Radio Test Report

Report No.:STS2312315W03

Issued for

FrSky Electronic Co., Ltd.

F-4, Building C, Zhongxiu Technology Park, No.3 Yuanxi Road, Wuxi, 214125, Jiangsu, China

Product Name:	Twin digital radio system
Brand Name:	FRSKY
Model Name:	TWIN X14
Series Model(s):	TWIN X14S,TWIN X14SE,TWIN X18, TWINX18S,TWINX18SE,TWSR6,TWR10, TWSR10,TWR12,TWSR12
FCC ID:	XYFTWINX14SP
Test Standards:	FCC Part15.247

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

TEST REPORT

Applicant's Name	FrSky Electronic Co., Ltd.
Address	F-4, Building C, Zhongxiu Technology Park, No.3 Yuanxi Road, Wuxi, 214125, Jiangsu, China
Manufacturer's Name	FrSky Electronic Co., Ltd.
Address	F-4, Building C, Zhongxiu Technology Park, No.3 Yuanxi Road, Wuxi, 214125, Jiangsu, China
Product Description	
Product Name	Twin digital radio system
Brand Name:	FRSKY
Model Name:	
Series Model(s):	TWIN X14S,TWIN X14SE,TWIN X18, TWINX18S,TWIN X18SE,TWSR6,TWR10,TWSR10,TWR12,TWSR12
Test Standards	FCC Part15.247
Test Procedure	ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Date of Test.....

Date of receipt of test item: 13 Dec. 2023

Date (s) of performance of tests : 28 Dec. 2023 ~ 09 Jan. 2024

Date of Issue:: 09 Jan. 2024

Test Result: Pass

Testing Engineer

Jann Bu

(Aaron Bu)

Technical Manager

cher

(Chris Chen)

howy

Authorized Signatory :

(Bovey Yang)

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 TEST SOFTWARE AND POWER LEVEL	9
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	D 10
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	10
2.6 EQUIPMENTS LIST	11
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.2 RADIATED EMISSION MEASUREMENT	16
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	28
4.1 LIMIT	28
4.2 TEST PROCEDURE	28
4.3 TEST SETUP	29
4.4 EUT OPERATION CONDITIONS	29
4.5 TEST RESULTS	29
5. NUMBER OF HOPPING CHANNEL	30
5.1 LIMIT	30
5.2 TEST PROCEDURE	30
5.3 TEST SETUP	30
5.4 EUT OPERATION CONDITIONS	30
5.5 TEST RESULTS	30
6. AVERAGE TIME OF OCCUPANCY	31
6.1 LIMIT	31
6.2 TEST PROCEDURE	31
6.3 TEST SETUP	31
6.4 EUT OPERATION CONDITIONS	31
6.5 TEST RESULTS	31
7. HOPPING CHANNEL SEPARATION MEASUREMEN	32
7.1 LIMIT	32

Table of Contents	Page
	20
7.2 TEST PROCEDURE 7.3 TEST SETUP	32 32
7.4 EUT OPERATION CONDITIONS	32
7.5 TEST RESULTS	32
8. BANDWIDTH TEST	33
8.1 LIMIT	33
8.2 TEST PROCEDURE	33
8.3 TEST SETUP	33
8.4 EUT OPERATION CONDITIONS	33
8.5 TEST RESULTS	33
9. OUTPUT POWER TEST	34
9.1 LIMIT	34
9.2 TEST PROCEDURE	34
9.3 TEST SETUP	35
9.4 EUT OPERATION CONDITIONS	35
9.5 TEST RESULTS	35
10. ANTENNA REQUIREMENT	35
10.1 STANDARD REQUIREMENT	35
10.2 EUT ANTENNA	35
APPENDIX 1-TEST DATA	36
1. MAXIMUM PEAK CONDUCTED OUTPUT POWER	36
220DB BANDWIDTH	39
3. CARRIER FREQUENCIES SEPARATION	42
4. BAND EDGE	45
5. BAND EDGE(HOPPING)	48
6. CONDUCTED RF SPURIOUS EMISSION	51
7. NUMBER OF HOPPING CHANNEL	55
8. DWELL TIME	57
APPENDIX 2-PHOTOS OF TEST SETUP	59

Page 5 of 59

Report No.: STS2312315W03

Revision History

	Rev.	Issue Date	Report No.	Effect Page	Contents
ø	00	09 Jan. 2024	STS2312315W03	ALL	Initial Issue
				9	9

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247(a)(1)	Hopping Channel Separation	PASS			
15.247(a)(1)&(b)(1)	Output Power	PASS			
15.209	Radiated Spurious Emission	PASS			
15.247(d)	Conducted Spurious & Band Edge Emission	PASS	6		
15.247(a)(1)(iii)	Number of Hopping Frequency	PASS	-		
15.247(a)(1)(iii)	Dwell Time	PASS			
15.247(a)(1)	Bandwidth	PASS			
15.205	Restricted bands of operation	PASS			
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS			
15.203	Antenna Requirement	PASS	-		

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

Page 7 of 59

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.755dB
2	Unwanted Emissions, conducted	±2.874dB
3	All emissions, radiated 9K-30MHz	±3.80dB
4	All emissions, radiated 30M-1GHz	±4.18dB
5	All emissions, radiated 1G-6GHz	±4.90dB
6	All emissions, radiated>6G	±5.24dB
7	Conducted Emission (9KHz-150KHz)	±2.19dB
8	Conducted Emission (150KHz-30MHz)	±2.53dB
9	Occupied Channel Bandwidth	±3.5%
10	Power Spectral Density, conducted	±1.245dB
11	Duty Cycle	±3.2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Twin digital radio system		
Brand Name	FRSKY		
Model Name	TWIN X14		
Series Model(s) TWIN X14S,TWIN X14SE,TWIN X18, TWINX18S,TWIN X18S,TWIN X18SE,TWSR6,TWR10,TWSR10,TWR12,TW			
Model Difference	Only difference in model.		
Channel List	Please refer to the Note 3.		
Operation Frequency	2401.5-2482MHz		
Modulation Type	FSK		
Antenna Type	Monopole		
Antenna Gain	1.7 dBi		
Rating	Input: DC 7.4V		
Hardware version number	Rev0.2		
Software version number	1.4.14		
Connecting I/O Port(s)	Please refer to the Note 1.		

