

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Elec-Tech International Co., Ltd.

LED Horticultural Luminaire Model No.: 554031XX(XX=00~99)

FCC ID: XZH-5540312018

Prepared for Address	:	Elec-Tech International Co., Ltd. No.1 Jinfeng Road, Tangjiawan Town, Xiangzhou Dist, Zhuhai City, Guangdong Province, China
Prepared by Address	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
		Tel: (0755) 26503290 Fax: (0755) 26503396

Report No.	:	ATE20180949
Date of Test	:	May 22-24, 2018
Date of Report	:	June 8, 2018

TABLE OF CONTENTS

Description

Test Report Certification 1. 1.1. 1.2. 1.3. 1.4. 1.5. MEASURING DEVICE AND TEST EOUIPMENT7 2. 3. 3.1. 3.2. TEST PROCEDURES AND RESULTS9 4. 5. 5.1. 5.2. Power Line Conducted Emission Measurement Limits.....11 5.3. 5.4. 5.5. 5.6. 5.7. 6. 6.1. The Requirement For Section 15.247(a)(2).....19 6.2. 6.3. 6.4. Test Procedure 19 6.5. 6.6. 7. 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 8. 8.1. The Requirement For Section 15.247(e)......25 8.2. 8.3. 8.4. 8.5. 8.6. 9. 9.1. 9.2. 9.3.

Shenzhen Accurate Technology Co., Ltd.

Page

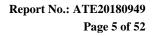
Report No.: ATE20180949 Page 3 of 52

9.4.	Operating Condition of EUT	
9.5.	Operating Condition of EUT Test Procedure	29
9.6.	Test Result	
10. RA	DIATED SPURIOUS EMISSION TEST	
10.1.	Block Diagram of Test Setup	
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	
10.4.	Configuration of EUT on Measurement	
10.5.	Operating Condition of EUT	
10.6.	Test Procedure	
10.7.	Data Sample	
10.8.	The Field Strength of Radiation Emission Measurement Results	
11. AN	TENNA REQUIREMENT	
11.1.	The Requirement	
11.2.	Antenna Construction	

Test Report Certification

Applicant	:	Elec-Tech International Co., Ltd.
Manufacturer	:	ETI Solid State Lighting (Zhuhai) Ltd
EUT Description	:	LED Horticultural Luminaire
Model No.	:	554031XX(XX=00~99)
Trade Name	:	ETI, Commercial Electric, Hampton Bay

Measurement Procedure Used:


FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Apr 05, 2017 KDB558074 D01 DTS Meas Guidance v04 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test :	May 22-24, 2018
Date of Report :	June 8, 2018
Prepared by :	Bobward
Approved & Authorized Signer :	(B Wang Fromer)
	(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

*		
EUT	:	LED Horticultural Luminaire
Model Number	:	554031XX(XX=00~99)
		(Note: $XX = 00-99$, which represents different LED color temperature,
		Therefore only model 55403101 is tested for EMC tests.)
Modulation Type	:	ZigBee
Frequency Range	:	2405-2480MHz
Number of Channels	:	16
Channel Spacing	:	5 MHz
Antenna Gain	:	0dBi
Antenna Type	:	Ceramic Antenna
Rating	:	AC 120-277V; 50/60Hz, 500W for all models
Applicant	:	Elec-Tech International Co., Ltd.
Address	:	No.1 Jinfeng Road, Tangjiawan Town, Xiangzhou Dist, Zhuhai City, Guangdong Province, China
Manufacturer	:	ETI Solid State Lighting (Zhuhai) Ltd
Address	•	No.1, Zhongzhu Road South, Science & Technology Innovation Coast, High Tech District, Zhuhai City,
		Guangdong Prov., China
Date of sample	:	May 20, 2018
receiver		N. 22.24.2010
Date of Test	:	May 22-24, 2018
Sample No.	:	1800768

1.2.Carrier Frequency of Channels

Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channel	Frequceny (MHz)
11	2405	17	2435	23	2465
12	2410	18	2440	24	2470
13	2415	19	2445	25	2475
14	2420	20	2450	26	2480
15	2425	21	2455		
16	2430	22	2460		

1.3.Special Accessory and Auxiliary Equipment N/A 1.4.Description of Test Facility

EMC Lab	:	Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358
		Listed by Innovation, Science and Economic Development Canada (ISEDC)
		The Registration Number is 5077A-2
		Accredited by China National Accreditation Service for Conformity Assessment (CNAS)
		The Registration Number is CNAS L3193
		Accredited by American Association for Laboratory Accreditation (A2LA)
		The Certificate Number is 4297.01
Name of Firm	:	Shenzhen Accurate Technology Co., Ltd.
Site Location	:	1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 06, 2018	1 Year
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 06, 2018	1 Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 06, 2018	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU1183540-01	3791	Jan. 06, 2018	1 Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 06, 2018	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 06, 2018	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 06, 2018	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 06, 2018	1 Year
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 06, 2018	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 06, 2018	1 Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18G-10S S	N/A	Jan. 06, 2018	1 Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2485-2 375/2510-60/11SS	N/A	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.3	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.4	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.5	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.6	Jan. 06, 2018	1 Year
Temporary antenna connector	NTGS	14AE	N/A	May 22, 2018	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

3. OPERATION OF EUT DURING TESTING

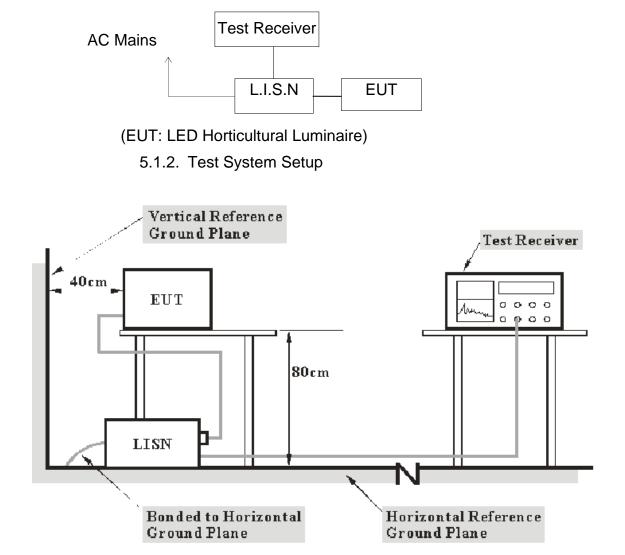
3.1.Operating Mode

The mode is used: **Transmitting mode** Low Channel: 2405MHz Middle Channel: 2445MHz High Channel: 2480MHz Note: Its duty cycle setting is greater than 98%.

3.2.Configuration and peripherals

AC Mains	
	EUT
Figure 1	Setup: Transmitting mode

4. TEST PROCEDURES AND RESULTS


FCC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test

5.1.1.Block diagram of connection between the EUT and simulators

- Note: 1. Support units were connected to second LISN.
 - 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Frequency	Limit dB(μV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *			
0.50 - 5.00	56.0	46.0			
5.00 - 30.00	5.00 - 30.00 60.0 50.0				
NOTE1: The lower limit sh	all apply at the transition fre	quencies.			
NOTE2: The limit decreases linearly with the logarithm of the frequency in the					
range 0.15MHz to 0.50MHz.					

5.3.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

5.4.1.Setup the EUT and simulator as shown as Section 5.1.

5.4.2.Turn on the power of all equipment.

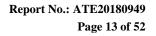
5.4.3.Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.



