Report on the FCC and IC Testing of the ruwido austria gmbh Conducted sample (Test FW). Model: Type 2806, Model: 806A01 Radiated Sample (Test FW). Model: Type 2806; Model: 806A01 In accordance with FCC 47 CFR Part 15C and ISED Canada RSS-247 and ISED Canada RSS-GEN

Prepared for: ruwido austria gmbh Koestendorfer Str. 8 5202 Neumarkt Austria

FCC ID: XYN806A IC: 8748A-806A

COMMERCIAL-IN-CONFIDENCE

Date: 2019-06-06 Document Number: TR-51994-26567-01 | Issue: 03

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Martin Steindl	2019-06-06	Skindl Martin
Authorised Signatory	Matthias Stumpe	2019-06-06	Hungo

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C and ISED Canada RSS-247 and ISED Canada RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE		SIGNATURE	
Testing	Martin Steindl		2019-06-	06	Skindl	Martin
Laboratory Accreditation DAkkS Reg. No. D-PL-11321-11-02		Laboratory recognition Registration No. BNetzA-CAB-16	6/21-15	ISED Canada 3050A-2	test site registr	ation

EXECUTIVE SUMMARY

1

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C, ISED Canada RSS-247 and ISED Canada RSS-GEN:2016 and Issue 2 (2017-02) and Issue 4 (2014-11).

DISCLAIMER AND COPYRIGHT This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2019 TÜV SÜD Product Service.
ACCREDITATION Our BNetzA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our BNetzA Accreditation. Results of tests not covered by our BNetzA Accreditation Schedule are marked NBA (Not BNetzA Accredited).

Contents

Choose certainty. Add value.

Product Service

1.1	Report Modification Record	
1.2	Introduction	
1.3	Brief Summary of Results	
1.4	EUT Modification Record	
1.5	Test Location	5
2	Test Details	6
2.1	Maximum Conducted Output Power	6
2.2	Power Spectral Density	
2.3	Emission Bandwidth	
2.4	Authorised Band Edges	
2.5	Restricted Band Edges	
2.6	Spurious Conducted Emissions	
2.7	Spurious Radiated Emissions	
2.8	Exposure of Humans to RF Fields	61
3	Photographs	
3.1	Equipment Under Test (EUT)	
4	Measurement Uncertainty	

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	2018-03-23
2	Changed ICES to IC	2018-07-09
3	Industry Canada changed to ISED Canada, space character in FCC ID deleted	2019-06-06

Table 1

1.2 Introduction

Applicant	ruwido austria gmbh
Manufacturer	ruwido austria gmbh
Model Number(s)	Type 2806; Model: 806A01
Serial Number(s)	DUT1 and DUT3
Hardware Version(s)	
Software Version(s)	
Number of Samples Tested	2
Test Specification/Issue/Date	FCC 47 CFR Part 15C, ISED Canada RSS-247 and ISED Canada RSS-GEN:2016 and Issue 2 (2017-02) and Issue 4 (2014-11)
Test Plan/Issue/Date	N/A
Order Number Date	N/A
Date of Receipt of EUT	2018-02-23
Start of Test	2018-02-28
Finish of Test	2018-03-05
Name of Engineer(s)	Martin Steindl
Related Document(s)	ANSI C63.10 (2013) KDB 662911 D01 v02r02

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C and ISED Canada RSS-247 and ISED Canada RSS-GEN is shown below.

Section	Specification Clause	Test Description	Result	Comments/Base Standard
Configurat	tion and Mode: Stand alone	Transmitting Continuously	·	-
2.1	15.247 (b), 5.4 and 6.12	Maximum Conducted Output Power	Pass	ANSI C63.10 (2013) KDB 662911 D01 v02r02
2.2	15.247 (e), 5.2 and 6.12	Power Spectral Density	Pass	ANSI C63.10 (2013) KDB 662911 D01 v02r02
2.3	15.247 (a)(2), 5.2 and 6.6	Emission Bandwidth	Pass	ANSI C63.10 (2013)
2.4	15.247 (d), 5.5 and N/A	Authorised Band Edges	Pass	ANSI C63.10 (2013)
2.5	15.205 N/A and 8.10	Restricted Band Edges	Pass	ANSI C63.10 (2013)
2.6	15.247 (d) and 5.5	Spurious Conducted Emissions	Pass	ANSI C63.10 (2013)
2.7	15.247 (d), 15.205, 5.5 and 6.13	Spurious Radiated Emissions	Pass	ANSI C63.10 (2013)

Table 2

1.4 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT Modification Fitted By		dification State Description of Modification still fitted to EUT Modification Fitted By Date Mod Fitted		Date Modification Fitted		
Serial Number: DUT1							
0	As supplied by the customer Not Applicable		Not Applicable				
Serial Number: DUT	Serial Number: DUT3						
0	As supplied by the customer	Not Applicable	Not Applicable				

Table 3

1.5 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing Test Laboratory.

Test Name	Name of Engineer(s)
Configuration and Mode: Stand alone Transmitting C	ontinuously
Maximum Conducted Output Power	Martin Steindl
Power Spectral Density	Martin Steindl
Emission Bandwidth	Martin Steindl
Authorised Band Edges	Martin Steindl
Restricted Band Edges	Martin Steindl
Spurious Conducted Emissions	Martin Steindl
Spurious Radiated Emissions	Martin Steindl

Office Address:

Table 4

Äußere Frühlingstraße 45 94315 Straubing Germany7

2 Test Details

2.1 Maximum Conducted Output Power

2.1.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-247 and ISED Canada RSS-GEN, Clause 15.247 (b), 5.4 and 6.12

2.1.2 Equipment Under Test and Modification State

Type 2806, Model: 806A01, S/N: DUT1 - Modification State 0

2.1.3 Date of Test

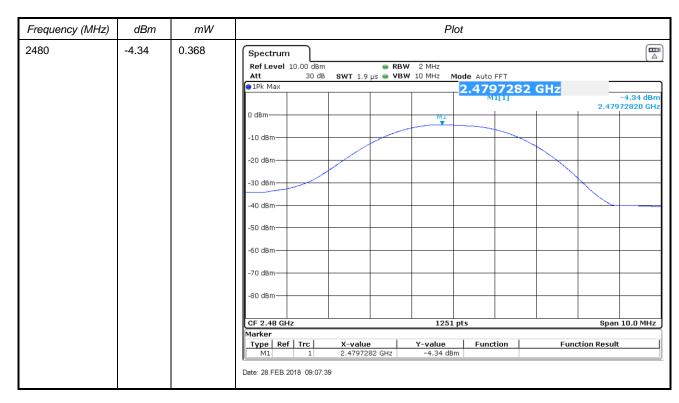
2018-02-28

2.1.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.9.1.1.

2.1.5 Environmental Conditions

Ambient Temperature22.0 °CRelative Humidity13.0 %



2.1.6 Test Results

Stand alone Transmitting Continuously

Frequency (MHz)	dBm	mW	F	Plot			
2402	-2.34	0.583 Spectrum					
			RefLevel 10.00 dBm ● RBW 2 MHz Att 30 dB SWT 1.9 µs ● VBW 10 MHz				
			Att 30 dB SWT 1.9 µs	Mode Auto FFT 2.4022718 GHz			
				M1[1] -2.34 dBn 2.40227180 GH			
			0 dBm	M1			
			10 10 10				
			-10 dBm				
			-20 dBm				
			-30 dBm				
			-40 dBm-				
			-50 dBm				
			-60 dBm				
			-70 dBm				
			-80 dBm				
			CF 2.402 GHz 125	i1 pts Span 10.0 MHz			
			Marker 125				
			Type Ref Trc X-value Y-value M1 1 2.4022718 GHz -2.34 dit				
			Date: 28.FEB.2018 09:08:31				
2442	-3.35	0.462	Spectrum	H			
			Ref Level 10.00 dBm				
			Att 30 dB SWT 1.9 µs ● VBW 10 MHz ● 1Pk Max	Mode Auto FFT			
			The Max	2.4417442 GHz -3.35 dBn			
			0 dBm	2.44174420 GH			
			-10 dBm				
			-10 dBm -20 dBm				
			-10 dBm				
			-10 dBm -20 dBm				
			-10 dBm -20 dBm -30 dBm -40 dBm				
			-10 dBm -20 dBm -30 dBm				
			-10 dBm -20 dBm -30 dBm -40 dBm				
			-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm				
			-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm				
			-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm				
			-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -80 dBm				
			-10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -60 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -125 -80	1 pts Span 10.0 MHz			
			-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -80 dBm	Function Function Result			

Table 5

FCC 47 CFR Part 15, Limit Clause 15.247 (b)(3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

ISED Canada RSS-247, Limit Clause 5.4 (d)

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e) of the specification.

2.1.7 Test Location and Test Equipment Used

This test was carried out in Non shielded room.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
FSV40	Rohde & Schwarz	101448	20219	12	2019-01

Table 6

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment N/A - Not Applicable

2.2 Power Spectral Density

2.2.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-247 and ISED Canada RSS-GEN, Clause 15.247 (e), 5.2 and 6.12

2.2.2 Equipment Under Test and Modification State

Type 2806, Model: 806A01, S/N: DUT1 - Modification State 0

2.2.3 Date of Test

2018-02-28

2.2.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.10.2.