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

3	•

l.		1 and the second	Chann	el List	de.		
Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channe I	Frequenc y (MHz)	Channel	Frequency (MHz)
01	2401.5			87	2444.5		
02	2402			88	2445		
03	2402.5			89	2445.5		
04	2403	80	2441	90	2446	156	2479
05	2403.5	81	2441.5	91	2446.5	157	2479.5
06	2404	82	2442	92	2447	158	2480
07	2404.5	83	2442.5	93	2447.5	159	2480.5
		84	2443			160	2481
		85	2443.5			161	2481.5
		86	2444			162	2482

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate/Modulation
Mode 1	TX CH01	FSK
Mode 2	TX CH82	FSK
Mode 3	TX CH162	FSK

Note:

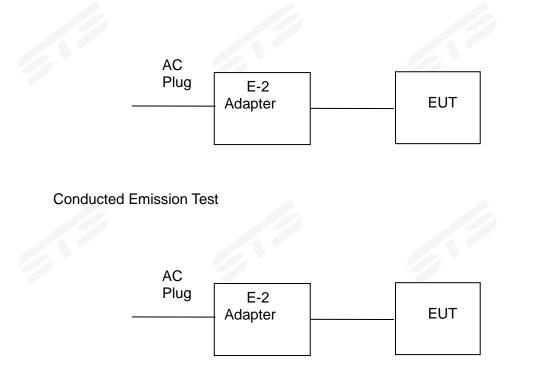
(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

(2) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.

(3) The battery is fully-charged during the radiated and RF conducted test.

For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 4: Keeping TX


2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

 and the second					
RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
SRD	2.4G	FSK	1.7	Default	The EUT has signal transmission when it is powered on

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Radiated Spurious Emission Test

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary	accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
	DC Supply	HONGSHENGFENC	QJ6005E	N/A	N/A
	USB Cable	N/A	N/A	150cm	NO
	Adapter	HUAWEI	HW-050450C00	N/A	N/A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in ^CLength¹ column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.6 EQUIPMENTS LIST

	RF Radia	tion Test Equipme	nt		
Kind of Equipment	Manufacturer	Туре No.	Serial No.	Last Calibration	Calibrated Until
Temperature & Humidity	SW-108	SuWei	N/A	2023.03.03	2024.03.02
Pre-Amplifier(0.1M-3GHz)	EM	EM330	060665	2023.02.28	2024.02.27
Pre-Amplifier(1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2023.09.26	2024.09.25
Pre-Amplifier(18G-40GHz)	SKET	LNPA_1840-50	SK2018101801	2023.03.06	2024.03.05
Active loop Antenna	ZHINAN	ZN30900C	16035	2023.02.28	2024.02.27
Bilog Antenna	TESEQ	CBL6111D	34678	2022.09.30	2024.09.29
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2023.09.24	
Horn Antenna	A-INFOMW	LB-180400-KF	J211020657	2023.10.10	2025.10.09
Positioning Controller	MF	MF-7802	MF-780208587	N/A	N/A
Signal Analyzer	R&S	FSV 40-N	101823	2023.09.26	2024.09.25
Switch Control Box	N/A	N/A	N/A	N/A	N/A
Filter Box	BALUN Technology	SU319E	BL-SZ1530051	N/A	N/A
Antenna Mast	MF	MFA-440H	N/A	N/A	N/A
Turn Table	MF	SC100_1	60531	N/A	N/A
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A
DC power supply	HONGSHENGFENG	DPS-305AF	17064939	2023.09.26	2024.09.25
Test SW	EZ-EMC		Ver.STSLAB-03	A1 RE	1
	Conduct	ion Test equipme	nt	- 10	
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2023.09.25	2024.09.24
LISN	R&S	ENV216	101242	2023.09.25	2024.09.24
LISN	EMCO	3810/2NM	23625	2023.09.25	2024.09.24
Temperature & Humidity	SW-108	SuWei	N/A	2023.03.03	2024.03.02
Test SW	EZ-EMC		Ver.STSLAB-03	A1 CE	
	RFC	Connected Test			1
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Signal Analyzer	Agilent	N9020A	MY51510623	2023.03.01	2024.02.28
Power Sensor	Keysight	U2021XA	MY55520005	2023.09.26	2024.09.25
Temperature & Humidity	SW-108	SuWei	N/A	2023.03.03	2024.03.02
Test SW	MW		MTS 8310_2.0	100	1

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

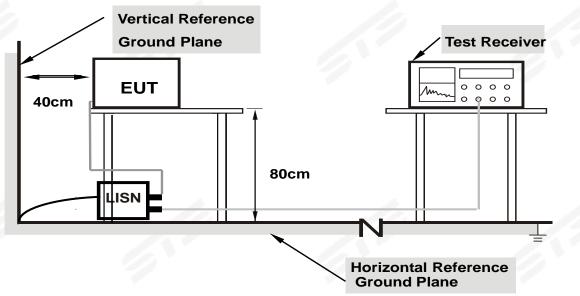
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

FREQUENCY (MHz)	Conducted Emissionlimit (dBuV)		
FREQUENCT (MHZ)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

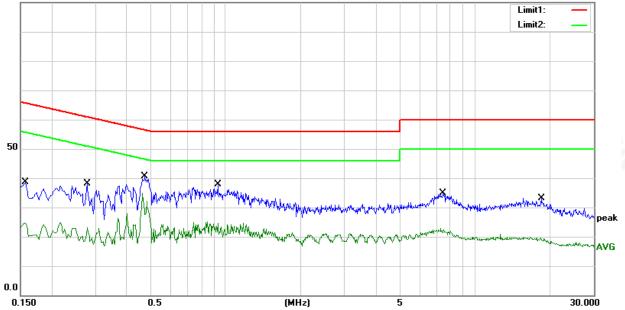
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT


Temperature:	26.2(C)	Relative Humidity:	54%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4	65	68

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1580	18.79	19.77	38.56	65.57	-27.01	QP
2	0.1580	4.94	19.77	24.71	55.57	-30.86	AVG
3	0.2780	18.09	20.11	38.20	60.88	-22.68	QP
4	0.2780	6.19	20.11	26.30	50.88	-24.58	AVG
5	0.4740	20.69	20.00	40.69	56.44	-15.75	QP
6	0.4740	14.81	20.00	34.81	46.44	-11.63	AVG
7	0.9300	18.09	19.77	37.86	56.00	-18.14	QP
8	0.9300	4.94	19.77	24.71	46.00	-21.29	AVG
9	7.4540	14.90	19.97	34.87	60.00	-25.13	QP
10	7.4540	2.87	19.97	22.84	50.00	-27.16	AVG
11	18.4780	12.74	20.43	33.17	60.00	-26.83	QP
12	18.4780	-0.60	20.43	19.83	50.00	-30.17	AVG

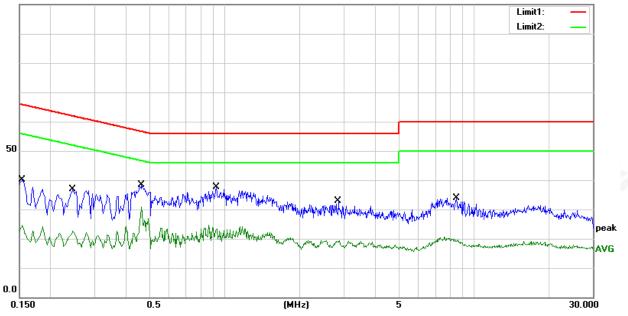
Remark:

- All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBuV

Page 15 of 59

Temperature:	26.2(C)	Relative Humidity:	54%RH
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 4	17	12


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1540	20.44	19.77	40.21	65.78	-25.57	QP
2	0.1540	4.81	19.77	24.58	55.78	-31.20	AVG
3	0.2460	16.97	19.97	36.94	61.89	-24.95	QP
4	0.2460	2.60	19.97	22.57	51.89	-29.32	AVG
5	0.4660	18.33	20.00	38.33	56.58	-18.25	QP
6	0.4660	10.85	20.00	30.85	46.58	-15.73	AVG
7	0.9260	17.97	19.77	37.74	56.00	-18.26	QP
8	0.9260	4.89	19.77	24.66	46.00	-21.34	AVG
9	2.8620	13.14	19.78	32.92	56.00	-23.08	QP
10	2.8620	-0.39	19.78	19.39	46.00	-26.61	AVG
11	8.5020	13.76	20.16	33.92	60.00	-26.08	QP
12	8.5020	0.44	20.16	20.60	50.00	-29.40	AVG

Remark:

All readings are Quasi-Peak and Average values
 Margin = Result (Result = Reading + Factor)–Limit

- 3. Factor=LISN factor+Cable loss+Limiter (10dB)

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Field Strength	Measurement Distance
(micorvolts/meter)	(meters)
2400/F(KHz)	300
24000/F(KHz)	30
30	30
100	3
150	3
200	3
500	3
	(micorvolts/meter) 2400/F(KHz) 24000/F(KHz) 30 100 150 200

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	
Materia			

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110 16.42-16.423		399.9-410	4.5-5.15
0.495-0.505 16.69475-16.69525		608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP/AV		
Start Frequency	9 KHz/150KHz(Peak/QP/AV)		
Stop Frequency	150KHz/30MHz(Peak/QP/AV)		
	200Hz (From 9kHz to 0.15MHz)/		
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);		
band)	200Hz (From 9kHz to 0.15MHz)/		
	9KHz (From 0.15MHz to 30MHz)		

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz(Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted		
band)	120 KHz / 300 KHz	

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)	
band)	1 MHz/1/T MHz(AVG)	

For Restricted band

	Spectrum Parameter	Setting		
Detector Peak/AV		Peak/AV		
	Start/Stop Frequency	Lower Band Edge: 2310 to 2410 MHz		
		Upper Band Edge: 2476 to 2500 MHz		
		1 MHz / 3 MHz(Peak)		
	RB / VB	1 MHz/1/T MHz(AVG)		

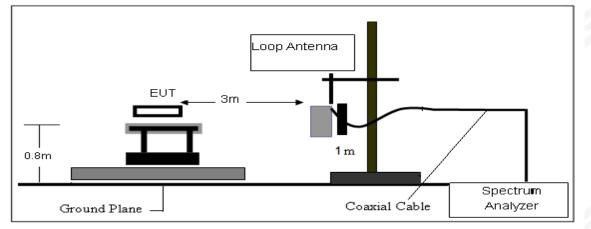
Report No.: STS2312315W03

Receiver Parameter	Setting	
Attenuation	Auto	
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV	
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP	
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV	
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP	
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP	

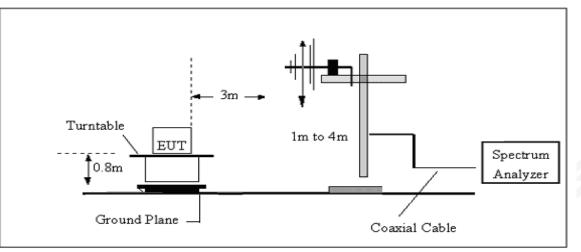
3.2.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

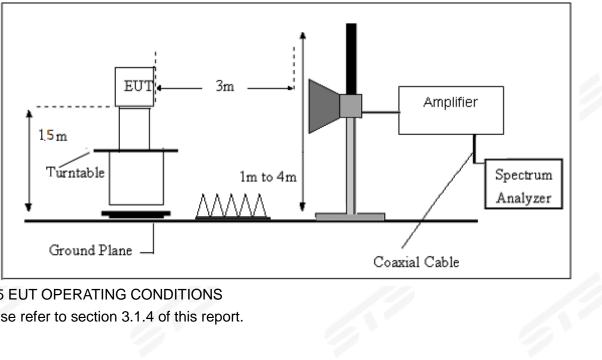
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

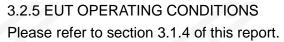

3.2.3 DEVIATION FROM TEST STANDARD

No deviation.



3.2.4 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

3.2.7 TEST RESULTS

(9KHz-30MHz)

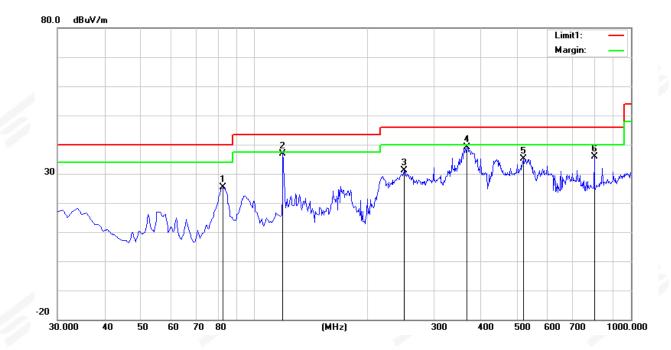
Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	AC 120V/60Hz	Test Mode:	TX Mode

Freq.	Reading	Limit	Margin	State	Toot Dooult	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result	
					PASS	
					PASS	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits (dBuv) + distance extrapolation factor.

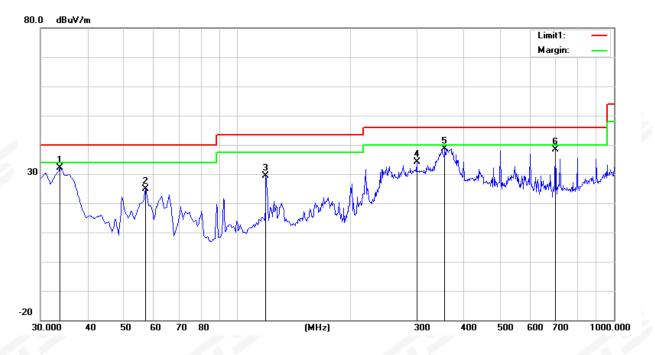

(30MHz-1000MHz)

Temperature:	23.1(C)	Relative Humidity:	60%RH		
Test Voltage:	AC 120V/60Hz	Phase:	Horizontal		
Test Mode:	Mode 1/2/3 (Mode 3 worst mode)				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	82.3800	47.94	-22.68	25.26	40.00	-14.74	peak
2	119.2400	55.31	-18.38	36.93	43.50	-6.57	peak
3	251.1600	47.09	-15.95	31.14	46.00	-14.86	peak
4	367.5600	51.70	-12.58	39.12	46.00	-6.88	peak
5	519.8500	43.01	-7.82	35.19	46.00	-10.81	peak
6	800.1800	37.82	-2.05	35.77	46.00	-10.23	peak

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.