5.6.Data Sample

Frequency (MHz)	Transducer value (dB)	QuasiPeak Level (dBuV)	Average Level (dBµV)	QuasiPeak Limit (dBuV)	Average Limit (dBµV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
		(uDµv)	(ασμν)	(αρμν)	(αρμν)	(ub)		
XX.XXXX	10.7	40.50	30.20	57.0	47.0	16.2	16.5	Pass

 $\begin{array}{l} \mbox{Frequency(MHz)} = \mbox{Emission frequency in MHz} \\ \mbox{Transducer value(dB)} = \mbox{Insertion loss of LISN + Cable Loss} \\ \mbox{Level(dB}_{\mu}V) = \mbox{Quasi-peak Reading/Average Reading + Transducer value} \\ \mbox{Limit (dB}_{\mu}V) = \mbox{Limit stated in standard} \\ \mbox{Margin} = \mbox{Limit (dB}_{\mu}V) - \mbox{Level (dB}_{\mu}V) \end{array}$

Calculation Formula: Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

5.7. Power Line Conducted Emission Measurement Results

PASS.

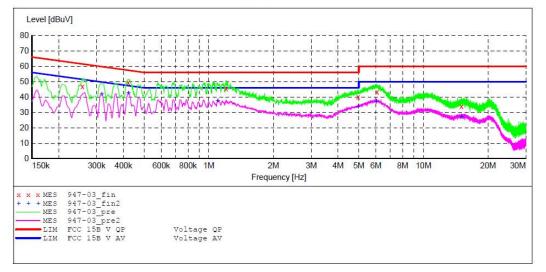
The frequency range from 150kHz to 30MHz is checked.

Test mode : Or EUT mode : 55	•	0V/60Hz	.)				
MEASUREMENT		: "947-	03_fin	n "			
2018-5-24 10:	27						
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
$\begin{array}{c} 0.258000\\ 0.422000\\ 1.206000\\ 4.960000\\ 6.065000\\ 15.015000\end{array}$	46.90 49.30 45.60 40.10 43.20 34.20	10.9 11.0 11.2 11.4 11.5 11.6	57 56	14.6 8.1 10.4 15.9 16.8 25.8	QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND
MEASUREMENT	RESULT	: "947-	03_fin	12"			
2018-5-24 10:	27						
Frequency MHz	Level dBuV			Margin dB	Detector	Line	PE
$\begin{array}{c} 0.318000\\ 0.422000\\ 1.102000\\ 4.960000\\ 6.040000\\ 15.015000\end{array}$	41.90 42.70 37.70 33.70 36.90 27.30	10.9 11.0 11.1 11.4 11.5 11.6	47 46	7.9 4.7 8.3 12.3 13.1 22.7	AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND
MEASUREMENT	RESULT	: "947-	04_fin	ı <i>"</i>			
2018-5-24 10:	30						
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.264000 0.428000 1.002000 4.050000 6.075000 20.230000	48.60 49.20 46.30 43.40 44.70 28.50	10.9 11.0 11.1 11.4 11.5 11.7			ΏΡ	N N N N N	GND GND GND GND GND GND
MEASUREMENT	RESULT	: "947-	04_fin	12"			
2018-5-24 10:							
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.318000 0.426000 0.954000 3.735000 5.950000 19.985000	42.10 43.30 38.10 37.60 38.30 22.70	10.9 11.0 11.1 11.4 11.5 11.7	50 47 46 50 50	7.7 4.0 7.9 8.4 11.7 27.3	AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND

Test mode : O	n(AC 27	7V/60Hz	:)					
EUT mode : 55 MEASUREMENT	5403101			, "				
2018-5-24 10:			00_111					
Frequency MHz		Transd dB	Limit dBuV	Margin dB	Detector	Line	PE	
0.270000 0.424000 0.962000 4.880000 5.780000 15.630000	47.00 48.30 45.30 40.00 44.00 32.60	10.9 11.0 11.1 11.4 11.5 11.7	61 57 56 50 60	14.1 9.1 10.7 16.0 16.0 27.4	QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND	
MEASUREMENT	RESULT	: "947-	06_fin	12"				
2018-5-24 10:	35							
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE	
$\begin{array}{c} 0.320000\\ 0.424000\\ 1.276000\\ 4.910000\\ 5.935000\\ 14.840000\end{array}$	41.50 42.00 37.10 33.60 38.10 25.70	10.9 11.0 11.2 11.4 11.5 11.6	50 47 46 50 50	8.2 5.4 8.9 12.4 11.9 24.3	AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND	
MEASUREMENT	RESULT	: "947-	05_fir	n ''				
2018-5-24 10:	33							
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE	
$\begin{array}{c} 0.270000\\ 0.580000\\ 1.164000\\ 3.690000\\ 6.275000\\ 20.300000\end{array}$	47.20 47.00 45.90 44.40 44.90 27.20	10.9 11.0 11.2 11.4 11.5 11.7	61 56 56 60 60	13.9 9.0 10.1 11.6 15.1 32.8	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND	
MEASUREMENT RESULT: "947-05_fin2"								
2018-5-24 10:	33							
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE	
$\begin{array}{c} 0.320000\\ 0.424000\\ 1.108000\\ 3.825000\\ 6.095000\\ 20.240000 \end{array}$	41.80 42.40 37.20 37.80 39.20 20.80	10.9 11.0 11.2 11.4 11.5 11.7	50 47 46 50 50	7.9 5.0 8.8 8.2 10.8 29.2	AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND	

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	LED Horticultural Luminaire M/N:55403101
	ETI Solid State Lighting (Zhuhai) Ltd
Operating Condition:	On
Test Site:	2#Shielding Room
Operator:	KEVIN
Test Specification:	L 120V/60Hz
Comment:	Report NO.:ATE20180949
Start of Test:	2018-5-24 / 10:23:34

SCAN TABLE: "V 150K-30MHz fin"

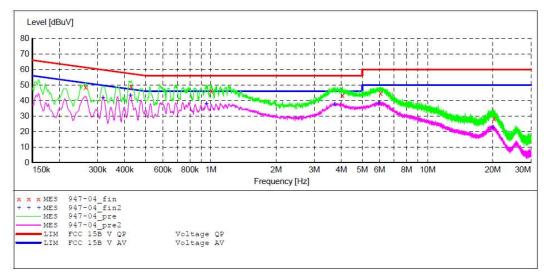
Short Desc	ription:		SUB STD VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
			Average			

MEASUREMENT RESULT: "947-03_fin"

2018-5-24 10:	27						
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.258000	46.90	10.9	62	14.6	QP	L1	GND
0.422000	49.30	11.0	57	8.1	QP	L1	GND
1.206000	45.60	11.2	56	10.4	QP	L1	GND
4.960000	40.10	11.4	56	15.9	QP	L1	GND
6.065000	43.20	11.5	60	16.8	QP	L1	GND
15.015000	34.20	11.6	60	25.8	QP	L1	GND

MEASUREMENT RESULT: "947-03_fin2"

PE
GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	LED Horticultural Luminaire M/N:55403101
Manufacturer:	ETI Solid State Lighting (Zhuhai) Ltd
Operating Condition:	On
Test Site:	2#Shielding Room
Operator:	KEVIN
Test Specification:	N 120V/60Hz
Comment:	Report NO.:ATE20180949
Start of Test:	2018-5-24 / 10:29:03

SCAN TABLE: "V 150K-30MHz fin"

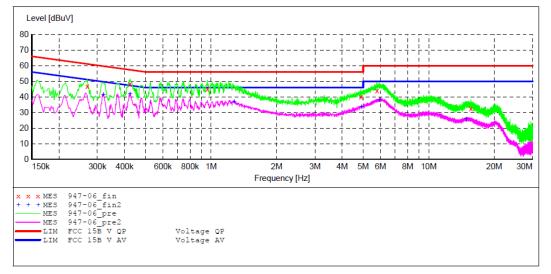
Short Desc	ription:		SUB STD VTE	RM2 1.70		
Start Frequency	Stop Frequency	Step Width	Detector	Meas. Time	IF Bandw.	Transducer
	30.0 MHz		QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