2.2.5 Environmental Conditions

Ambient Temperature22.0 °CRelative Humidity13.0 %

2.2.6 Test Results

Stand alone Transmitting Continuously

Frequency (MHz)	Power Spectral Density (dBm)	Plot	
Frequency (MHz) 2442	-3.49	Spectrum RBW 100 kHz Att 30 dB SWT 19 µs VBW 1 MHz • 1Pk Max 2.44173543 GHz MI[1] 2.4 0 dBm M1 0 M1[1] 2.4 -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -40 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -50 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -60 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	-3.49 dBm 41735430 GHz
		Date: 28.FEB.2018 09:34:46	

(MHz)	Power Spectral Density (dBm)						Plot				
2480	-4.55	Spectrum Ref Level 1				100 kHz					
		Att	30 dB	SWT 19			Mode	Auto FFT			
		●1Pk Max				1	2.	479743	867 GHz		cc. In
								M1[1]		-4 2.479743	.55 dBm 570 GHz
		0 dBm		MI			_				
		-10 dBm-		r ~					\rightarrow		
		-20 dBm									
		-30 dBm									
		-40 dBm									
		-50 dBm									
		-60 dBm									
		-00 0511									
		-70 dBm									
		-80 dBm									
		oo abiii									
		CF 2.48 GHz	:			12	51 pts			Span 1.03	L1 MHz
		Marker	T = 1	X-value	. 1		- 1	E			
		Type Ref	1	2.479743		Y-value -4.55		Function	Func	tion Result	
		Date: 28.FEB.20	18 09:35:0	5							
		5000 100 100 100		•							
2402	-2.67	Spectrum)
		Ref Level 10			RBW 10	0 kHz					-
		Att	30 dB	SWT 19 μs	VBW 1	MHz Mo	de Auto		GH ₇	_)
		Att	30 dB	3W1 19 µ5	VBW	MHz Mo	2.40	FFT 222666 цццј		-2.67 dBm	
		Att	30 dB	3W1 19 13	VBW	MHz Mo	2.40	222666 ^{IIIII}		-2.67 dBm 02226660 GHz	
		Att 1Pk View 0 dBm	30 dB	341 19 33	VBW :	MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att 1Pk View	30 dB	3 4 19 55	VBW 1	MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att 1Pk View 0 dBm	30 dB			MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att IPk View 0 dBm -10 dBm -20 dBm	30 dB	3w1 19 µ3		MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att PIPk View 0 dBm -10 dBm	30 dB			MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att IPk View 0 dBm -10 dBm -20 dBm	30 dB			MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30 dB			MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm				MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm				MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm				MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm				MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm				MHz Mo	2.40	222666 ^{IIIII}	M1 2.4		
		Att • IPk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm					2.40	222666 ^{IIIII}	VI1 2.4	102226660 GHz	
		Att IPk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm -80 dBm				MHz Mo	2.40	222666 ^{IIIII}	VI1 2.4		
		Att IPk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	2 Trc	X-value		. MHz Ma	ts		VI1 2.4	1.0311 MHz	
		Att • IPk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -10 dBm	2 Trc			. MHz Ma	ts		VI1 2.4	1.0311 MHz	

Table 7

FCC 47 CFR Part 15, Limit Clause 15.247 (e)

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

ISED Canada RSS-247, Limit Clause 5.2(b)

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

2.2.7 Test Location and Test Equipment Used

This test was carried out in Non shielded room.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
FSV40	Rohde & Schwarz	101448	20219	12	2019-01

Table 8

TU - Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment N/A - Not Applicable

2.3 Emission Bandwidth

2.3.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-247 and ISED Canada RSS-GEN, Clause 15.247 (a)(2), 5.2 and 6.6

2.3.2 Equipment Under Test and Modification State

Type 2806, Model: 806A01, S/N: DUT1 - Modification State 0

2.3.3 Date of Test

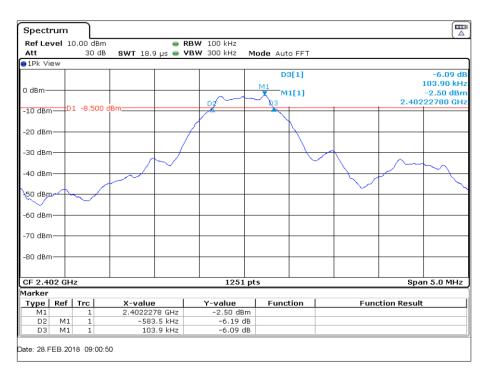
2018-02-28 to 2018-03-05

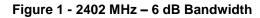
2.3.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.8.2.

2.3.5 Environmental Conditions

Ambient Temperature22.0 °CRelative Humidity13.0 %


2.3.6 Test Results


Stand alone Transmitting Continuously

Frequency (MHz)	6 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)		
2402	0.6874	1.0720		
2442	0.6914	1.0800		
2480	0.6874	1.0640		

Table 9

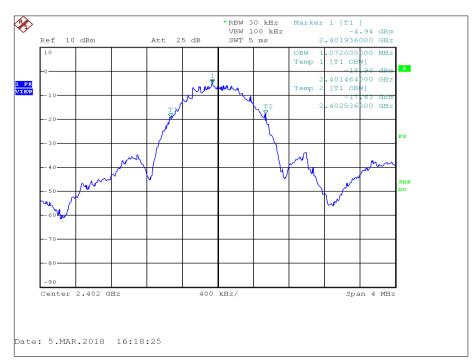
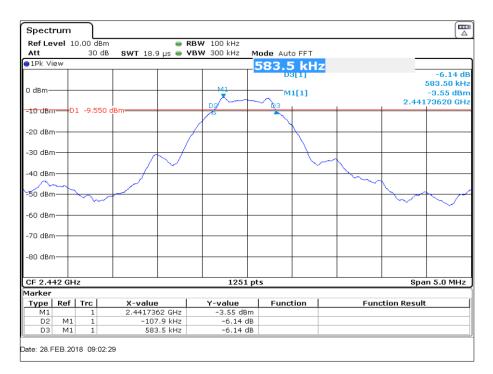
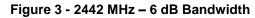




Figure 2 - 2402 MHz – 99% Occupied Bandwidth

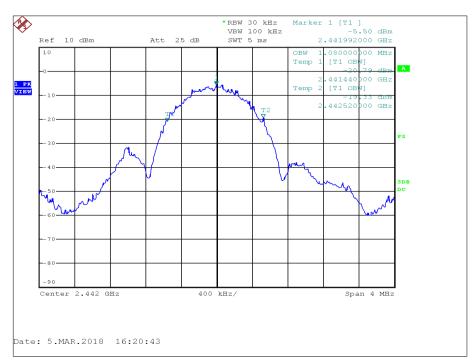
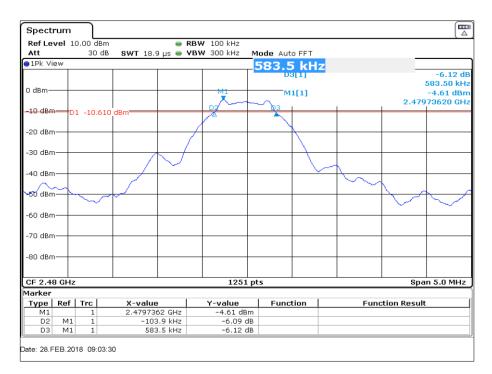
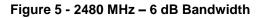




Figure 4 - 2442 MHz – 99% Occupied Bandwidth

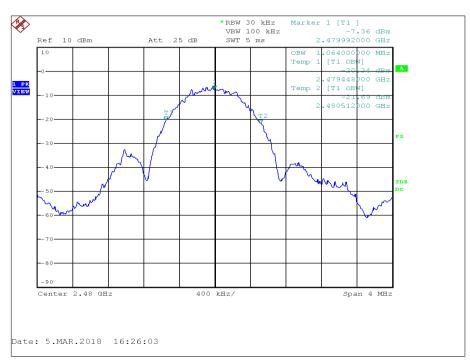


Figure 6 - 2480 MHz – 99% Occupied Bandwidth

FCC 47 CFR Part 15, Limit Clause 15.247(a)(2) and ISED Canada RSS-247, Clause 5.2(a)

The minimum 6 dB Bandwidth shall be at least 500 kHz.

2.3.7 Test Location and Test Equipment Used

This test was carried out in Non shielded room.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
FSV40	Rohde & Schwarz	101448	20219	12	2019-01

Table 10

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment N/A - Not Applicable

2.4 Authorised Band Edges

2.4.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-247 and ISED Canada RSS-GEN, Clause 15.247 (d), 5.5 and N/A $\,$

2.4.2 Equipment Under Test and Modification State

Type 2806, Model: 806A01, S/N: DUT3 - Modification State 0

2.4.3 Date of Test

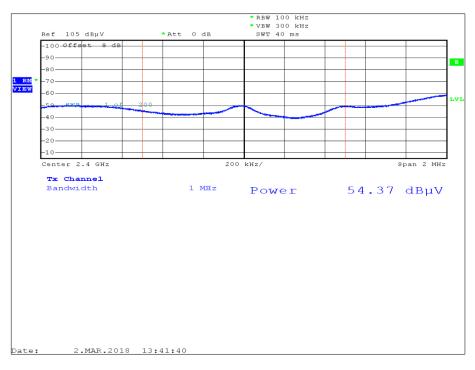
2018-03-02

2.4.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.10.4.

2.4.5 Environmental Conditions

Ambient Temperature20.0 °CRelative Humidity959.0 %


2.4.6 Test Results

Stand alone Transmitting Continuously

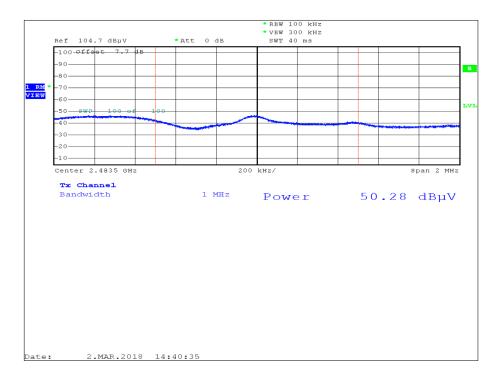

Frequency (MHz)	Measured Frequency (MHz)	Peak Level (dBµV/m)		
2402	2400.0	41.7		
2480	2483.5	42.1		

Table 11

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

20 dB below the fundamental measured in a 100 kHz bandwidth using a peak detector. If the transmitter complies with the conducted power limits, based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB below the fundamental instead of 20 dB.