Report No.: STS2312315W03

Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	AC 120V/60Hz	Phase:	Vertical
Test Mode:	Mode 1/2/3 (Mode 3 worst mo	11	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	33.8800	46.82	-14.80	32.02	40.00	-7.98	peak
2	57.1600	50.40	-25.45	24.95	40.00	-15.05	peak
3	119.2400	47.82	-18.38	29.44	43.50	-14.06	peak
4	299.6600	48.92	-14.82	34.10	46.00	-11.90	peak
5	355.9200	51.60	-12.95	38.65	46.00	-7.35	peak
6	700.2700	42.51	-4.16	38.35	46.00	-7.65	peak
emark:		10.3	n . En stan) linsit				

- Margin = Result (Result = Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

(1GHz~25GHz) Spurious emission Requirements

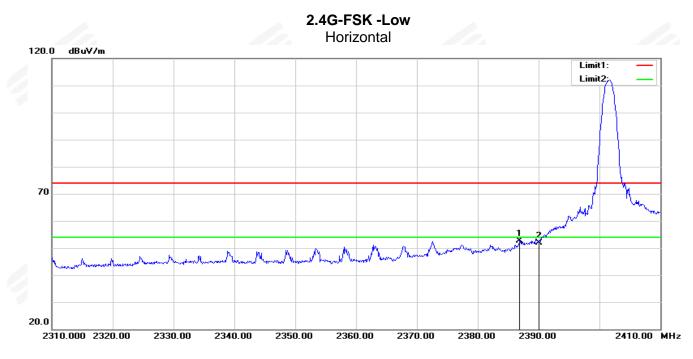
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
1.1	<u> </u>		1.10	Low Cl	nannel (FSK/24	01.5 MHz)	,		1.1	9°
3264.81	61.20	44.70	6.70	28.20	-9.80	51.40	74.00	-22.60	PK	Vertical
3264.81	50.56	44.70	6.70	28.20	-9.80	40.76	54.00	-13.24	AV	Vertical
3264.60	61.71	44.70	6.70	28.20	-9.80	51.91	74.00	-22.09	PK	Horizontal
3264.60	50.41	44.70	6.70	28.20	-9.80	40.61	54.00	-13.39	AV	Horizontal
4804.33	58.45	44.20	9.04	31.60	-3.56	54.89	74.00	-19.11	PK	Vertical
4804.33	50.04	44.20	9.04	31.60	-3.56	46.48	54.00	-7.52	AV	Vertical
4804.39	59.43	44.20	9.04	31.60	-3.56	55.87	74.00	-18.13	PK	Horizontal
4804.39	50.34	44.20	9.04	31.60	-3.56	46.78	54.00	-7.22	AV	Horizontal
5359.78	48.23	44.20	9.86	32.00	-2.34	45.89	74.00	-28.11	PK	Vertical
5359.78	39.60	44.20	9.86	32.00	-2.34	37.26	54.00	-16.74	AV	Vertical
5359.61	48.43	44.20	9.86	32.00	-2.34	46.09	74.00	-27.91	PK	Horizontal
5359.61	39.12	44.20	9.86	32.00	-2.34	36.78	54.00	-17.22	AV	Horizontal
7205.71	54.86	43.50	11.40	35.50	3.40	58.26	74.00	-15.74	PK	Vertical
7205.71	44.70	43.50	11.40	35.50	3.40	48.10	54.00	-5.90	AV	Vertical
7205.95	53.49	43.50	11.40	35.50	3.40	56.89	74.00	-17.11	PK	Horizontal
7205.95	44.62	43.50	11.40	35.50	3.40	48.02	54.00	-5.98	AV	Horizontal
	-			Middle	Channel (FSK/	2442 MHz)	•			•
3264.87	62.14	44.70	6.70	28.20	-9.80	52.34	74.00	-21.66	PK	Vertical
3264.87	50.41	44.70	6.70	28.20	-9.80	40.61	54.00	-13.39	AV	Vertical
3264.60	60.98	44.70	6.70	28.20	-9.80	51.18	74.00	-22.82	PK	Horizontal
3264.60	50.09	44.70	6.70	28.20	-9.80	40.29	54.00	-13.71	AV	Horizontal
4882.39	58.98	44.20	9.04	31.60	-3.56	55.42	74.00	-18.58	PK	Vertical
4882.39	49.50	44.20	9.04	31.60	-3.56	45.94	54.00	-8.06	AV	Vertical
4882.37	58.41	44.20	9.04	31.60	-3.56	54.85	74.00	-19.15	PK	Horizontal
4882.37	50.08	44.20	9.04	31.60	-3.56	46.52	54.00	-7.48	AV	Horizontal
5359.63	49.38	44.20	9.86	32.00	-2.34	47.04	74.00	-26.96	PK	Vertical
5359.63	39.03	44.20	9.86	32.00	-2.34	36.69	54.00	-17.31	AV	Vertical
5359.86	47.93	44.20	9.86	32.00	-2.34	45.59	74.00	-28.41	PK	Horizontal
5359.86	38.66	44.20	9.86	32.00	-2.34	36.32	54.00	-17.68	AV	Horizontal
7323.84	54.59	43.50	11.40	35.50	3.40	57.99	74.00	-16.01	PK	Vertical
7323.84	43.86	43.50	11.40	35.50	3.40	47.26	54.00	-6.74	AV	Vertical
7323.94	54.29	43.50	11.40	35.50	3.40	57.69	74.00	-16.31	PK	Horizontal
7323.94	44.56	43.50	11.40	35.50	3.40	47.96	54.00	-6.04	AV	Horizontal