MEASUREMENT RESULT: "947-04 fin"

2018-5-24 10:	30						
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.264000	48.60	10.9	61	12.7	QP	N	GND
0.428000	49.20	11.0	57	8.1	QP	N	GND
1.002000	46.30	11.1	56	9.7	QP	N	GND
4.050000	43.40	11.4	56	12.6	QP	N	GND
6.075000	44.70	11.5	60	15.3	QP	N	GND
20.230000	28.50	11.7	60	31.5	QP	N	GND

MEASUREMENT RESULT: "947-04 fin2"

2	018-5-24 10: Frequency MHz		Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
	0.318000	42.10	10.9	50	7.7	AV	N	GND
	0.426000	43.30	11.0	47	4.0	AV	N	GND
	0.954000	38.10	11.1	46	7.9	AV	N	GND
	3.735000	37.60	11.4	46	8.4	AV	N	GND
	5.950000	38.30	11.5	50	11.7	AV	N	GND
	19.985000	22.70	11.7	50	27.3	AV	N	GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	LED Horticultural Luminaire M/N:55403101
Manufacturer:	ETI Solid State Lighting (Zhuhai) Ltd
Operating Condition:	On
Test Site:	2#Shielding Room
Operator:	KEVIN
Test Specification:	L 277V/60Hz
Comment:	Report NO.:ATE20180949
Start of Test:	2018-5-24 / 10:34:04

SCAN TABLE: "V 150K-30MHz fin"

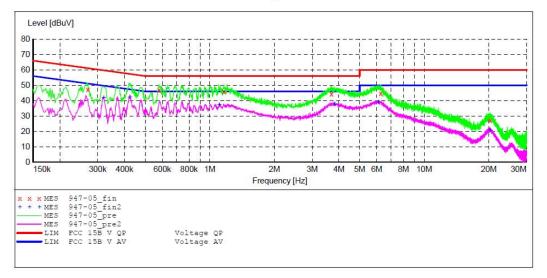
Short Desc	ription:		_SUB_STD_VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
			Average			

MEASUREMENT RESULT: "947-06_fin"

2018-5-24 10: Frequency MHz		Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.270000 0.424000 0.962000 4.880000 5.780000 15.630000	47.00 48.30 45.30 40.00 44.00 32.60	10.9 11.0 11.1 11.4 11.5 11.7	61 57 56 60 60	14.1 9.1 10.7 16.0 27.4	QP QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "947-06_fin2"

2018-5-24 10: Frequency MHz		Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.320000 0.424000 1.276000 4.910000 5.935000 14.840000	41.50 42.00 37.10 33.60 38.10 25.70	10.9 11.0 11.2 11.4 11.5 11.6	50 47 46 50 50	8.2 5.4 8.9 12.4 11.9 24.3	AV AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND



CONDUCTED EMISSION STANDARD FCC PART 15B

LED Horticultural Luminaire M/N:55403101
ETI Solid State Lighting (Zhuhai) Ltd
On
2#Shielding Room
KEVIN
N 277V/60Hz
Report NO.:ATE20180949
2018-5-24 / 10:31:54

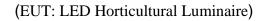
SCAN TABLE: "V 150K-30MHz fin"

Short Desc	ription:		SUB STD VTER	RM2 1.70		
	Stop Frequency	1		Meas. Time	IF Bandw.	Transducer
	30.0 MHz		QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

MEASUREMENT RESULT: "947-05_fin"

2018-5-24 10:	33						
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.270000	47.20	10.9	61	13.9	QP	N	GND
0.580000	47.00	11.0	56	9.0	QP	N	GND
1.164000	45.90	11.2	56	10.1	QP	N	GND
3.690000	44.40	11.4	56	11.6	QP	N	GND
6.275000	44.90	11.5	60	15.1	QP	N	GND
20.300000	27.20	11.7	60	32.8	QP	N	GND

MEASUREMENT RESULT: "947-05_fin2"


2	018-5-24 10:	33						
	Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
	0.320000	41.80	10.9	50	7.9	AV	N	GND
	0.424000	42.40	11.0	47	5.0	AV	N	GND
	1.108000	37.20	11.2	46	8.8	AV	N	GND
	3.825000	37.80	11.4	46	8.2	AV	N	GND
	6.095000	39.20	11.5	50	10.8	AV	N	GND
	20.240000	20.80	11.7	50	29.2	AV	N	GND

6. 6DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

6.4.1.Setup the EUT and simulator as shown as Section 5.1.

- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2405-2480MHz. We select 2405MHz, 2445MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure

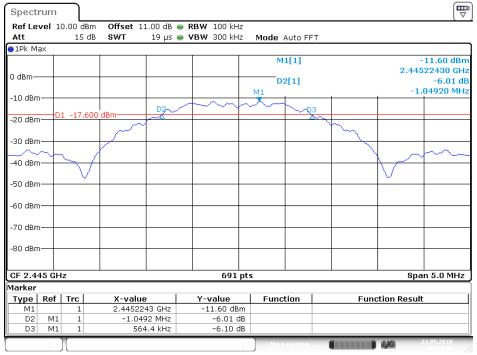
- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 6.5.3.The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

6.6.Test Result

Test Lab: Shielding room Test Engineer: Bob

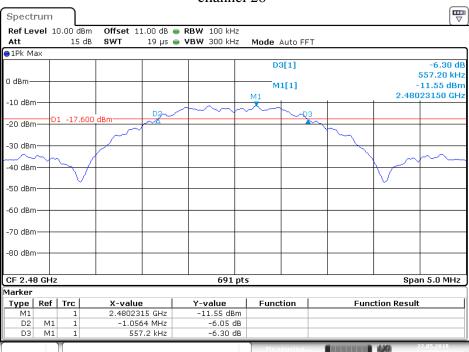
Channel	Frequency (MHz)	6 dB Bandwith (MHz)	Minimum Limit(MHz)	Result
11	2405	1.614	0.5	PASS
19	2445	1.614	0.5	PASS
26	2480	1.614	0.5	PASS

The spectrum analyzer plots are attached as below.


Spectrum						
Ref Level	10.00 dB	m Offset 11.00 dB (RBW 100 kHz			· · · · ·
Att	15 c	ів SWT 19 μs (🔵 VBW 300 kHz	Mode Auto FFT		
∋1Pk Max						
				M1[1]		-11.10 dBr
						2.40472500 GH
				D2[1]		-6.11 di
-10 dBm			M1			-549.90 kH
		02~	$ \rightarrow \rightarrow$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-20 dBm	D1 -17.1	00 dBm		A~		
-30 dBm					+	
\sim	~	X				m
-40 dBm	$\overline{}$	/				
	\sim					\vee
-50 dBm						
co do -						
-60 dBm						
-70 dBm						
-yo ubin						
-80 dBm-						
CF 2.405 G			691 pts			Span 5.0 MHz
	пг		oat he	`		аран ә.ө мнг
Marker	Trc	X-value	Y-value	Function	Functi	on Result
Type Ref M1	1	2.404725 GHz	-11.10 dBm	Function	Functi	UN KESUIL
D2 M:		-549.9 kHz	-6.11 dB			
D3 M:	_	1.0637 MHz	-6.26 dB			
	1			Measuring		22.05.2018
						20:04:00

channel 11

Date: 22.MAY.2018 20:04:08



channel 19

Date: 22.MAY.2018 20:04:56

channel 26

Date: 22.MAY.2018 20:05:37

7. MAXIMUM PEAK OUTPUT POWER

7.1.Block Diagram of Test Setup

(EUT: LED Horticultural Luminaire)

7.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

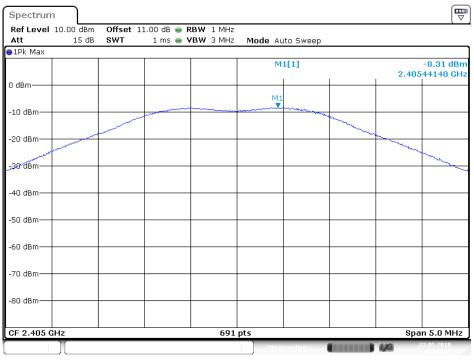
7.4. Operating Condition of EUT

7.4.1.Setup the EUT and simulator as shown as Section 6.1.

- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2405-2480MHz. We select 2405MHz, 2445MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 1 MHz and VBW to 3MHz.
- 7.5.3.Measurement the maximum peak output power.

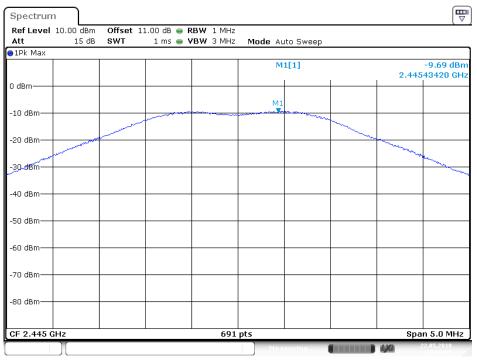


7.6.Test Result

Test Lab: Shielding room Test Engineer: Bob

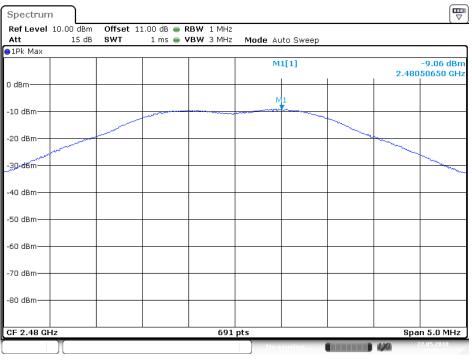
Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Result
11	2405	-8.31	30	PASS
19	2445	-9.69	30	PASS
26	2480	-9.06	30	PASS

The spectrum analyzer plots are attached as below.



channel 11

Date: 22.MAY.2018 20:12:08



channel 19

Date: 22.MAY.2018 20:10:06

channel 26

Date: 22.MAY.2018 20:09:13

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1.Block Diagram of Test Setup

(EUT: LED Horticultural Luminaire)

8.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

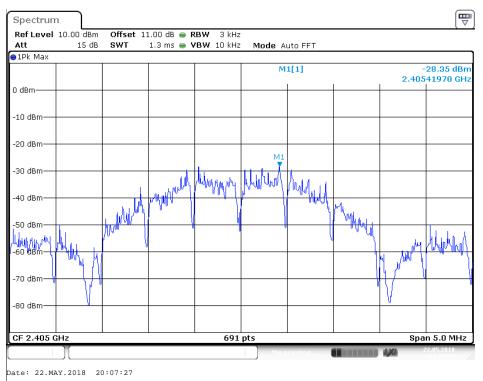
8.4.1.Setup the EUT and simulator as shown as Section 7.1.

- 8.4.2.Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2405-2480MHz. We select 2405MHz, 2445MHz, and 2480MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2. Measurement Procedure PKPSD:
- 8.5.3.This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.

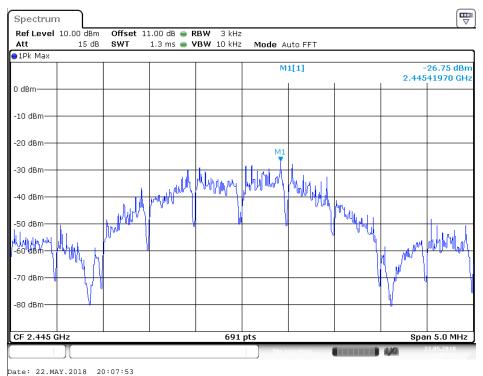
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3kHz) and repeat.

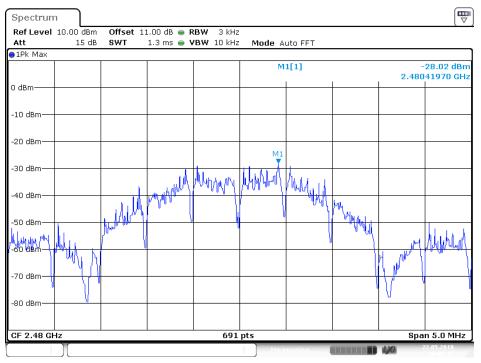

8.5.4.Measurement the maximum power spectral density.

8.6.Test Result

Test Lab: Shielding room Test Engineer: Star

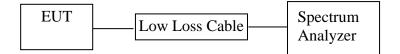
Channel	Frequency (MHz)	PSD (dBm/3KHz)	Limit (dBm/3KHz)	Result
11	2405	-28.35	8	PASS
19	2445	-26.75	8	PASS
26	2480	-28.02	8	PASS


The spectrum analyzer plots are attached as below.


channel 11

channel 19

channel 26



Date: 22.MAY.2018 20:08:18

9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

(EUT: LED Horticultural Luminaire)

9.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1.Setup the EUT and simulator as shown as Section 8.1.
- 9.4.2.Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2405-2480MHz. We select 2405MHz, 2480MHz TX frequency to transmit.

9.5.Test Procedure

Conducted Band Edge:

- 9.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 9.5.3. Radiate Band Edge:
- 9.5.4. The EUT is placed on a turntable, which is 1.5m above the ground plane and worked at highest radiated power.
- 9.5.5.The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 9.5.6.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 9.5.7.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

9.5.8.RBW=1MHz, VBW=1MHz

9.5.9. The band edges was measured and recorded.

9.6.Test Result

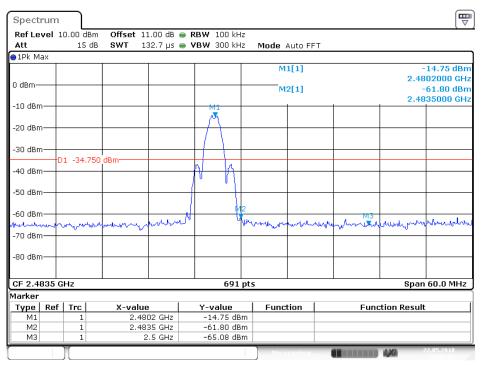
Pass.

Test Lab: Shielding room Test Engineer: Bob

Conducted Band Edge Result

Channel	Frequency	Delta peak to band emission	Limit(dBc)
11	2.405GHz	51.04	>20
26	2.480GHz	47.05	>20

The spectrum analyzer plots are attached as below.