ISED Canada RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

2.4.7 Test Location and Test Equipment Used

This test was carried out in Fully anechoic room - cabin no. 2.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
FSP30	Rohde & Schwarz	100063	19533	12	2018-08

Table 12

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment N/A - Not Applicable

2.5 Restricted Band Edges

2.5.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-247 and ISED Canada RSS-GEN, Clause 15.205 N/A and 8.10

2.5.2 Equipment Under Test and Modification State

Type 2806, Model: 806A01, S/N: DUT3 - Modification State 0

2.5.3 Date of Test

2018-03-02

2.5.4 Test Method

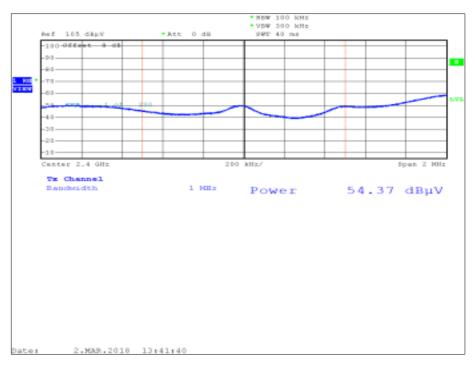
This test was performed in accordance with ANSI C63.10, clause 6.10.5.

Plots for average measurements were taken in accordance with ANSI C63.10 clause 4.1.4.2.3. These are shown for information purposes and were used to determine the worst case measurement point. Final average measurements were then taken in accordance with ANSI C63.10 clause 4.1.4.2.2. to obtain the measurement result recorded in the test results tables.

The following conversion can be applied to convert from $dB\mu V/m$ to $\mu V/m$: 10^(Field Strength in $dB\mu V/m/20$).

2.5.5 Environmental Conditions

Ambient Temperature20.0 °CRelative Humidity16.0 %


2.5.6 Test Results

Stand alone Transmitting Continuously

Frequency (MHz)	Measured Frequency (MHz)	Level (dBµV/m)		
2402	2400.0	54.4		
2480	2483.5	50.3		

Table 13

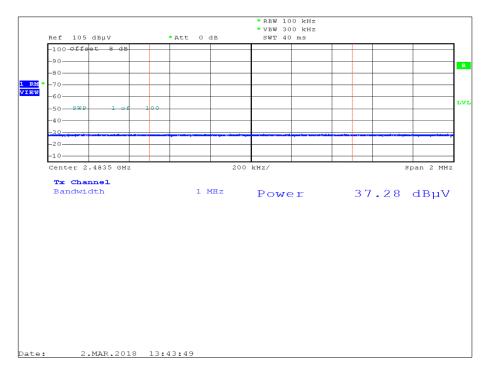
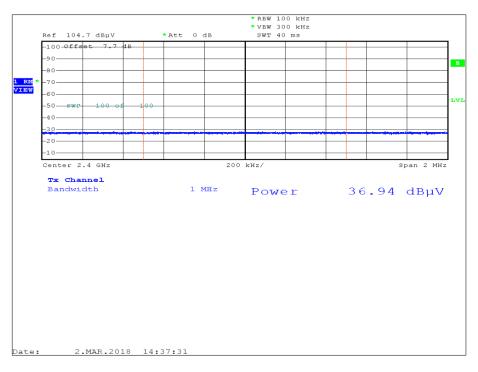



Figure 10 - 2402 MHz - Measured Frequency 2483.5 MHz

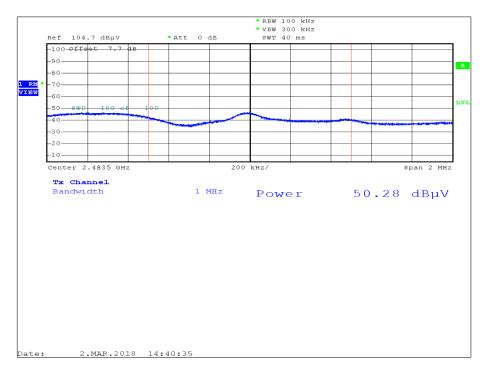


Figure 12 - 2480 MHz - Measured Frequency 2483.5 MHz

FCC 47 CFR Part 15, Limit Clause 15.209

Frequency (MHz)	Field Strength (µV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

Table 14

ISED Canada RSS-GEN, Limit Clause 8.9

Frequency (MHz)	Field Strength (μ V/m at 3 metres)				
30-88	100				
88-216	150				
216-960	200				
Above 960*	500				

Table 15

*Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

2.5.7 Test Location and Test Equipment Used

This test was carried out in Semi anechoic room - cabin no. 8.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
FSP30	Rohde & Schwarz	100063	19533	12	2018-08

Table 16

TU - Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment N/A - Not Applicable

2.6 Spurious Conducted Emissions

2.6.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-247 and ISED Canada RSS-GEN, Clause 15.247 (d) and 5.5 $\,$

2.6.2 Equipment Under Test and Modification State

Type 2806, Model: 806A01, S/N: DUT1 - Modification State 0

2.6.3 Date of Test

2018-02-28

2.6.4 Test Method

WLAN and other The test was performed in accordance with KDB 558074 D01 v03r02, clause 11.0.

Bluetooth The test was performed in accordance with ????

2.6.5 Environmental Conditions

Ambient Temperature22.0 - 23.0 °CRelative Humidity13.0 %

2.6.6 Test Results

Stand alone Transmitting Continuously

Testing was performed on the data rate with maximum conducted output power. This data rate type was:

Spectrum	ı D									
	10.00 dBm			100 kHz						
Att	30 dB	SWT 19 μ	s VBW	1 MHz		a Auto F				
1Pk View					2	.402	226	666 GH:	z	
						MD	11			-2.67 dB
								I M1	2.	.402226660 GH
0 dBm					-			-		
								_		
-10 dBm										
-20 dBm										
-30 dBm					_					
-40 dBm					_					
-50 dBm									_	
-60 dBm									_	
-70 dBm					_				_	
-80 dBm					_					
CF 2.402 C	iHz			12	51 pts				Sp	an 1.0311 MH:
larker	f I Tun I	X-value	1	Y-value	- 1	Funct	ion I	-	unction R	
Type Re M1	f Trc 1	2.4022266	6.GHz	-2.67	1Bm	Funct		F	UNCTION R	esuit
	. 1	2	o ana	2.07						
to: 28 FEB	2018 09:34:1	4								

Figure 13 - 2402 MHz - Carrier Frequency

Spect										(,
Ref Le Att	vel 1	0.00 dBn 30 dB			/ 100 kHz / 1 MHz /			-		
1Pk M	50	30 u	8 SWT 250 ms	464		Mode Aut			_	
TEK M						2.412	2 GH	Z		-3.26 dB
							-(-)			2.4120 GF
0 dBm—	M		+						+	<u> </u>
	T									
-10 dBrr	∩ _ -		+						+	
-20 dBr		1 -22.34	0 dBm							
		1 -22.34	o ubili							
-30 dBr	۱ - -								-	
-40 dBrr	ا لــــا									
-50 dBr	י −		L. centrals				and the state			
		ALL BARROW	Now Mound	. L. walkala	mon with hard for	nythereferenced	- Marter Pro-	w-yuder Relyanser	WWW9666 Caleway Herold	a hay rolling a fear of
eo deb	لعارضهم	0 WORL P		M-0						
-70 dBm	<u>ו</u> וי									
-80 dBr	1									
CF 12.	515 G	Hz			1001	pts			Span	24.97 GH
4arker										
Туре	Ref	Trc	X-value		Y-value	Func	tion	Fur	ction Result	
M1		1	2.412	GHZ	-3.26 dBm	<u>ו</u>				

Figure 14 - 2402 MHz - 30 MHz - 25 GHz

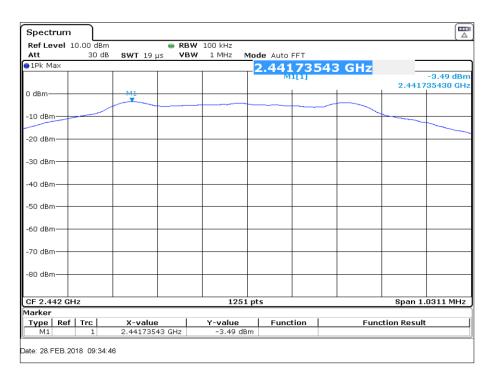


Figure 15 - 2442 MHz - Carrier Frequency

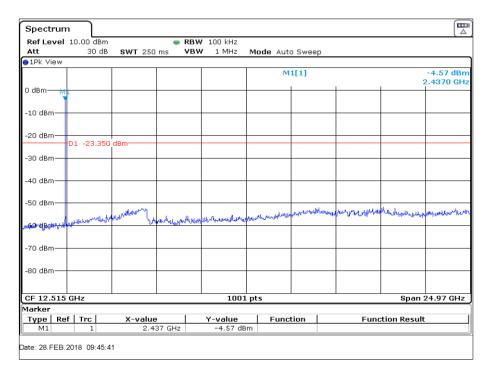
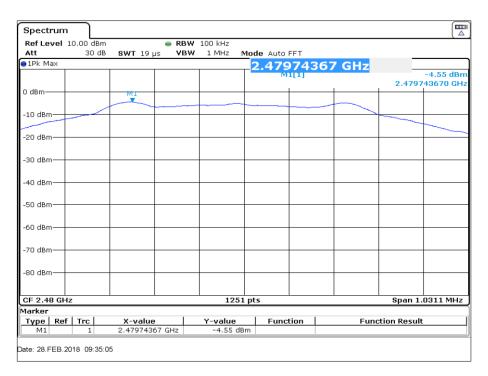
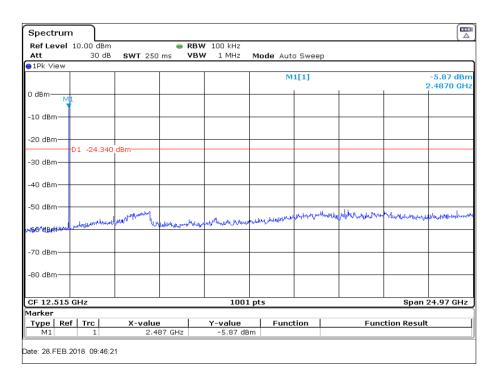




Figure 16 - 2442 MHz - 30 MHz - 25 GHz

Figure 17 - 2480 MHz - Carrier Frequency

Figure 18 - 2480 MHz - 30 MHz - 25 GHz

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

20 dB below the fundamental measured in a 100 kHz bandwidth using a peak detector. If the transmitter complies with the conducted power limits, based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB below the fundamental instead of 20 dB.