Report No.: STS2312315W03

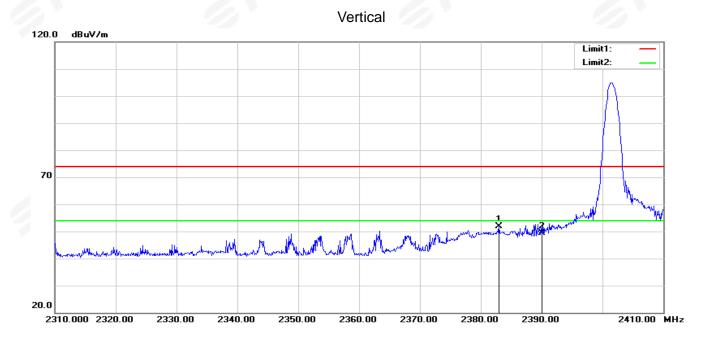
	High Channel (FSK/2482 MHz)									
3264.89	61.70	44.70	6.70	28.20	-9.80	51.90	74.00	-22.10	PK	Vertical
3264.89	51.40	44.70	6.70	28.20	-9.80	41.60	54.00	-12.40	AV	Vertical
3264.77	61.71	44.70	6.70	28.20	-9.80	51.91	74.00	-22.09	PK	Horizontal
3264.77	51.25	44.70	6.70	28.20	-9.80	41.45	54.00	-12.55	AV	Horizontal
4960.31	59.23	44.20	9.04	31.60	-3.56	55.67	74.00	-18.33	PK	Vertical
4960.31	50.41	44.20	9.04	31.60	-3.56	46.85	54.00	-7.15	AV	Vertical
4960.46	58.33	44.20	9.04	31.60	-3.56	54.77	74.00	-19.23	PK	Horizontal
4960.46	50.13	44.20	9.04	31.60	-3.56	46.57	54.00	-7.43	AV	Horizontal
5359.66	48.65	44.20	9.86	32.00	-2.34	46.31	74.00	-27.69	PK	Vertical
5359.66	39.55	44.20	9.86	32.00	-2.34	37.21	54.00	-16.79	AV	Vertical
5359.82	47.58	44.20	9.86	32.00	-2.34	45.24	74.00	-28.76	PK	Horizontal
5359.82	38.51	44.20	9.86	32.00	-2.34	36.17	54.00	-17.83	AV	Horizontal
7439.92	53.59	43.50	11.40	35.50	3.40	56.99	74.00	-17.01	PK	Vertical
7439.92	44.83	43.50	11.40	35.50	3.40	48.23	54.00	-5.77	AV	Vertical
7439.89	54.19	43.50	11.40	35.50	3.40	57.59	74.00	-16.41	PK	Horizontal
7439.89	44.05	43.50	11.40	35.50	3.40	47.45	54.00	-6.55	AV	Horizontal

Note:

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

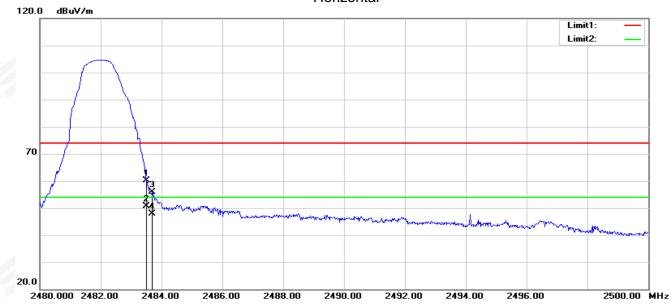

Emission Level = Reading + Factor

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

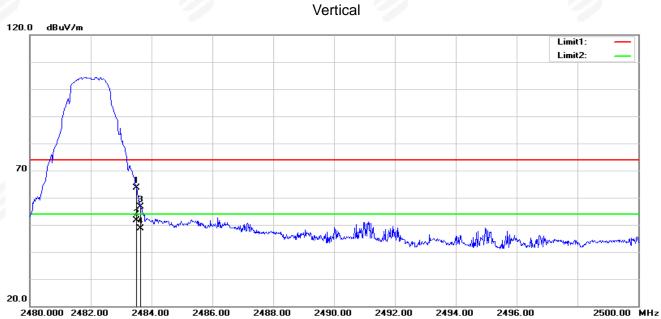


Restricted band Requirements

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2386.900	48.33	4.30	52.63	74.00	-21.37	peak
2	2390.000	47.44	4.34	51.78	74.00	-22.22	peak



No.	Frequency	Reading	Correct	Result Limit		Margin	Remark
1	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2383.000	47.58	4.23	51.81	74.00	-22.19	peak
2	2390.000	45.11	4.34	49.45	74.00	-24.55	peak



Page 27 of 59

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	55.46	4.60	60.06	74.00	-13.94	peak
2	2483.500	46.04	4.60	50.64	54.00	-3.36	AVG
3	2483.700	51.29	4.60	55.89	74.00	-18.11	peak
4	2483.700	43.35	4.60	47.95	54.00	-6.05	AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	58.97	4.60	63.57	74.00	-10.43	peak
2	2483.500	47.09	4.60	51.69	54.00	-2.31	AVG
3	2483.640	52.03	4.60	56.63	74.00	-17.37	peak
4	2483.640	43.97	4.60	48.57	54.00	-5.43	AVG

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting			
Detector	Peak			
Start/Stop Frequency	30 MHz to 10th carrier harmonic			
RB / VB (emission in restricted band)	100 KHz/300 KHz			
Trace-Mode:	Max hold			

For Band edge

Spectrum Parameter	Setting			
Detector	Peak			
Start/Stop Frequency	Lower Band Edge: 2300 – 2407 MHz			
Stan/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz			
RB / VB (emission in restricted band)	100 KHz/300 KHz			
Trace-Mode:	Max hold			

For Hopping Band edge

Spectrum Parameter	Setting
Detector	Peak
Stort/Stop Eroquopou	Lower Band Edge: 2300– 2403 MHz
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. Tune the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, the span is set to be greater than RBW.

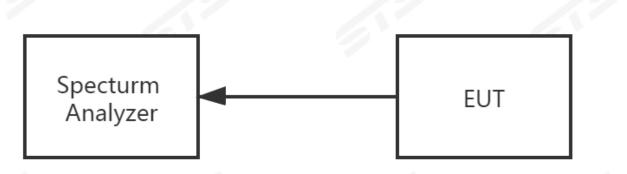
4.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

4.5 TEST RESULTS

5. NUMBER OF HOPPING CHANNEL

5.1 LIMIT


			and the second sec			
FCC Part 15.247,Subpart C						
Section	Test Item	Limit	FrequencyRange (MHz)	Result		
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS		

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating FrequencyRange
RB	100KHz
VB	300KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

5.5 TEST RESULTS

6. AVERAGE TIME OF OCCUPANCY

6.1 LIMIT

 FCC Part 15.247,Subpart C					
Section	Test Item	Limit	FrequencyRange (MHz)	Result	
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS	

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to e. zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for Hopping packet transmitting.
- h. Measure the maximum time duration of one single pulse.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

6.5 TEST RESULTS

7. HOPPING CHANNEL SEPARATION MEASUREMEN

7.1 LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting			
Attenuation	Auto			
Span Frequency	> 20 dB Bandwidth or Channel Separation			
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)			
VB	B 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