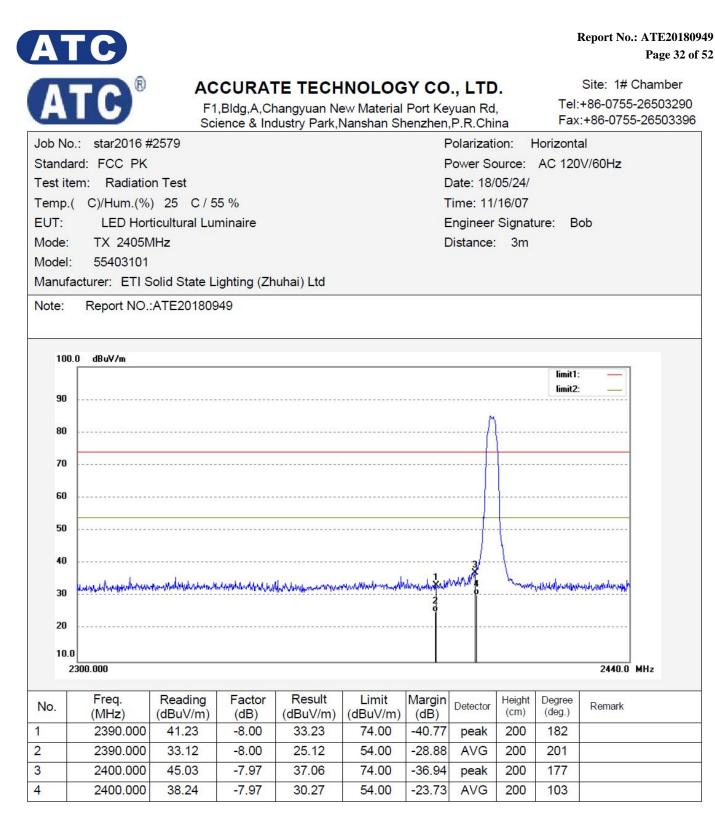
channel 11

Specti	rum										
Ref Le	vel :	10.00 dB	m Offset	11.00 dB 🧉	RBW 100 ki	Ηz					
Att		15 c	ib SWT	132.7 µs 🧉	VBW 300 kł	-Iz Mo	ie Au	to FFT			
⊖1Pk Ma	эх										
0 dBm—							M1[-		2.40	11.40 dBm 46890 GHz 62.44 dBm
-10 dBm				_			M1		+	2.40	00000 GHz
-20 dBm							Δ				
-30 dBm											
-40 dBm		01 -31.4	00 dBm			N		ή			
-50 dBm											
					n	12 0		4			
Junio and	need	and more	Munter	M3 Leturesta	nden john men	ħ.∕°		Win	no monences	utingen	mannon
-70 dBm	+			U							
-80 dBm	-		_								
CF 2.4	GHz				691	. pts				Spar	60.0 MHz
Marker											
Туре	Ref	Trc	X-val		Y-value		unctio	on 📃	Fun	ction Result	1
M1		1	2.404	1689 GHz	-11.40 d						
M2 M3		1		2.4 GHz 2.39 GHz	-62.44 d -64.78 d						
)[5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Measu	ring		440	22.05.2018 20:02:23

Date: 22.MAY.2018 20:02:24

channel 26

Date: 22.MAY.2018 20:00:08


Radiated Band Edge Result

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.Chin Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

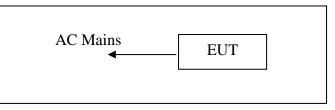
~				lustry Park,					Fax	+86-075	5-26503396	
b No	.: star2016 #	^{‡2580}				F	Polarizati	on: \	/ertical			
anda	rd: FCC PK					F	Power So	ource:	AC 120	V/60Hz		
est ite	m: Radiatio	on Test				[Date: 18/	05/24/				
emp.(C)/Hum.(%) 25 C/5	5 %			1						
JT:	LED Hor	ticultural Lun	ninaire			Engineer Signature: Bob						
ode:	TX 2405M	ЛН <mark>z</mark>				Distance: 3m						
odel:	55403101											
anufa	acturer: ETIS	Solid State L	ighting (Zh	<mark>uhai) Lt</mark> d								
ote:	Report NO.	:ATE201809	49									
100												
100.	0 dBuV/m								limit1:			
90									limit2:			
50							ŕ					
80												
70												
60												
50							}					
40												
40						, 1 ,,		han				
30	cash Handsharman	uhhdyw?Menwilledminyther/y	hphilin was problem to he	nilderry) (sealer was a sealing by	when an	N*************************************		"Lini	modulumental	and an all and the states of the		
						•						
20												
10.0												
2	300.000									2440.0	MHz	
o .	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark		
	(MHz) 2390.000	(dBuV/m) 42.31	(dB) -8.00	(dBuV/m) 34.31	(dBuV/m) 74.00	(dB) -39.69		(cm) 150	(deg.) 142			
	2390.000	33.85	-8.00	25.85	54.00	-39.69		150	333			
	2390.000	45.92	-0.00	37.95	74.00	-26.15	peak	150	215			
	2400.000											
	2400.000	37.69	-7.97	29.72	54.00	-24.28	AVG	150	159			

A 1	C [®]	F1	,Bldg,A,Ch	TE TECH hangyuan Ne lustry Park,I	ew Material	Port Ke	yuan Rd,			+86-0755	Chamber 5-2650329 5-2650339
b No.	: star2016 #	2578				F	Polarizatio	on: V	ertical		
andar	d: FCC PK					F	ower So	urce:	AC 120)V/60Hz	
est iter	m: Radiatio	n Test					Date: 18/0)5/24/			
emp.(C)/Hum.(%)) 25 C/5	5 %			Т	ime: 11/2	20/04			
JT:	LED Hor	tic <mark>u</mark> ltural Lui	minaire			E	Engineer (Signatu	ure: B	ob	
ode:	TX 2480N	/Hz				0	Distance:	3m			
odel:	55403101										
anufa	cturer: ETIS	Solid State L	ighting (Zh	uhai) Ltd							
100.0) dBuV/m										
									limit1: limit2:		
90									mintz.		
			1								
80											
70											
70											
70 60											
60											
			*								
60											
60 50			2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	un Jun ul mun							
60 50	powell when the second			wyster not a lateral we		mathemana	Vilinginensis	level Wherea	hurran the Pa		
60 50 40 30	peralitionshidge		2 2 2 Vinted America	unin un upralme	yhower to spokes to	and the second	Vickingstructures	hurstlythursen	Antonioristatio		
60 50 40 30 20	Jun and a get alight			ungunun unu		er al Maria and	Willingurman	kursta kuturunga	hurran dalla	n New York	
60 50 40 30 20 10.0			Northiners	unin un up abre	yhanen targagan ta	and the second	Valimenter	hurst han and	Antonioritatio	1000 C	
60 50 40 30 20 10.0	Jun - 1 Mary John Magher 140.000			4		and the second	Willingunnya	kradulati razo	Antonioridado	1.////////////////////////////////////	MHz
60 50 40 30 20 10.0 24	40.000 Freq.	Reading	Factor	Result		Margin	Detector	Height	/		MHz
60 50 40 30 20 10.0	40.000 Freq. (MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	2600.0	MHz
60 50 40 30 20 10.0 24	40.000 Freq. (MHz) 2483.500	(dBuV/m) 53.52	(dB) -7.76	(dBuV/m) 45.76	(dBuV/m) 74.00	(dB) -28.24	peak	(cm) 150	(deg.) 299		MHz
60 50 40 30 20 10.0 24	40.000 Freq. (MHz) 2483.500 2483.500	(dBuV/m) 53.52 45.46	(dB) -7.76 -7.76	(dBuV/m) 45.76 37.70	(dBuV/m) 74.00 54.00	(dB) -28.24 -16.30	peak AVG	(cm) 150 150	(deg.) 299 154		MHz
60 50 40 30 20 10.0 24	40.000 Freq. (MHz) 2483.500	(dBuV/m) 53.52	(dB) -7.76	(dBuV/m) 45.76	(dBuV/m) 74.00	(dB) -28.24	peak	(cm) 150	(deg.) 299		MHz