2.6.7 Test Location and Test Equipment Used

This test was carried out in Non shielded room and Semi anechoic room - cabin no. 8.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due	
FSV40	Rohde & Schwarz	101448	20219	12	2019-01	

Table 17

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment N/A - Not Applicable

2.7 Spurious Radiated Emissions

2.7.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-247 and ISED Canada RSS-GEN, Clause 15.247 (d), 15.205, 5.5 and 6.13

2.7.2 Equipment Under Test and Modification State

Type 2806, Model: 806A01, S/N: DUT3 - Modification State 0

2.7.3 Date of Test

2018-02-28 to 2018-03-05

2.7.4 Test Method

Testing was performed in accordance with ANSI C63.10-2013 clause 6.3, 6.5 and 6.6.

Plots for average measurements were taken in accordance with ANSI C63.10-2013 clause 4.1.4.2.3 to characterize the EUT. Where emissions were detected, final average measurements were taken in accordance with ANSI C63.10-2013 clause 4.1.4.2.2.

The plots shown are the characterization of the EUT. The limits on the plots represent the most stringent case for restricted bands, (54/74 dBuV/m) when compared to 20 dBc outside restricted bands. The limits shown have been used as a threshold to determine where further measurements are necessary. Where results are within 10 dB of the limits shown on the plots, further investigation was carried out and reported in results tables.

The following conversion can be applied to convert from $dB\mu V/m$ to $\mu V/m$: 10⁽Field Strength in $dB\mu V/m/20$).

2.7.5 Environmental Conditions

Ambient Temperature	22.0 °C
Relative Humidity	13.0 %

2.7.6 Test Results

Stand alone Transmitting Continuously

Testing was performed on the EUT which resulted in the highest conducted output power. The EUT used during testing was. For configurations supporting multiple bandwidths, emission measurements were only made in the bandwidth with the highest conducted output power. All emission tests were performed in three orthogonal axes. The frequency range 9 kHz – 1 GHz was tested for the middle frequency, only.

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
160.905	vertical	Quasi-Peak	-5.5	10.4		4.9	57.8	53.0
168.400	vertical	Quasi-Peak	-6.6	10.6		4.0	43.5	39.5
168.860	vertical	Quasi-Peak	-5.6	10.6		5.0	43.5	38.5
2402.000	horizontal	Peak	63.6	34.2		97.8		
4804.000	horizontal	Average	7.6	42.1		49.7	54.0	4.3

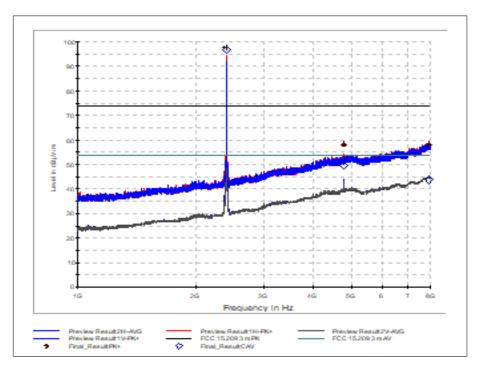


Figure 19 - 2402 MHz - 1 GHz to 8 GHz - Horizontal and Vertical

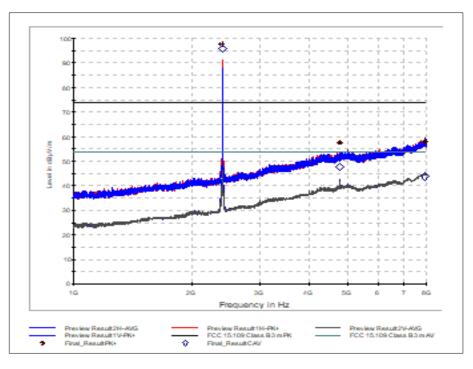


Figure 20 - 2402 MHz - 1 GHz to 8 GHz - Horizontal and Vertical

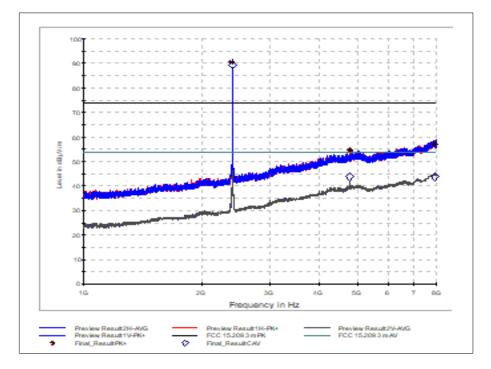


Figure 21 - 2402 MHz - 1 GHz to 8 GHz - Horizontal and Vertical

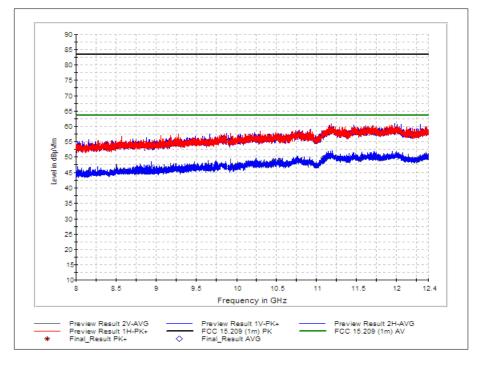


Figure 22 - 2402 MHz - 8 GHz to 12.4 GHz - Horizontal and Vertical

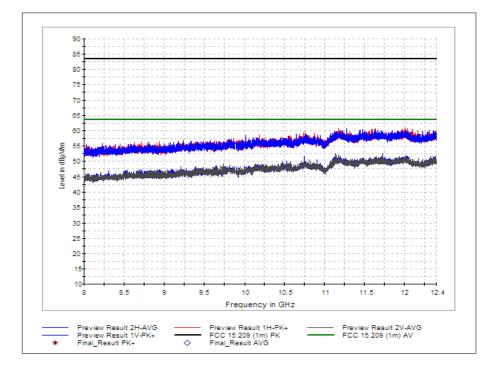


Figure 23 - 2402 MHz - 8 GHz to 12.4 GHz - Horizontal and Vertical

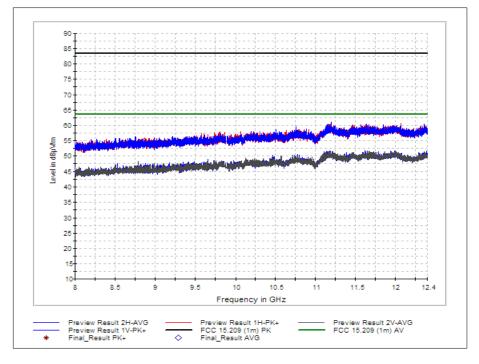


Figure 24 - 2402 MHz - 8 GHz to 12.4 GHz - Horizontal and Vertical

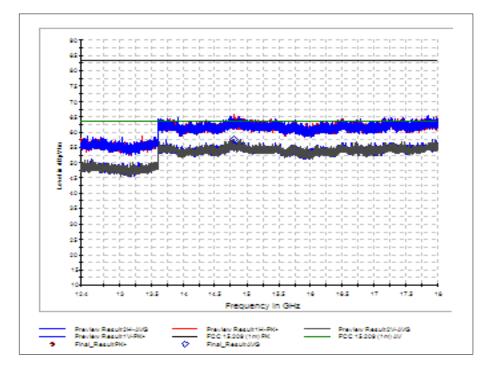


Figure 25 - 2402 MHz - 12.4 GHz - 18 GHz - Horizontal and Vertical

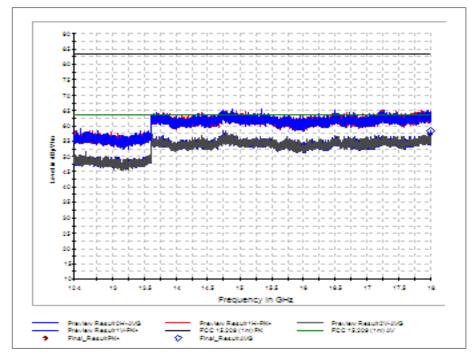


Figure 26 - 2402 MHz - 12.4 GHz - 18 GHz - Horizontal and Vertical

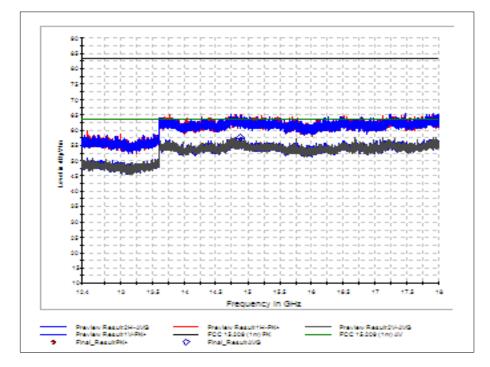
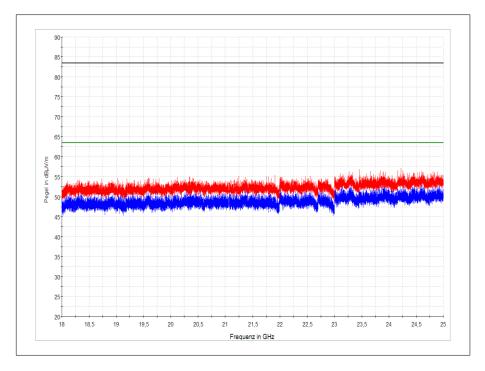