7.3 TEST SETUP

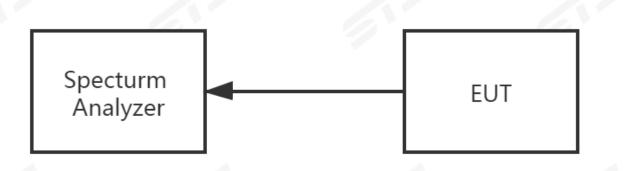
7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.5 TEST RESULTS

8.1 LIMIT

	FCC Part15 15.247,Subpart C					
	Section	Test Item	Limit	FrequencyRange (MHz)	Result	
1	15.247 (a)(1)	Bandwidth	N/A	2400-2483.5	PASS	


Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	equency > Measurement Bandwidth or Channel Separation		
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)		
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

8.5 TEST RESULTS

9. OUTPUT POWER TEST

9.1 LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
	Output Power	1 W or 0.125W			
15.247 (a)(1)&(b)(1)		if channel separation > 2/3 bandwidthprovided thesystems operatewith an	2400-2483.5	PASS	
		output power no greater than125 mW(20.97dBm)			

9.2 TEST PROCEDURE

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:

a) Use the following spectrum analyzer settings:

1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.

2) RBW > 20 dB bandwidth of the emission being measured.

3) VBW ≥ RBW.

4) Sweep: Auto.

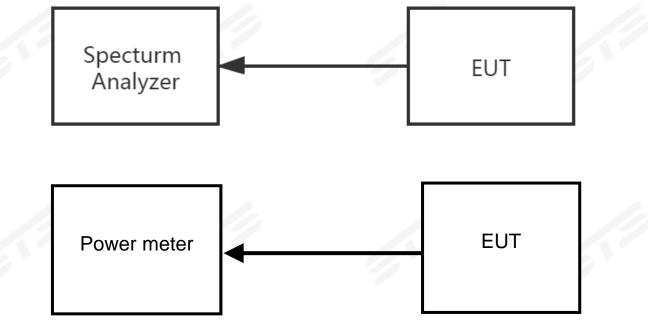
5) Detector function: Peak.

6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.


e) A plot of the test results and setup description shall be included in the test report.

NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DSS bandwidth and shall use a fast-responding diode detector.

9.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

9.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1. 10. ANTENNA REQUIREMENT

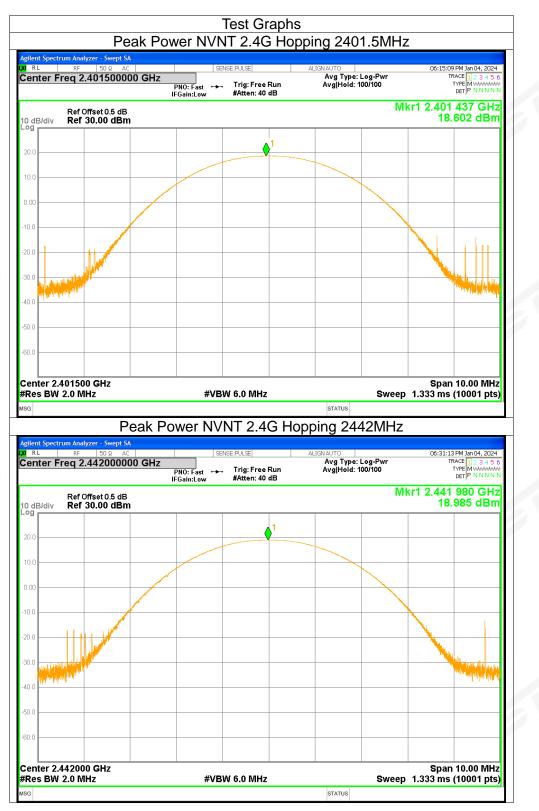
10.1 STANDARD REQUIREMENT

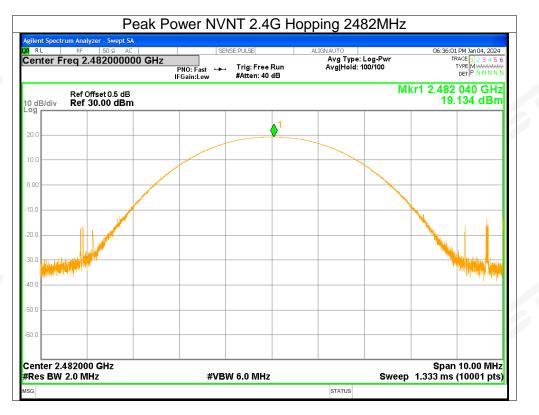
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA The EUT antenna is Monopole Antenna. It comply with the standard requirement.

1. Maximum Peak Conducted Output Power

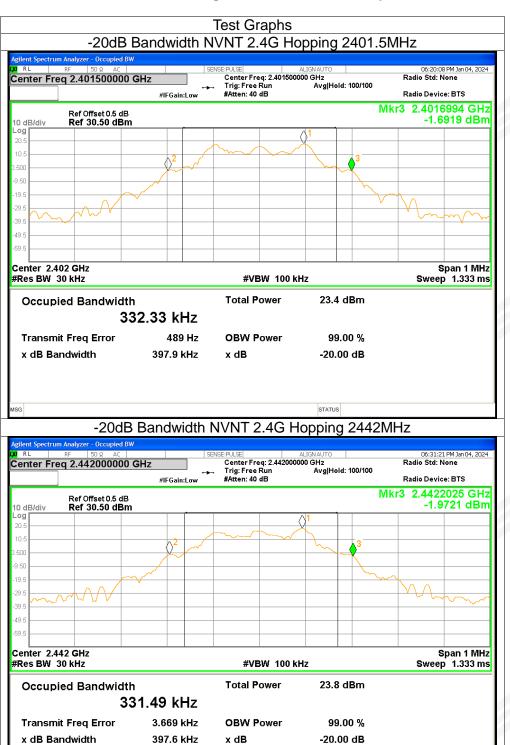
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	2.4G Hopping	2401.5	18.6	<=20.97	Pass
NVNT	2.4G Hopping	2442	18.99	<=20.97	Pass
NVNT	2.4G Hopping	2482	19.13	<=20.97	Pass