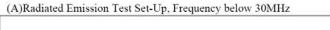
ATC										: ATE2018(Page 34 o
ATC	F1	,Bldg,A,Ch	TE TECH nangyuan Ne lustry Park,I	ew Material	Port Key	yuan Rd,			+86-0755	Chamber -26503290 5-2650339
Job No.: star20	Service Manufacture and the				110-1	olarizatio	522	orizonta	al	
Standard: FCC	PK				F	ower So	urce:	AC 120	V/60Hz	
Test item: Rad	iation Test				C	ate: 18/0	5/24/			
Temp.(C)/Hun	n.(%) 25 C/5	5 %			Т	ime: 11/	18/27			
EUT: LED							Signati	ure: B	ob	
Mode: TX 24		C	istance:	3m						
Model: 55403	101									
Manufacturer: E	TI Solid State L	ighting (Zh	uhai) Ltd							
100.0 dBu¥/m							مرد مرد المرد مرد المرد الم	limit1: limit2:	·	
90		n								
80		+								
70										
60										
50										
	1									
	I I									
40	·····/	1				1 1 1 1 1 1 1 1 1 1	Lat	he suburt	alder show make	
	warded an work	3 march 14	million	when while here when	mbumphensonal	monormumphine	WHANKING	Balla Sundan .	on our on had	
	www.add.com.ord	3 marth	with down them	and the second of	mburghersond	nterpersonality	(4)(Q+4)++++++++++++++++++++++++++++++++	an a		
	www.add.row.ord	3 marth	n Kinden son offeren	antral Antonio and and	nturaturand	enfongiorniseespelips	(MRW/++4/*/**)			
30	warandalarin word	3 martinet	Kindensider.	and the second of	ntranaturend	er forgænska skilde på				
30	waanaadhaannadh	2 martinet	n fichadoradoria.	ouseral deservations	where of a constant	en fonger en de se de de de	**************************************		2600.0	MHz
30 20 10.0 2440.000	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)		MHz
30 20 10.0 2440.000 No. Freq. (MHz)	Reading (dBuV/m)	Factor	Result	Limit	Margin		Height	Degree	2600.0	MHz
30 20 10.0 2440.000 No. Freq. (MHz) 1 2483.	Reading (dBuV/m) 500 48.77	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	2600.0	MHz
30 20 10.0 2440.000 No. Freq. (MHz) 1 2483.	Reading (dBuV/m) 500 48.77 500 41.26	Factor (dB) -7.76	Result (dBuV/m) 41.01	Limit (dBuV/m) 74.00	Margin (dB) -32.99	Detector	Height (cm) 200	Degree (deg.) 177	2600.0	MHz

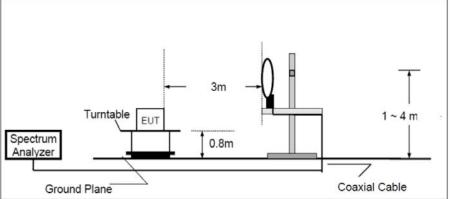
Note:

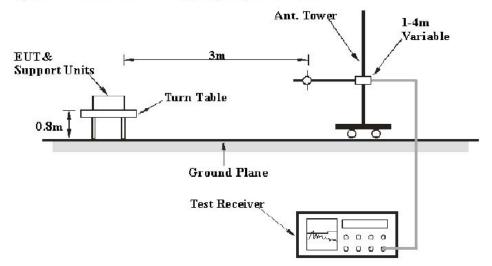
- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:


Result = Reading + Corrected Factor

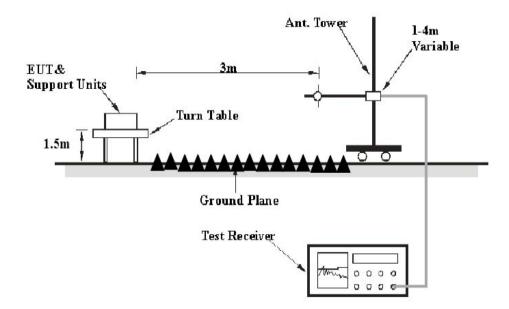
10.RADIATED SPURIOUS EMISSION TEST


10.1.Block Diagram of Test Setup


10.1.1.Block diagram of connection between the EUT and peripherals


Setup: Transmitting mode

10.1.2. Semi-Anechoic Chamber Test Setup Diagram



(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

10.2.The Limit For Section 15.247(d)

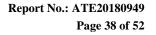
Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3. Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

 P•===			611
perm	itted in any of the freque	ency bands listed below:	-
(a) Exce	pt as shown in paragraph	n (d) of this section, Only	spurious emissions are

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
$^{1}0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^{2})$
13.36-13.41			


¹Until February 1, 1999, this restricted band shall be 0.490-0.510

²Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4.Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.5. Operating Condition of EUT

10.5.1.Setup the EUT and simulator as shown as Section 9.1.

- 10.5.2.Turn on the power of all equipment.
- 10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2405-2480MHz. We select 2405MHz, 2445MHz, and 2480MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector. The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading.

10.7.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	43.85	-22.22	21.63	43.5	-21.87	QP

 $\label{eq:states} \begin{array}{l} Frequency(MHz) = Emission frequency in MHz\\ Reading(dB\mu\nu) = Uncorrected Analyzer/Receiver reading\\ Factor (dB/m) = Antenna factor + Cable Loss - Amplifier gain\\ Result(dB\mu\nu/m) = Reading(dB\mu\nu) + Factor(dB/m)\\ Limit (dB\mu\nu/m) = Limit stated in standard\\ Margin (dB) = Result(dB\mu\nu/m) - Limit (dB\mu\nu/m)\\ QP = Quasi-peak Reading \end{array}$

Calculation Formula: Margin(dB) = Result ($dB\mu V/m$)–Limit($dB\mu V/m$) Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

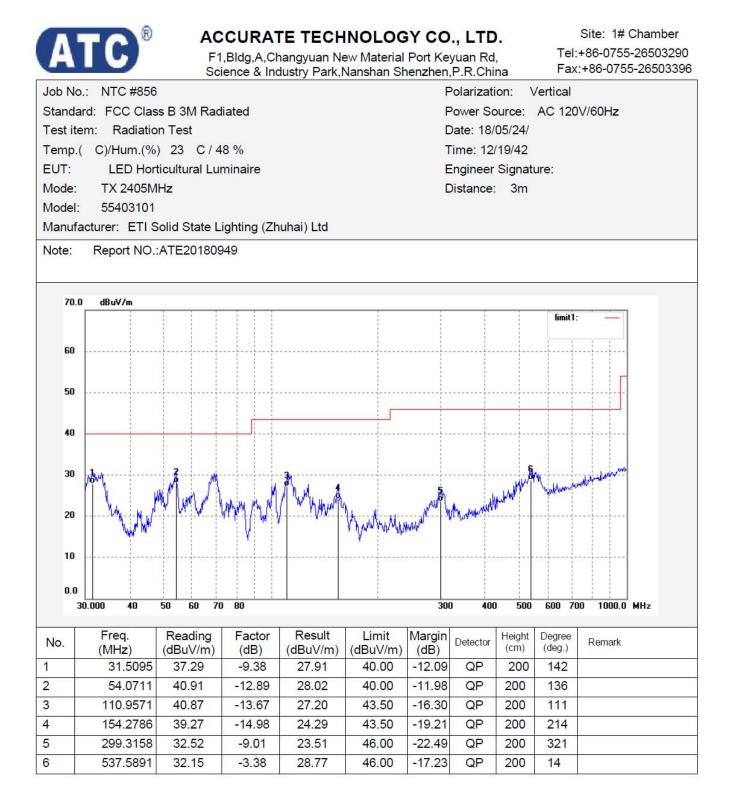
10.8. The Field Strength of Radiation Emission Measurement Results

Pass.