Figure 27 - 2402 MHz - 12.4 GHz - 18 GHz - Horizontal and Vertical

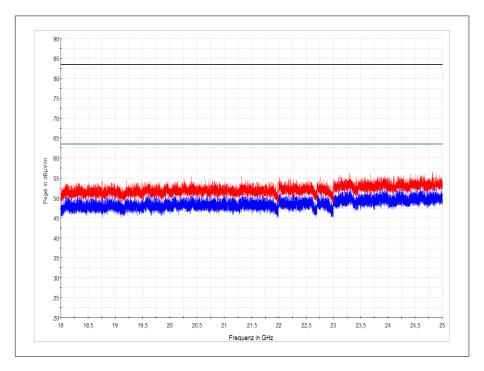


Figure 29 - 2402 MHz - 18 GHz - 25 GHz - Vertical

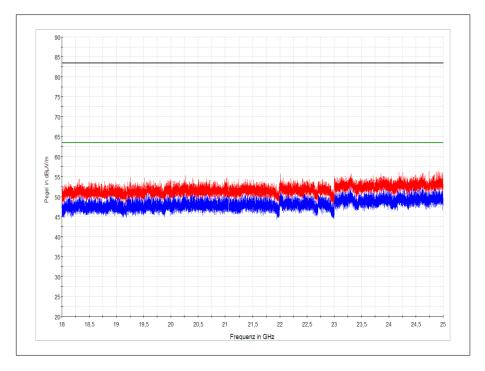


Figure 30 - 2402 MHz - 18 GHz - 25 GHz - Horizontal

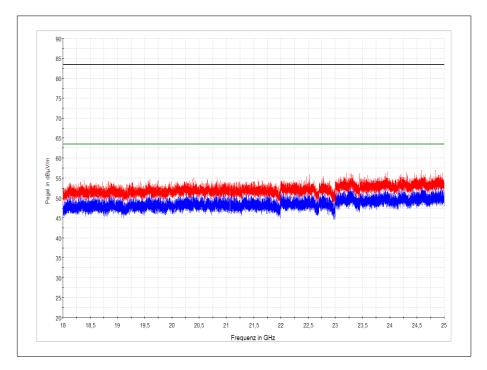
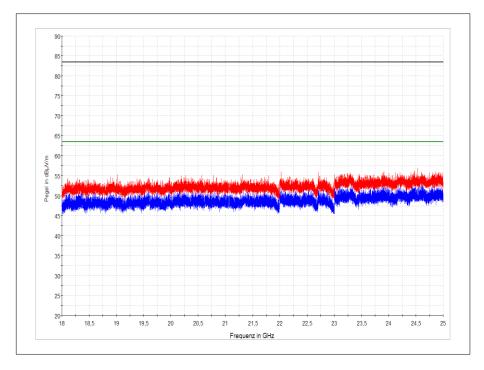



Figure 31 - 2402 MHz - 18 GHz - 25 GHz - Vertical

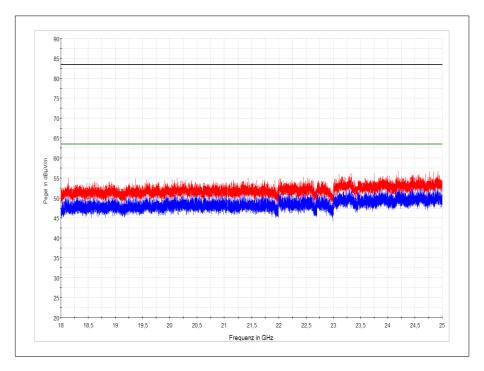


Figure 33 - 2402 MHz - 18 GHz - 25 GHz - Vertical

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
160.905	vertical	Quasi-Peak	-5.5	10.4		4.9	55.6	50.7
168.400	vertical	Quasi-Peak	-6.6	10.6		4.0	43.5	39.5
168.860	vertical	Quasi-Peak	-5.6	10.6		5.0	43.5	38.5
2442.000	horizontal	Peak	61.2	34.4		95.6		
4884.000	horizontal	Average	2.6	42.5		45.1	54.0	9.0