Page 37 of 59

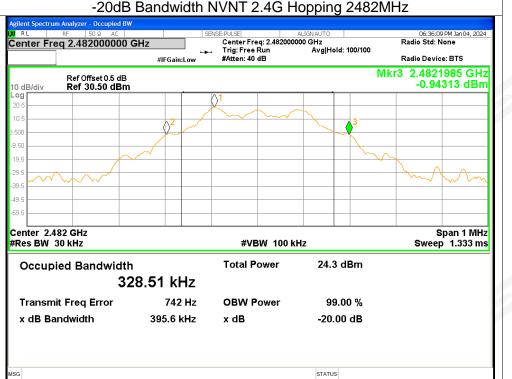
1

Page 38 of 59



2. -20dB Bandwidth

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	2.4G Hopping	2401.5	0.3979	Pass
NVNT	2.4G Hopping	2442	0.3976	Pass
NVNT	2.4G Hopping	2482	0.3956	Pass



Page 40 of 59

STATUS

-20dB Bandwidth NVNT 2.4G Hopping 2482MHz

3. Carrier Frequencies Separation

Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	2.4G Hopping	2401.406	2402.09	0.684	>=0.265	Pass
NVNT	2.4G Hopping	2442.0905	2442.5	0.4095	>=0.265	Pass
NVNT	2.4G Hopping	2481.407	2481.902	0.495	>=0.264	Pass


Page 43 of 59

Test Graphs CFS NVNT 2.4G Hopping 2401.5MHz Center Freq 2.402000000 GHz Avg Type: Log-Pw Avg|Hold>100/100 TRACE Trig: Free Run #Atten: 40 dB DET P N N N PNO: Wide IFGain:Low \mathbf{r} Mkr1 2.401 406 0 GHz Ref Offset 0.5 dB Ref 30.00 dBm 18.211 dBm I0 dB/div 20.1 0.00 30.0 40.0 60. Center 2.4020000 GHz #Res BW 30 kHz Span 1.500 MHz Sweep 1.600 ms (1001 pts) #VBW 100 kHz MKR MODE TRC SCL FUNCTION FUNCTION WIDTH 2.401 406 0 GHz 2.402 090 0 GHz 18.211 dBm 18.014 dBm N N f 2 3 4 5 6 7 8 9 10 11 > STATUS SG CFS NVNT 2.4G Hopping 2442MHz Swept S/ RI 8 PM Jan 04, 2024 Center Freq 2.442500000 GHz Avg Type: Log-Pwr Avg|Hold:>100/100 TRACE PNO: Wide 😱 IFGain:Low Trig: Free Run #Atten: 40 dB TYPE MWWWWWW DET P N N N N Mkr1 2.442 090 5 GHz 18.561 dBm Ref Offset 0.5 dB Ref 30.00 dBm 0 dB(di) Δ 20.1 0.00 30.0 40 I Center 2.4425000 GHz #Res BW 30 kHz Span 1.500 MHz Sweep 1.600 ms (1001 pts) #VBW 100 kHz MKR MODE TRC SCL FUNCTION FUNCTION WIDTH EUNCTION VALUE 2.442 090 5 GHz 2.442 500 0 GHz 18.561 dBm 16.789 dBm N N f 2 3 4 5 6 7 8 9 10 11 STATUS

Page 44 of 59

CFS NVNT 2.4G Hopping 2482MHz

¥.

4. Band Edge

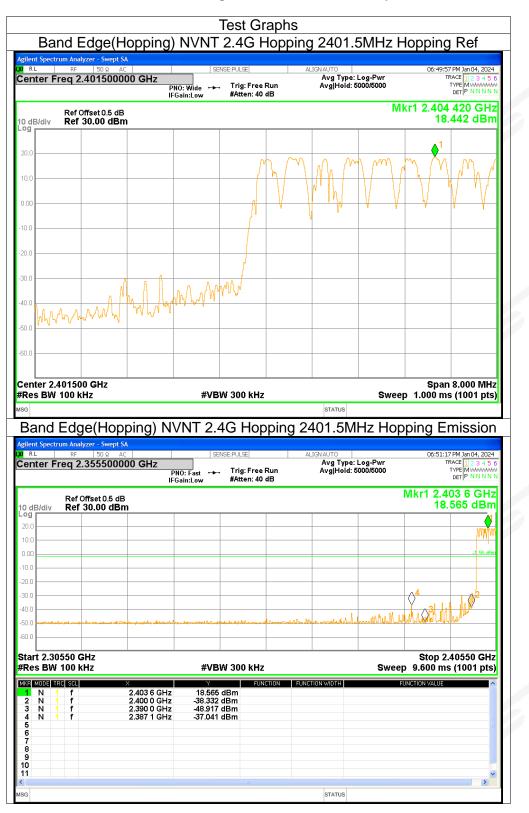
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2.4G Hopping	2401.5	No-Hopping	-46.2	<=-20	Pass
NVNT	2.4G Hopping	2482	No-Hopping	-50.65	<=-20	Pass

Page 46 of 59

Test Graphs Band Edge NVNT 2.4G Hopping 2401.5MHz No-Hopping Ref :50 PM Jan 04, 21 R I Center Freq 2.401500000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 RACE Trig: Free Run #Atten: 40 dB DET P N N N N PNO: Wide IFGain:Low Mkr1 2.401 595 GHz 18.463 dBm Ref Offset 0.5 dB Ref 30.00 dBm 10 dB/div 20.0 30.0 40.0 50. Center 2.4015000 GHz #Res BW 100 kHz Span 1.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 2.4G Hopping 2401.5MHz No-Hopping Emission ctrum Analyzer - Swept SA 3 PM Jan 04, 2024 Center Freq 2.355500000 GHz Avg Type: Log-Pwr Avg|Hold: 2000/2000 TRACE Trig: Free Run #Atten: 40 dB TYPE MWAAAAAA DET P N N N N PNO: Fast +++ IFGain:Low Mkr1 2.401 4 GHz 18.658 dBm Ref Offset 0.5 dB Ref 30.00 dBm 0 dB(dis 20.1 0.00 20.0 $\langle \rangle$ $\langle \rangle$ 30.0 .40.0 60. Start 2.30550 GHz Stop 2.40550 GHz Sweep 9.600 ms (1001 pts) #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION EUNCTION WIDTH FUNCTION VALUE 18.658 dBm -33.945 dBm -33.945 dBm -27.746 dBm 2.401 4 Gru 2.400 0 GHz 2.400 0 GHz 2.396 7 GHz N N N 2 3 4 5 6 7 8 9 10 STATUS