Test Lab: 3m Anechoic chamber Test Engineer: Bob

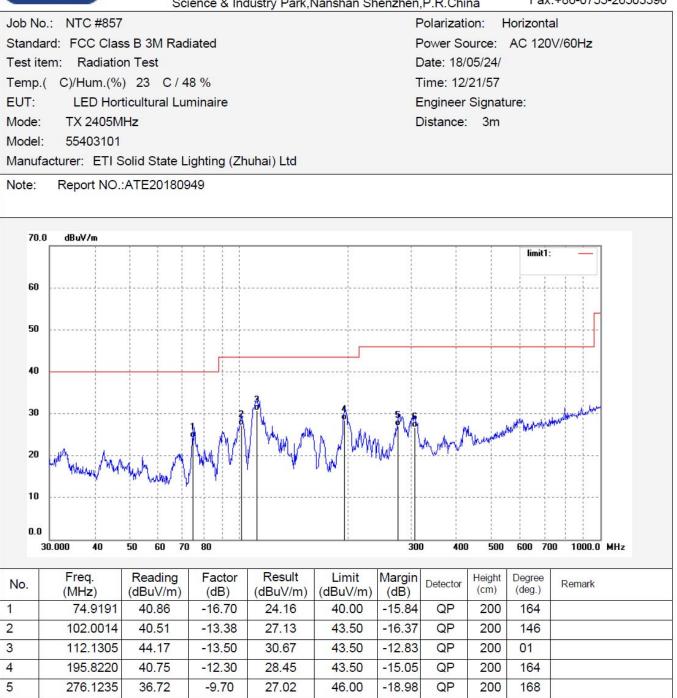
The frequency range from 9kHz to 26.5GHz is checked.

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.


2. *: Denotes restricted band of operation.

3. The radiation emissions from 9kHz-30MHz and 18-26.5GHz are not reported, because the test values lower than the limits of 20dB.

The spectrum analyzer plots are attached as below.



Below 1GHz

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

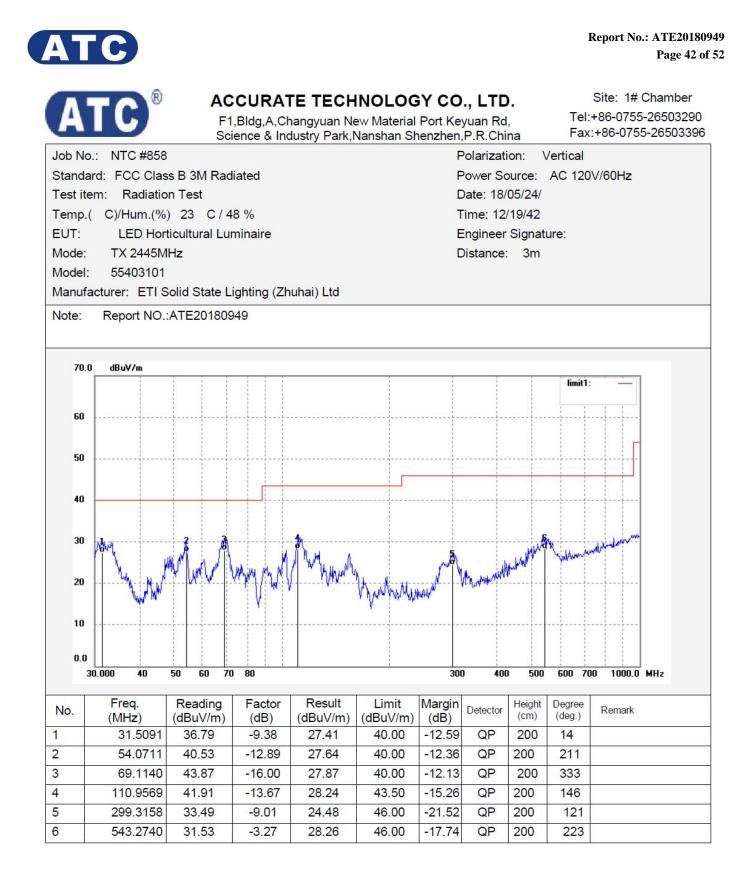
6

306.7536

35.54

-8.85

26.69


46.00

-19.31

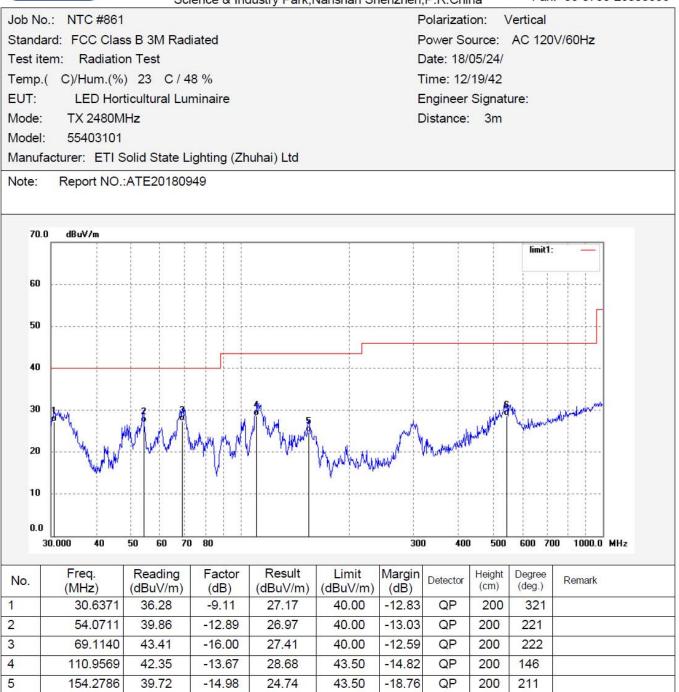
QP

200

321

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No	.: NTC #859			usiry Faik,i			Polarizati		orizonta	al
	rd: FCC Clas	s B 3M Rad	iated				Power Sc			
	em: Radiatio		ARRONA ROL				Date: 18/			
Temp.	(C)/Hum.(%)	23 C/4	8 %			1	Time: 12/	21/57		
EUT:		icultural Lur					Engineer		ure:	
Mode:	TX 2445M						Distance:	24.1		
Model:										
	acturer: ETIS	olid State L	iahtina (Zh	uhai) Ltd						
Note:	Report NO.:									
70.0) dBuV/m								1. 1.4	· · · · · · · · · · · · · · · · · · ·
									limit1:	
60										
										Г
50										
40										
30				3		5				the dawn
50			1 .	The south	14	M	M	6	with the production of	by an all here we have
20			AL MA	/ Y'W./""	IN A LAWY	Mart	with	Weynettern		
	the powership with	"how when I		(Y	U WN		_			
10										
0.0		<u> </u>							000 70	
а	80.000 40	50 60 70	80			30	0 400) 500	600 70	0 1000.0 MHz
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)	100-170-26130-16-1 1
	74.9191	41.52	-16.70	24.82	40.00	-15.18		200	14	
2	102.0014	40.41	-13.38	27.03	43.50	-16.47	QP	200	222	
3	112.1303	43.37	-13.50	29.87	43.50	-13.63		200	214	
1	197.1999	40.49	-12.29	28.20	43.50	-15.30		200	222	4
5	276.1235	37.31	-9.70	27.61	46.00 46.00	-18.39		200	144	
6	431.0316	30.73	-5.60	25.13		-20.87	QP	200	234	