- 2442 MHz – 9 kHz to 25 GHz Emissions Results

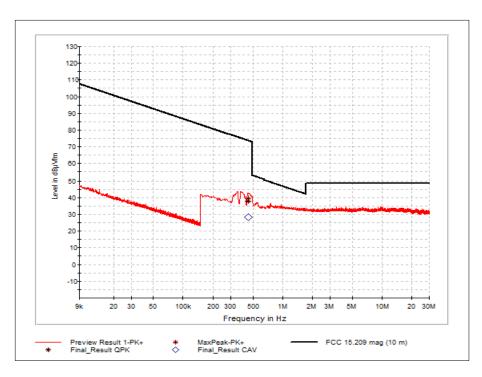


Figure 34 - 2442 MHz - 9 kHz - 30 MHz - Horizontal and Vertical

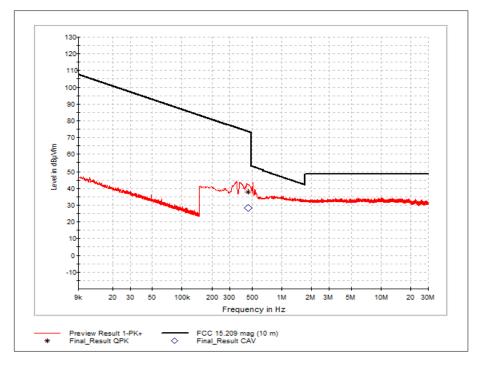


Figure 35 - 2442 MHz - 9 kHz - 30 MHz - Horizontal and Vertical

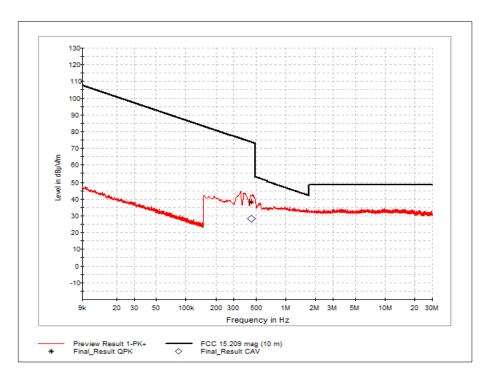


Figure 36 - 2442 MHz - 9 kHz - 30 MHz - Horizontal and Vertical

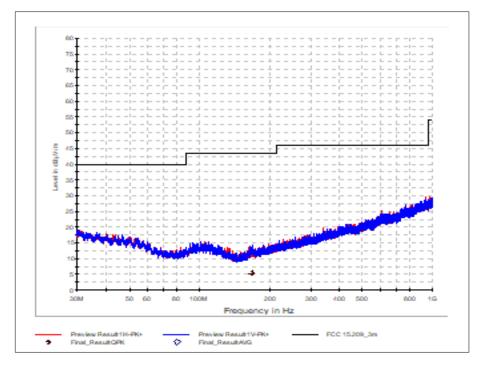


Figure 37 - 2442 MHz - 30 MHz to 1 GHz - Horizontal and Vertical

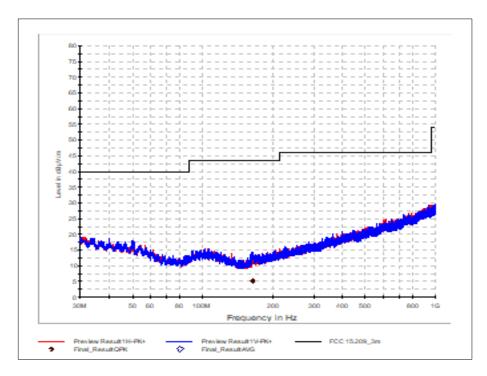


Figure 38 - 2442 MHz - 30 MHz to 1 GHz - Horizontal and Vertical

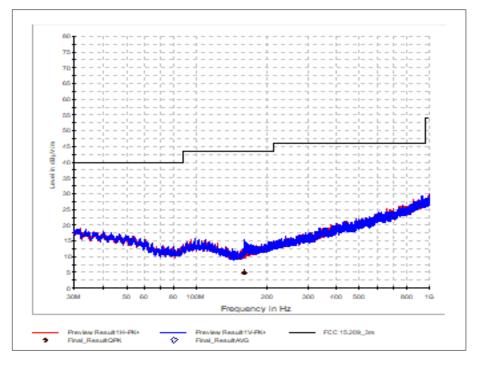


Figure 39 - 2442 MHz - 30 MHz to 1 GHz - Horizontal and Vertical

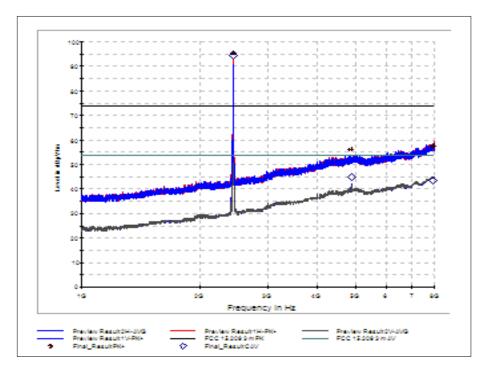


Figure 40 - 2442 MHz - 1 GHz to 8 GHz - Horizontal and Vertical

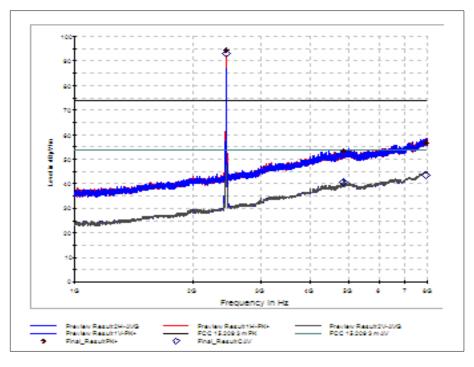


Figure 41 - 2442 MHz - 1 GHz to 8 GHz - Horizontal and Vertical

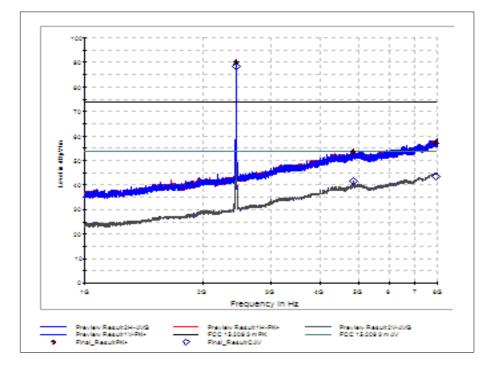


Figure 42 - 2442 MHz - 1 GHz to 8 GHz - Horizontal and Vertical

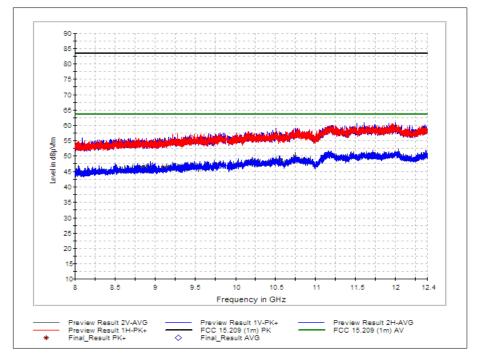


Figure 43 - 2442 MHz - 8 GHz to 12.4 GHz - Horizontal and Vertical

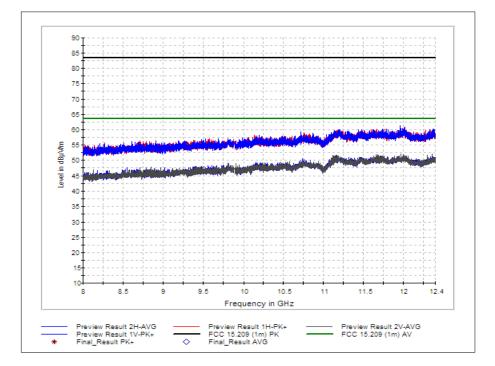


Figure 44 - 2442 MHz - 8 GHz to 12.4 GHz - Horizontal and Vertical

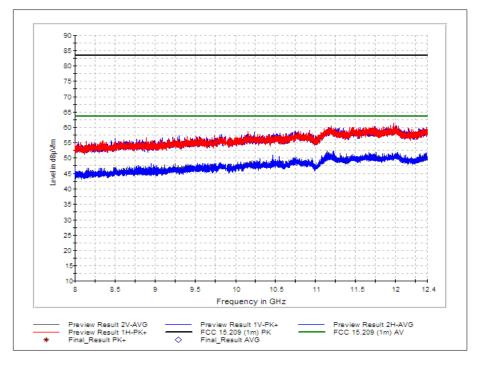


Figure 45 - 2442 MHz - 8 GHz to 12.4 GHz - Horizontal and Vertical

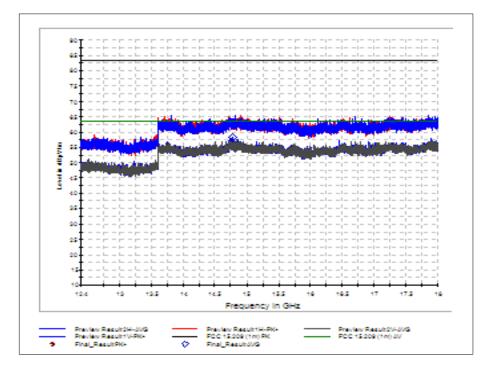


Figure 46 - 2442 MHz - 12.4 GHz - 18 GHz - Horizontal and Vertical

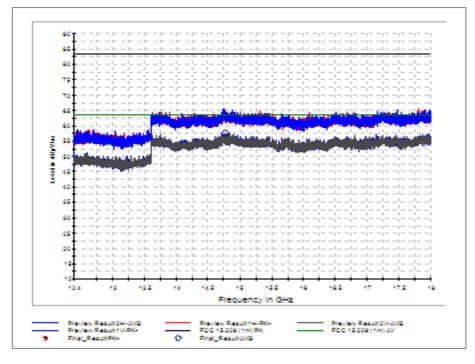


Figure 47 - 2442 MHz - 12.4 GHz - 18 GHz - Horizontal and Vertical

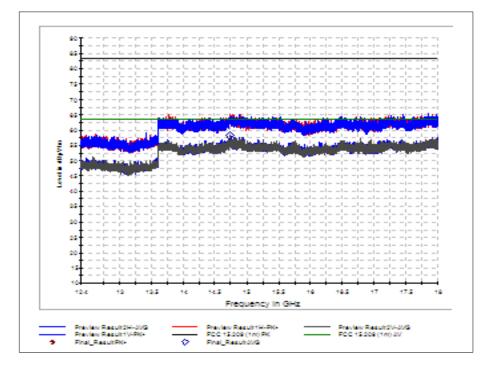


Figure 48 - 2442 MHz - 12.4 GHz - 18 GHz - Horizontal and Vertical

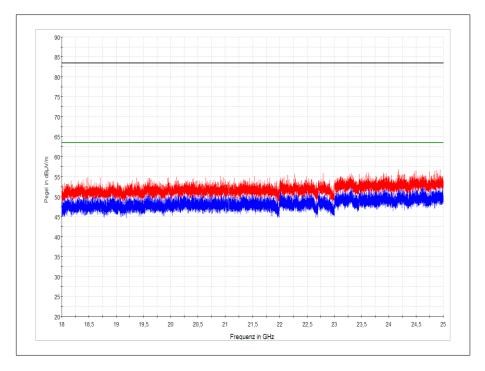


Figure 49 - 2442 MHz - 18 GHz - 25 GHz - Horizontal

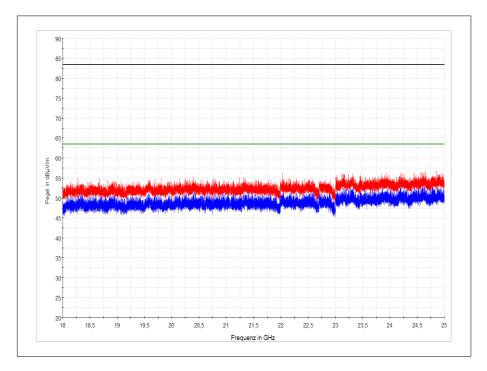


Figure 50 - 2442 MHz - 18 GHz - 25 GHz - Vertical

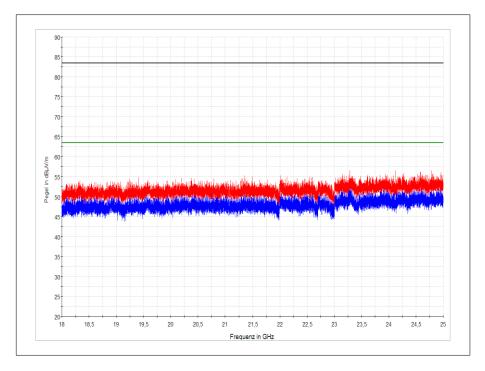


Figure 51 - 2442 MHz - 18 GHz - 25 GHz - Horizontal

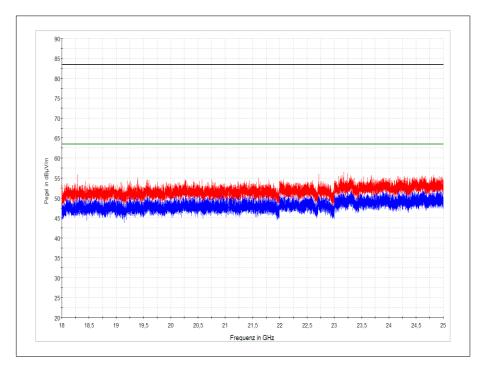


Figure 52 - 2442 MHz - 18 GHz - 25 GHz - Vertical

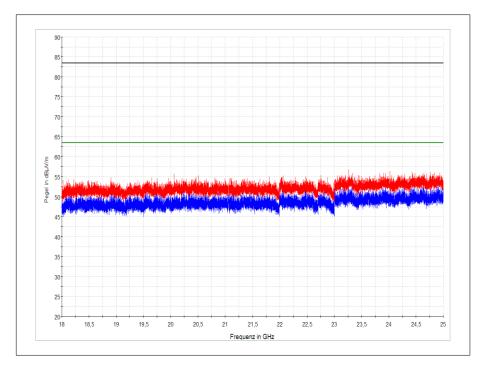


Figure 53 - 2442 MHz - 18 GHz - 25 GHz - Horizontal

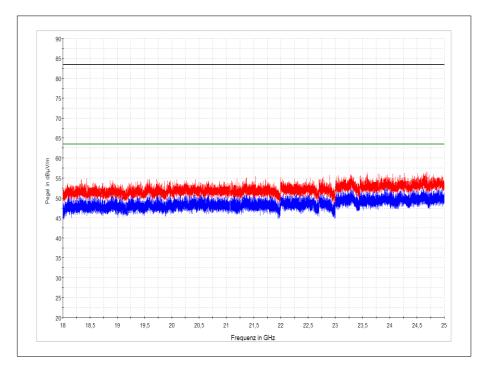


Figure 54 - 2442 MHz - 18 GHz - 25 GHz - Vertical

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
160.905	vertical	Quasi-Peak	-5.5	10.4		4.9	53.1	48.2
168.400	vertical	Quasi-Peak	-6.6	10.6		4.0	43.5	39.5
168.860	vertical	Quasi-Peak	-5.6	10.6		5.0	43.5	38.5
2480.000	horizontal	Peak	58.4	34.7		93.1		
4958.000	vertical	Average	0.1	42.7		42.8	54.0	11.2

- 2480 MHz – 9 kHz to 25 GHz Emissions Results

No other emissions were detected within 10 dB of the limit.

