)	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	(0,
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
(6,2)	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
	Ab 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber.
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

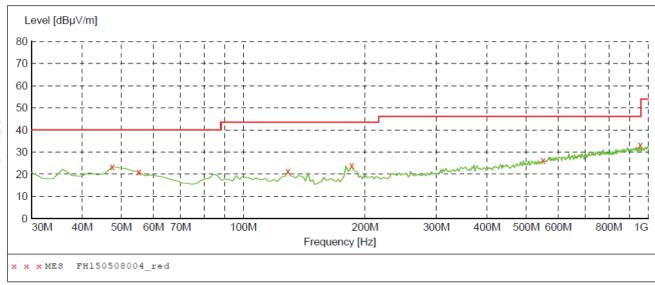
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	_	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit

Report No. : EED32H000445 Page 40 of 50

Radiated Spurious Emissions test Data:

All the modes of operation (X, Y, Z) were investigated and the worst-case emissions are reported.

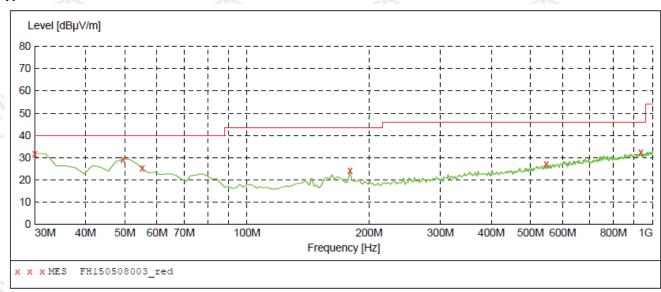

A. Below 30MHz:

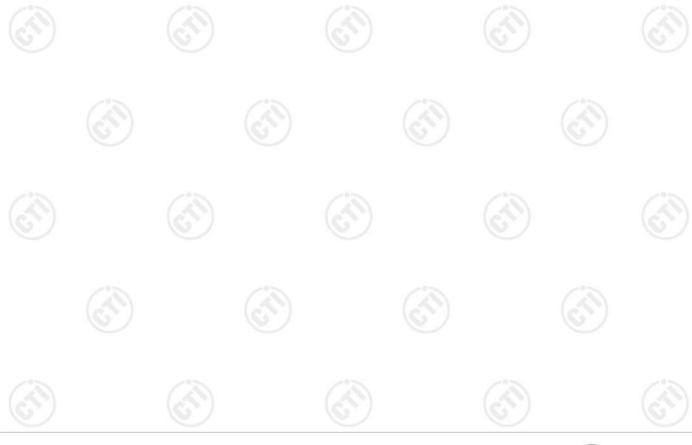
No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.


B. $30MHz \sim 1GHz$:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel (GFSK mode) are chosen as representative in below:

H:


Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	23.40	15.8	40.0	16.6		200.0	44.00	HORIZONTAL
55.220000	21.00	15.4	40.0	19.0		200.0	63.00	HORIZONTAL
128.940000	21.40	11.4	43.5	22.1		200.0	370.00	HORIZONTAL
185.200000	23.90	13.2	43.5	19.6		200.0	53.00	HORIZONTAL
549.920000	26.20	21.7	46.0	19.8		200.0	288.00	HORIZONTAL
955.380000	33.10	27.3	46.0	12.9		200.0	202.00	HORIZONTAL



V:

Frequency MHz	Level dBµV/m			Margin dB	Height cm	Azimuth deg	Polarization
30.000000	31.80	12.5	40.0	8.2	 100.0	116.00	VERTICAL
49.400000	29.20	16.0	40.0	10.8	 200.0	318.00	VERTICAL
55.220000	25.20	15.4	40.0	14.8	 200.0	337.00	VERTICAL
179.380000	24.20	12.7	43.5	19.3	 100.0	182.00	VERTICAL
546.040000	27.00	21.7	46.0	19.0	 100.0	182.00	VERTICAL
934.040000	32.50	27.2	46.0	13.5	 100.0	10.00	VERTICAL.