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

		Sci	ence & Inc	lustry Park,N	Vanshan Sh	nenzhen	,P.R.Chi	na	Fax	:+86-0755-26503396
Job N	o.: NTC #860					F	Polarizati	on: H	lorizonta	al
Stand	ard: FCC Clas	s <mark>B 3M Rad</mark>	iated			F	Power Sc	ource:	AC 120	V/60Hz
Test it	tem: Radiatio	n Test		[Date: 18/	05/24/				
Temp	.(C)/Hum.(%)	23 C/4	8 %			1	Time: 12/	21/57		
EUT:	LED Hort	ticultural Lui	minaire			E	Engineer	Signati	ure:	
Mode	: TX 2480M	Hz					Distance:			
Model	: 55403101									
Manul	facturer: ETI S	olid State L	ighting (Zh	uhai) Ltd						
Note:	Report NO .:		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10							
toto.	rieport no									
70	a 16 VI									
70.	.0 dBuV/m								limit1:	-
60										
50										Г
50										
40										
				2						
30			1	-A		5 8			Autor Antin	how the flat and
			1 AM	14 Mus Min	A DAG	1"	In and	Munter	Win war was	
20	Why have		W + { V - }	J Y WY	W. M. M. LY	MAK	- Walt			
	when we will	"Who have be	(Y	r i ar i	n Ma					
10										
0.0	1									
	30.000 40	50 60 70	80			30	0 400	500	600 70	0 1000.0 MHz
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)	
	74.9191	41.96	-16.70	25.26	40.00	-14.74		200	111	
	102.0014	40.89	-13.38	27.51	43.50	-15.99		200	144	
	112.1303	42.68	-13.50	29.18	43.50	-14.32		200	146	
1	197.1999	40.02	-12.29	27.73	43.50	-15.77		200	223	
5	276.1235	37.68	-9.70	27.98	46.00	-18.02	· · · · ·	200	111	
5	305.6800	36.61	- <mark>8.90</mark>	27.71	46.00	-18.29	QP	200	31	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

6

543,2740

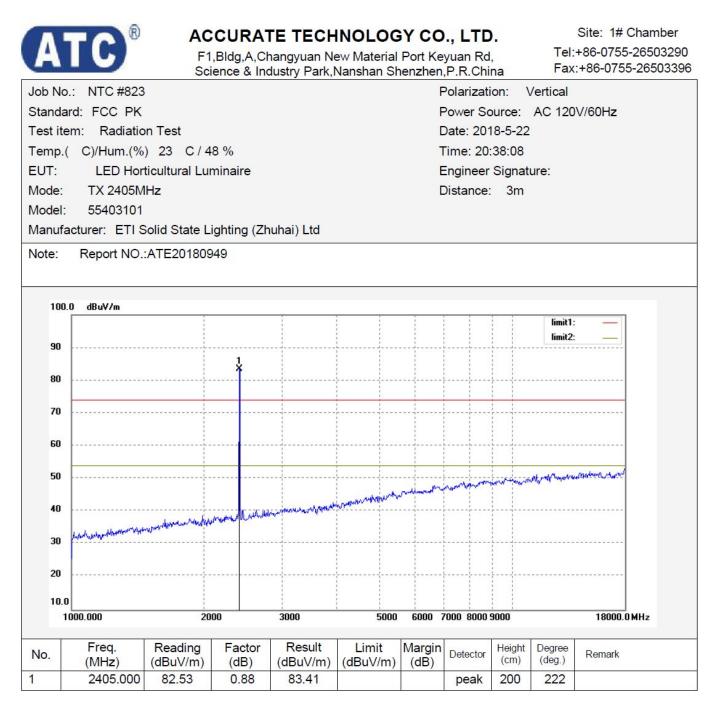
31.89

-3.27

28.62

46.00

-17.38


QP

200

111

Above 1GHz

R Site: 1# Chamber ACCURATE TECHNOLOGY CO., LTD. Tel:+86-0755-26503290 F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Fax:+86-0755-26503396 Science & Industry Park, Nanshan Shenzhen, P.R. China Job No.: NTC #824 Polarization: Horizontal Standard: FCC PK Power Source: AC 120V/60Hz Test item: Radiation Test Date: 2018-5-22 Temp.(C)/Hum.(%) 23 C / 48 % Time: 20:39:26 EUT: LED Horticultural Luminaire Engineer Signature: Mode: TX 2405MHz Distance: 3m Model: 55403101 Manufacturer: ETI Solid State Lighting (Zhuhai) Ltd Report NO .: ATE20180949 Note: 100.0 dBuV/m limit1: limit2: 90 80 70 60 50 40 30 20 10.0 1000.000 2000 3000 5000 6000 7000 8000 9000 18000.0 MHz Result Freq. Reading Factor Limit Margin Height Degree No. Detector Remark (cm) (deg.) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) (MHz) peak 1 2405.000 84.40 0.88 85.28 200 111

Report No.: ATE20180949 Page 48 of 52

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

			ience & Ind	dustry Park,	Nanshan Sh				- 14-12-18-19	.+80-0755-205033
	o.: NTC #825						Polarizat		Horizonta	
	ard: FCC PK				Power So			W/60Hz		
	em: Radiatio						Date: 20		1	
	(C)/Hum.(%						Time: 20			
JT:		ticultural Lu	minaire				Engineer	and the second sec	ure:	
ode:	TX 2445M	Hz				[Distance	: 3m		
odel:	55403101									
anufa	acturer: ETI S	Solid State L	ighting (Zh	nuhai) Ltd						
te:	Report NO.	:ATE201809	949							
100	.0 dBuV/m								1. 1.4	
									limit1: limit2:	
90										
80			¥			1				
00						1				
70										
60										
50								a annound	state of the low man	wheedport war
					wanderwow	mmulti	apart and and	A Cana		
40				and manufactures	Maria			·		
30	wander and a second	have all the state of the second								
20							·····			
20	1									
	b	19		1		6000	7000 8000	9000		18000.0 MHz
10.0	000.000	20)00	3000	5000	0000				
10.0	000.000			2		-	4			
10.0		20 Reading (dBuV/m)	Factor (dB)	3000 Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	4	Height (cm)	Degree (deg.)	Remark

Report No.: ATE20180949 Page 51 of 52

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

No.	: NTC #828					F	Polarizati	ion: I	Horizont	al	
andar	d: FCC PK					F	Power So	ource:	AC 120	V/60Hz	
st ite	m: Radiatio	n Test				0	Date: 201	18-5-22			
	C)/Hum.(%) 23 C/4	8 %			٦	Time: 20	:45:02			
T:	LED Hor	ticultural Lu	minaire			E	Engineer	Signat	ure:		
de:	TX 2480M	Hz				0	Distance:	3m			
del:	55403101										
nufa	cturer: ETI S	olid State L	ighting (Z	Zhuhai) <mark>L</mark> td							
te:	Report NO.:	ATE201809	49								
100.0) dBuV/m							: :	limit1:		
									limit2:		
90			••••••								
80			¥								
									on one of the state of the stat		
70		·····									
60					L						
50								a dant	Why My partite	-	
					mont	marking	Appropriate all proceedings	A.a. mar			
40			month me	Manufactobaldonet	and the second s						
30	Ana manage An	man and a second and a second									
20											
20				0							
10.0	000 000			20000	Foco						
10.0	000.000	20	00	3000	5000	6000 7	7000 8000	9000		18000.0	MHz
10.0	000.000 Freq. (MHz)	Reading (dBuV/m)	00 Factor (dB)		Limit (dBuV/m)	6000 Margin (dB)		Height (cm)	Degree (deg.)	18000.0 Remark	MHz

11.ANTENNA REQUIREMENT

11.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

11.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****