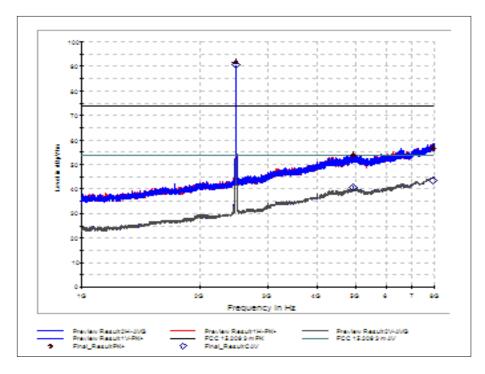


Figure 55 - 2480 MHz - 1 GHz to 8 GHz - Horizontal and Vertical

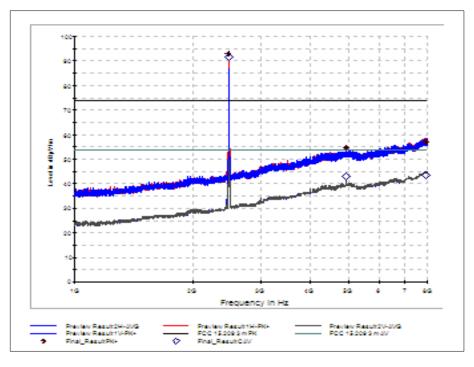


Figure 56 - 2480 MHz - 1 GHz to 8 GHz - Horizontal and Vertical

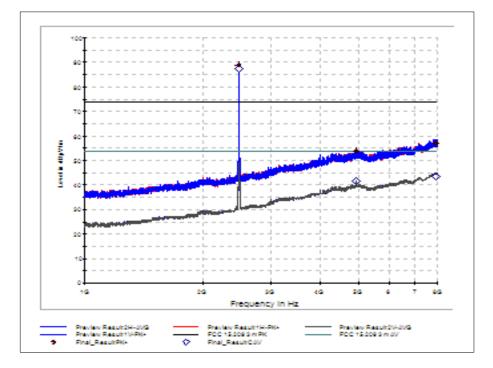


Figure 57 - 2480 MHz - 1 GHz to 8 GHz - Horizontal and Vertical

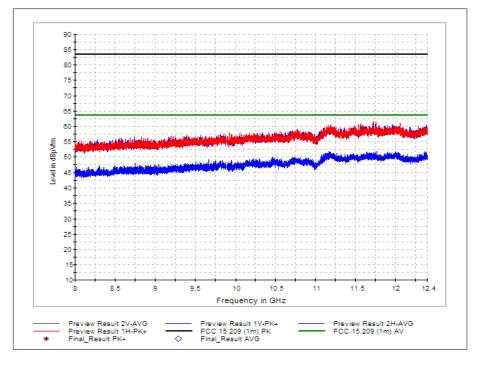


Figure 58 - 2480 MHz - 8 GHz to 12.4 GHz - Horizontal and Vertical

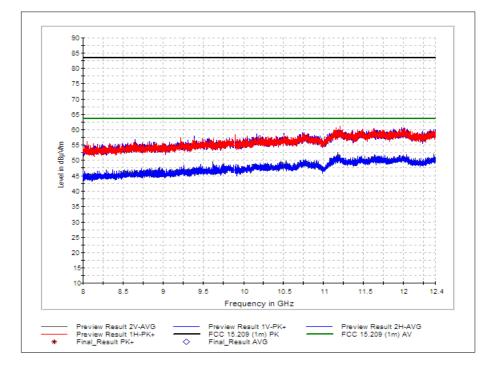


Figure 59 - 2480 MHz - 8 GHz to 12.4 GHz - Horizontal and Vertical

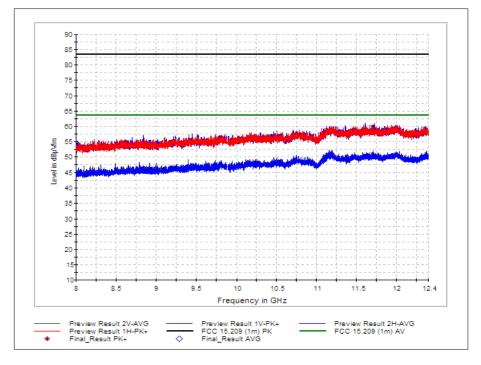


Figure 60 - 2480 MHz - 8 GHz to 12.4 GHz - Horizontal and Vertical

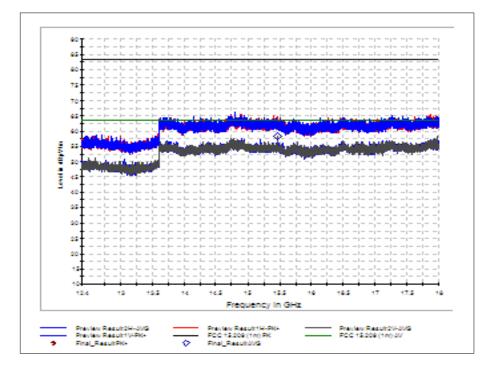


Figure 61 - 2480 MHz - 12.4 GHz - 18 GHz - Horizontal and Vertical

Figure 62 - 2480 MHz - 12.4 GHz - 18 GHz - Horizontal and Vertical

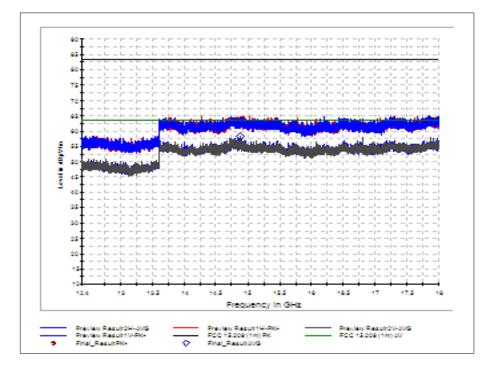


Figure 63 - 2480 MHz - 12.4 GHz - 18 GHz - Horizontal and Vertical

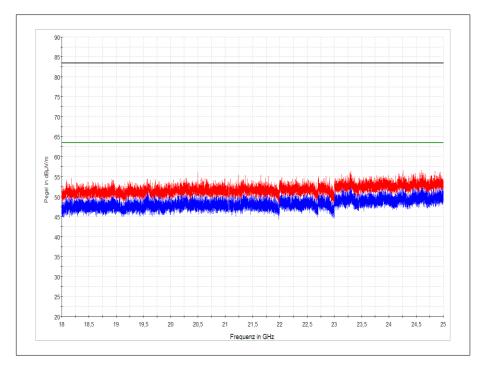


Figure 64 - 2480 MHz - 18 GHz - 25 GHz - Horizontal

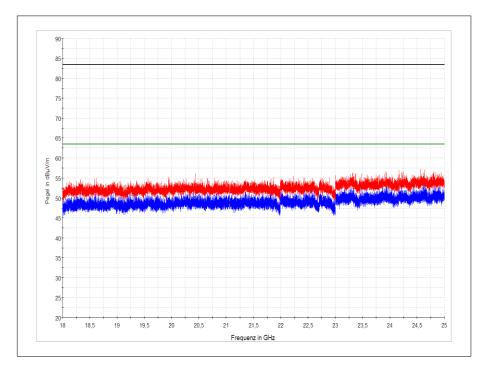
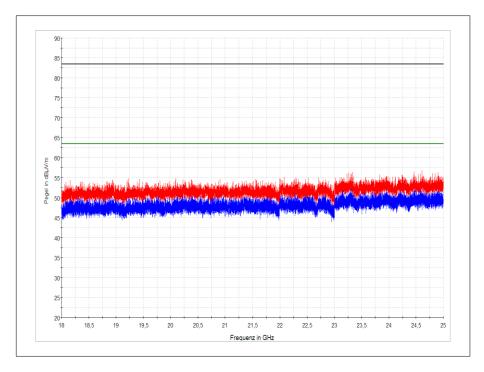




Figure 65 - 2480 MHz - 18 GHz - 25 GHz - Vertical

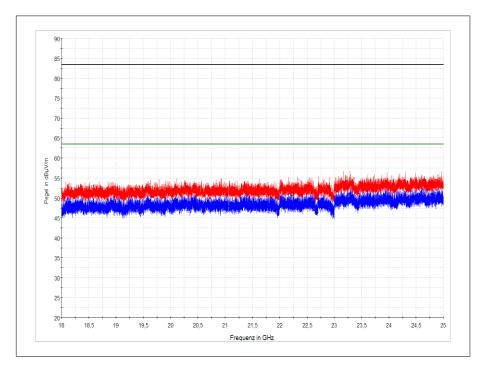


Figure 67 - 2480 MHz - 18 GHz - 25 GHz - Vertical

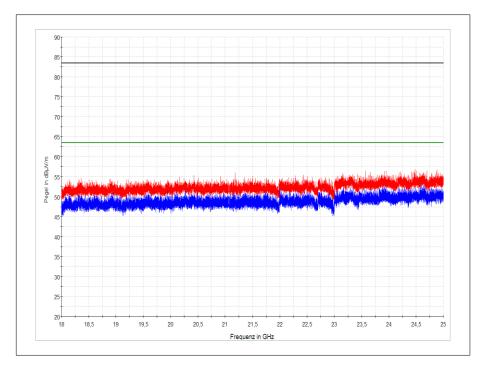


Figure 68 - 2480 MHz - 18 GHz - 25 GHz - Horizontal

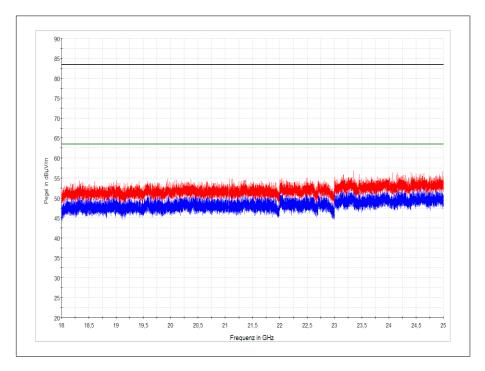


Figure 69 - 2480 MHz - 18 GHz - 25 GHz - Vertical

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

ISED Canada RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

2.7.7 Test Location and Test Equipment Used

This test was carried out in Semi anechoic room - cabin no. 8.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due	
FSV40	Rohde & Schwarz	101448	20219	12	2019-01	
ESW26	Rohde & Schwarz	101315	28268	12	2018-06	
HFH2-Z2	Rohde & Schwarz	882964/0001	18876	24	2018-07	
VULB9163	Schwarzbeck	9163-408	19918	36	2019-07	
HF907	Rohde & Schwarz	100154	19933	24	2019-06	
9160-07	EMCO	9112-1008	18874			
9160-08	EMCO	9112-1002	18875	No calibratio Mechanical	on needed. check before use	
9160-09	EMCO	9403-1025	19125			

Table 18

TU - Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment N/A - Not Applicable