Report No. : EED32H000445 Page 42 of 50

C. Above 1GHz:

Test Results-(Measurement Distance: 3m)_Channel low_2402MHz_GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2390.0	37.95	74	PK	Н	Р
2400.0	46.75	74	PK	Н	Р
2402.0*	87.81		PK	Н	Р
4804.0	44.02	74	PK	Н	Р
2390.0	38.14	74	PK	V	Р
2400.0	44.91	74	PK	V	Р
2402.0*	88.06		PK	V	Р
4804.0	44.63	74	PK	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel middle_2441MHz_GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)	
2441.0*	87.06	(°)	PK	н (с	P	
4882.0	45.96	74	PK	Н	Р	
2441.0*	88.27		PK	V	Р	
4882.0	43.98	74	PK	V	P	

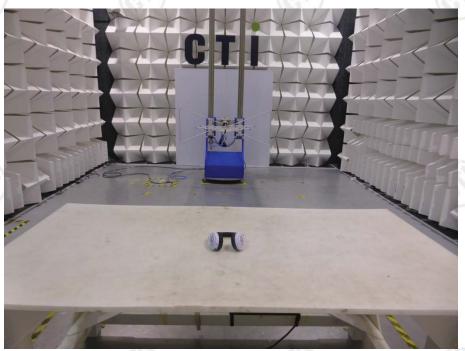
^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel high_2480MHz_GFSK mode:

Frequency (MHz)			Detector Type	Antenna (H/V)	Result (P/F)	
2480.0*	88.41	J	PK	Н	Р	
2483.5	44.85	74	PK	Н	Р	
4960.0	45.95	74	PK	Н	Р	
2480.0*	87.25	(-41)	PK	V	Р	
2483.5	43.71	74	PK	V	Р	
4960.0	45.75	74	PK	V	Р	

^{*:} fundamental frequency

Remark:


- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. All the modes of GFSK, π/4-DQPSK and 8DPSK have been tested. The worst case is GFSK mode, and the worst data of GFSK mode are chosen as above. RBW 1MHz VBW 3MHz Peak detector for PK value
- 3. No emission found from 18GHz to 25GHz.
- 4. All outside of operating frequency band and restricted band specified are below 15.209.



Report No. : EED32H000445 Page 43 of 50

PHOTOGRAPHS OF TEST SETUP

Radiated spurious emission Test Setup-1 (Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 44 of 50

Conduction emission Test Setup

Report No. : EED32H000445 Page 45 of 50

PHOTOGRAPHS OF EUT Constructional Details

View of Product-1

View of Product-2

View of Product-3

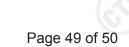
View of Product-4

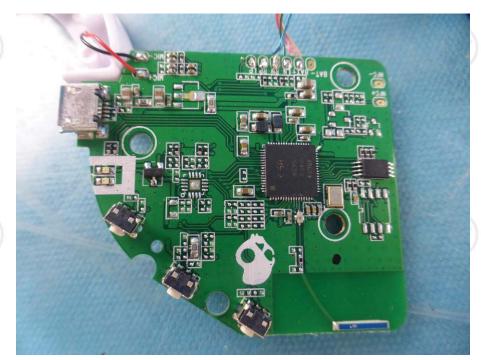
View of Product-5

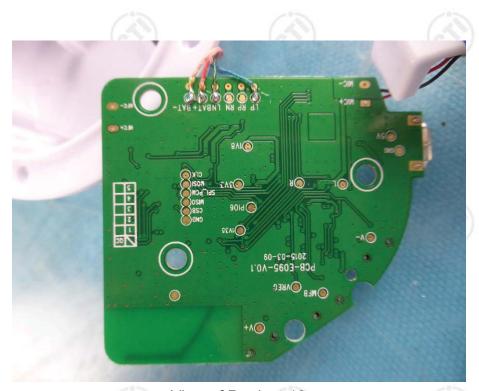
View of Product-6

View of Product-7

View of Product-8







View of Product-9

View of Product-10

Report No. : EED32H000445 Page 50 of 50

View of Product-11

View of Product-12

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.