2.8 Exposure of Humans to RF Fields

Rules and specifications:	IC RSS-Gen Issue 4,	, section 3.2				
Guide:	IC RSS-102 Issue 5,	, section 2.5				
				_		
Expos	ure of Humans to	RF Fields	Applicable	Declared by applicant	Measured	Exemption
The antenna is						
detachable						
The conducted output por	ver (CP in watts) is me	easured at the antenna connector:				
	<i>CP</i> =	W				
The effective isotropic rac	iated power (EIRP in	watts) is calculated using				
the numerical	0	<i>G</i> =				
	$EIRP = G \cdot CP \Longrightarrow EIRF$					
	th ¹ in V/m: F					
EIRP	$=\frac{(FS \cdot D)^2}{30} \Rightarrow EIRF$	P = W				
with:						
Distance betw antennas in m		<i>D</i> = m				
I not detachable						
A field strength measurer power (EIRP in watts) giv		nine the effective isotropic radiated				
EIRP	$=\frac{\left(FS\cdot D\right)^2}{30} \Longrightarrow EIRF$	P = 1.8 mW				
with:						
Field strength in V/m:	F_{i}	$7S = 97.8 \text{ dB}\mu\text{V/m} = 77.6 \text{ mV/m}$			\square	
Distance between the two	antennas in m: 1	$D = 3 \mathbf{m}$			\boxtimes	
Selection of output power						
The output power TP is the power (e.i.r.p.):	e higher of the condu	ucted or effective isotropic radiated				
Ferrer (errerbe).	TP = 1.8 mV	W				

COMMERCIAL-IN-CONFIDENCE

¹ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

Exposure of Humans to RF Fields (continued)				Measured	Exemption
Separation distance between the user and the tr	ansmitting device is				
⊠ less than or equal to 20 cm	greater than 20 cm		\boxtimes		
Transmitting device is					
in the vicinity of the human head	🔀 body-worn		\square		

SAR evaluation	on											
SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in the table. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in the table are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in the table are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in the table, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.												
For medical	implar	nts devi			•							
at 1 mW. Th higher of the from the SA	e cond	ucted o										
Frequency (MHz)		Ex	emptior	n limits (mW) ² a	t separa	tion dist	ance of				
	≤5 mm	10 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm	45 mm	≥50 mm		
≤300 ³	71	101	132	162	193	223	254	284	315	345		
450	52	70	88	106	123	141	159	177	195	213		
835	17	30	42	55	67	80	92	105	117	130		
1900	7	10	18	34	60	99	153	225	316	431		
2450	4	7	15	30	52	83	123	173	235	309		
3500	2	6	16	32	55	86	124	170	225	290		
5800	1	6	15	27	41	56	71	85	97	106		
Carrier frequency: $f = 2402 \text{ MHz}$												
Distance:			d	= 5								
Transmitte	er outpu	ut power	: <i>TP</i>	= 1	.8 mW							
Limit:			TP _{lim}	it = 4	.0 mW							\square
SAR evaluation is documented in test report no												

² The excemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separaton distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from alinear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from athird order polynomial fit.

³ Transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in IC RSS-102, issue 5, section 4.

Exposure of Humans to RF Fields (continued)	Applicable	Declared by applicant	Measured	Exemption
RF exposure evaluation	-			
RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:				
 below 20 MHz⁴ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance). between 3 kHz and 10 MHz exposure limits apply as following: 				
☐ In a uncontrolled environment the basic restriction for the instantaneous internal electric field strength is equal to or less than 2.7 · 10-4 <i>f</i> V/m _{rms} at any part of the body where <i>f</i> is in Hz. The instantaneous RF field strength is equal or less than 83 V/m _{rms} and equal or less than 90 A/m _{rms} .				
☐ In a controlled environment the basic restriction for the instantaneous internal electric field strength is equal to or less than 1.35 · 10-4 <i>f</i> V/m _{rms} at any part of the body where <i>f</i> is in Hz. The instantaneous RF field strength is equal or less than 170 V/m _{rms} and equal or less than 180 A/m _{rms} .				
at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4,49/t^{0.5}$ W (adjusted for tune-up tolerance, where <i>f</i> is in MHz.				
at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance).				
at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \cdot 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where <i>f</i> is in MHz.				
at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).				
In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.				
Carrier frequency: f = MHz				
Transmitter output power: TP = mW				
Limit: TP _{limit} = mW				
RF exposure evaluation is documented in test report no				

⁴ Transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine RF Exposure evaluation, shall demostrate compilance tot he instanteneous limits in IC RSS-102, issue 5, section 4.

3 Photographs

3.1 Equipment Under Test (EUT)

Figure 70 - Top view of EUT

Figure 71 - Rear view of EUT

Figure 72 – Test Setup for frequencies 9 kHz – 30 MHz

Figure 73 – Test Setup for frequencies 9 kHz – 30 MHz

Figure 74 – Test Setup for frequencies 9 kHz – 30 MHz

Figure 75 – Test Setup for frequencies 9 kHz – 30 MHz

Figure 76 – Test Setup for frequencies 9 kHz – 30 MHz

Figure 77 – Test Setup for frequencies 9 kHz – 30 MHz

Figure 78 – Test Setup for frequencies 30 MHz – 1 GHz

Figure 79 – Test Setup for frequencies 30 MHz – 1 GHz

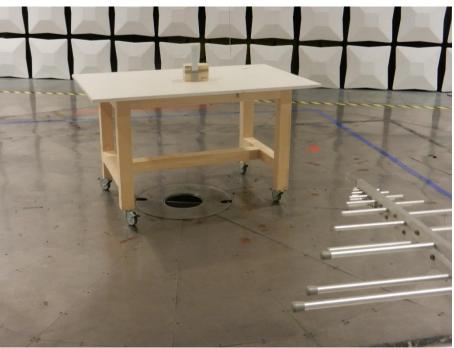


Figure 80 – Test Setup for frequencies 30 MHz – 1 GHz

Figure 81 – Test Setup for frequencies >1 GHz

Figure 82 – Test Setup for frequencies >1 GHz

Figure 83 – Test Setup for frequencies >1 GHz

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Radio Testing			
Test Name	kp	Expanded Uncertainty	Note
Occupied Bandwidth	2.0	±1.14 %	2
RF-Frequency error	1.96	±1 · 10-7	7
RF-Power, conducted carrier	2	±0.079 dB	2
RF-Power uncertainty for given BER	1.96	+0.94 dB / -1.05	7
RF power, conducted, spurious emissions	1.96	+1.4 dB / -1.6 dB	7
RF power, radiated			
25 MHz – 4 GHz	1.96	+3.6 dB / -5.2 dB	8
1 GHz – 18 GHz	1.96	+3.8 dB / -5.6 dB	8
18 GHz – 26.5 GHz	1.96	+3.4 dB / -4.5 dB	8
40 GHz – 170 GHz	1.96	+4.2 dB / -7.1 dB	8
Spectral Power Density, conducted	2.0	±0.53 dB	2
Maximum frequency deviation			
300 Hz – 6 kHz	2	±2,89 %	2
6 kHz – 25 kHz	2	±0.2 dB	2
Maximum frequency deviation for FM	2	±2,89 %	2
Adjacent channel power 25 MHz – 1 GHz	2	±2.31 %	2
Temperature	2	±0.39 K	4
(Relative) Humidity	2	±2.28 %	2
DC- and low frequency AC voltage			
DC voltage	2	±0.01 %	2
AC voltage up to 1 kHz	2	±1.2 %	2
Time	2	±0.6 %	2

Table 19

Radio Interference Emission Testing			
Test Name	kp	Expanded Uncertainty	Note
Conducted Voltage Emission			
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB	1
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB	1
100 kHz to 200 MHz (50Ω/5μH AMN)	2	± 3.6 dB	1
Discontinuous Conducted Emission			
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB	1
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB	1
Conducted Current Emission			
9 kHz to 200 MHz	2	± 3.5 dB	1
Magnetic Fieldstrength			
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB	1
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB	1
Radiated Emission			
Test distance 1 m (ALSE)			
9 kHz to 150 kHz	2	± 4.6 dB	1
150 kHz to 30 MHz	2	± 4.1 dB	1
30 MHz to 200 MHz	2	± 5.2 dB	1
200 MHz to 2 GHz	2	± 4.4 dB	1
2 GHz to 3 GHz	2	± 4.6 dB	1
Test distance 3 m			
30 MHz to 300 MHz	2	± 4.9 dB	1
300 MHz to 1 GHz	2	± 5.0 dB	1
1 GHz to 6 GHz	2	± 4.6 dB	1
Test distance 10 m			
30 MHz to 300 MHz	2	± 4.9 dB	1
300 MHz to 1 GHz	2	± 4.9 dB	1
Radio Interference Power			
30 MHz to 300 MHz	2	± 3.5 dB	1
Harmonic Current Emissions			4
Voltage Changes, Voltage Fluctuations and Flicker			4

Table 20

Immunity Testing			
Test Name	kp	Expanded Uncertainty	Note
Electrostatic Discharges			4
Radiated RF-Field			
Pre-calibrated field level	2	+32.2 / -24.3 %	5
Dynamic feedback field level	2.05	+21.2 / -17.5 %	3
Electrical Fast Transients (EFT) / Bursts			4
Surges			4
Conducted Disturbances, induced by RF-Fields			
via CDN	2	+15.1 / -13.1 %	6
via EM clamp	2	+42.6 / -29.9 %	6
via current clamp	2	+43.9 / -30.5 %	6
Power Frequency Magnetic Field	2	+20.7 / -17.1 %	2
Pulse Magnetic Field			4
Voltage Dips, Short Interruptions and Voltage Variations			4
Oscillatory Waves			4
Conducted Low Frequency Disturbances			
Voltage setting	2	± 0.9 %	2
Frequency setting	2	± 0.1 %	2
Electrical Transient Transmission in Road Vehicles			4

Table 21

Note 1: The expanded uncertainty reported according to CISPR 16-4-2:2003-11 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%

Note 2:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45% Note 3:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of kp = 2.05, providing a level of confidence of p = 95.45% Note 4:

It has been demonstrated that the used test equipment meets the specified requirements in the standard with at least a 95% confidence.

Note 5:

The expanded uncertainty reported according to IEC 61000-4-3 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%

Note 6:

The expanded uncertainty reported according to IEC 61000-4-6 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%Note 7:

The expanded uncertainty reported according ETSI TR 100 028 V1.4.1 (all parts) to is based on a standard uncertainty multiplied by a coverage factor of kp = 1.96, providing a level of confidence of p = 95.45% Note 8:

The expanded uncertainty reported according to ETSI TR 102 273 V1.2.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of kp = 1.96, providing a level of confidence of p = 95.45%