L RF 50 Ω nter Freq 2.482000	0000 GHz	PNO: Wide +++	SE:PULSE	ALIGNAUTO Avg Type: Avg Hold: 1			27 PM Jan 04, 202 TRACE 1 2 3 4 5 TYPE MWWW
		PNO: Wide ++++ IFGain:Low	#Atten: 40 dB				DETPNNN
Ref Offset 0.5 o B/div Ref 30.00 di					M		2 095 GH 9.094 dBi
	N				- My	An	
	N				, v	NUL .	a
						hay h	- Mh
While ward						1	W hhave
							4 ./1 _{0 •}
						1	
BW 100 KHz Band Edge			у 300 кнz oping 2482	status 2MHz No-F		p 1.000 r	n 1.000 MH ns (1001 pt SION
S BW 100 kHz Band Edge at Spectrum Analyzer - Swep L RF 50 Ω	t SA AC	2.4G Hop	oping 2482	2MHz No-F	Hopping	p 1.000 n g Emis	ns (1001 pt SION 31 PM Jan 04, 200 TRACE 1 2 3 4 5
S BW 100 kHz Band Edge at Spectrum Analyzer - Swep L RF 50 Ω	t SA AC 0000 GHz	2.4G Hop	oping 2482	2MHz No-H	Hopping Log-Pwr 100/100	p 1.000 r g Emis _{06:36}	ns (1001 pt SiON 31 PM Jan04, 203 TRACE 1 2 3 4 5 TYPE MWWW DET P. N.N.1
s BW 100 kHz Band Edge ht Spectrum Analyzer - Swep L RF 50 @ hter Freq 2.528000 Ref Offset 0.5	AC DOOO GHZ	2.4G Hop	Dping 2482 SE:PULSE	2MHz No-F	Hopping Log-Pwr 100/100	p 1.000 r g Emis ^{06:36} Mkr1 2.	SiON 31 PM Jan 04, 200 TRACE 1 2 3 4 5 TYPE M WWWW DET P. N N N
s BW 100 kHz Band Edge It Spectrum Analyzer - Swep L RF 50 9 Iter Freq 2.528000	AC DOOO GHZ	2.4G Hop	Dping 2482 SE:PULSE	2MHz No-F	Hopping Log-Pwr 100/100	p 1.000 r g Emis ^{06:36} Mkr1 2.	ns (1001 pt
s BW 100 kHz Band Edge It Spectrum Analyzer - Swep L RF 50 9 Iter Freq 2.528000 B/dlv	AC DOOO GHZ	2.4G Hop	Dping 2482 SE:PULSE	2MHz No-F	Hopping Log-Pwr 100/100	p 1.000 r g Emis ^{06:36} Mkr1 2.	SiON 31 PM Jan 04, 200 TRACE 1 2 3 4 5 TYPE M WWWW DET P. N N N
nt Spectrum Analyzer - Swep L RF 50 Ω nter Freq 2.528000 Ref Offset 0.5	AC DOOO GHZ	2.4G Hop	Dping 2482 SE:PULSE	2MHz No-F	Hopping Log-Pwr 100/100	p 1.000 r g Emis ^{06:36} Mkr1 2.	SiON 31 PM Jan 04, 200 TRACE 1 2 3 4 5 TYPE M WWWW DET P. N N N
s BW 100 kHz Band Edge nt Spectrum Analyzer - Swep L RF 50.2 tter Freq 2.528000 Ref Offset 0.5 Ref 30.00 dl	AC DOOO GHZ	2.4G Hop	Dping 2482 SE:PULSE	2MHz No-F	Hopping Log-Pwr 100/100	p 1.000 r g Emis ^{06:36} Mkr1 2.	ns (1001 pt SiON 31 PM Jan04, 20 TRACE 1 2 3 4 5 TYPE M WWWW DET P NNNT 481 9 GH 3.251 dBr
s BW 100 kHz Band Edge t Spectrum Analyzer - Swep L RF 50.9 tter Freq 2.528000 Ref Offset 0.5 Ref 30.00 dl	AC DOOO GHZ	2.4G Hop	Dping 2482 SE:PULSE	2MHz No-F	Hopping Log-Pwr 100/100	p 1.000 r g Emis ^{06:36} Mkr1 2.	ns (1001 pt SiON 31 PM Jan04, 20 TRACE 1 2 3 4 5 TYPE M WWWW DET P NNNT 481 9 GH 3.251 dBr
s BW 100 kHz Band Edge tt Spectrum Analyzer - Swep L RF 50.2 tter Freq 2.528000 Ref Offset 0.5 B/d/v 1 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	AC DOOO GHZ	2.4G Hop	Dping 2482 SE:PULSE	2MHz No-F	Hopping Log-Pwr 100/100	p 1.000 r g Emis ^{06:36} Mkr1 2.	ns (1001 pt SiON 31 PM Jan04, 20 TRACE 1 2 3 4 5 TYPE M WWWW DET P NNNT 481 9 GH 3.251 dBr
S BW 100 kHz Band Edge nt Spectrum Analyzer - Swep L RF 50 R tter Freq 2.528000 B/div Ref 0ffset 0.5 Ref 30.00 dl	AC DOOO GHZ	2.4G Hop	Dping 2482 SE:PULSE	2MHz No-F	Hopping Log-Pwr 100/100	p 1.000 r g Emis ^{06:36} Mkr1 2.	ns (1001 pt SiON 31 PM Jan04, 20 TRACE 1 2 3 4 5 TYPE M WWWW DET P NNNT 481 9 GH 3.251 dBr
s BW 100 kHz Band Edge It Spectrum Analyzer - Swep L RF 50 9 Iter Freq 2.528000 B/div Ref Offset 0.5 Ref 30.00 dl	AC DOOO GHZ	2.4G Hop	Dping 2482 SE:PULSE	2MHz No-F	Hopping Log-Pwr 100/100	p 1.000 r g Emis ^{06:36} Mkr1 2.	ns (1001 pt SiON 31 PM Jan04, 20 TRACE 1 2 3 4 5 TYPE M WWWW DET P NNNT 481 9 GH 3.251 dBr
s BW 100 kHz Band Edge tt Spectrum Analyzer - Soven ter Freq 2.528000 Ref Offset 0.5 Ref 30.00 dl	AC DOOO GHZ	2.4G Hop	Dping 2482	2MHz No-F		p 1.000 r cos:36 Mkr1 2. 15	ns (1001 pt SiON 31 PM Jan 04, 200 TRACE 1 2 3 4 4 TYPE MANNI 481 9 GH 2.251 dBi -0.91 d
s BW 100 kHz Band Edge tt Spectrum Analyzer - Swep ter Freq 2.528000 B/div Ref Offset 0.5 Ref 30.00 dl 2 4 4 4 4 4 4 4 4 4 4 4 4 4	AC DOOO GHZ	2.4G Hop	Dping 2482		Hopping Log-Pwr 100/100	p 1.000 r c Emis 06:36 Mkr1 2. 11 د این 500 r	ns (1001 pt SiON 31 PM Jan 04, 200 TRACE [1 2 3 4 5 TYPE [M NN N DET [P NN NT 481 9 GH 2.251 dBi -091 d 2.57800 GH ns (1001 pt
s BW 100 kHz Band Edge At Spectrum Analyzer - Swep L RF 2:50 Ω tter Freq 2.528000 B/div Ref Offset 0.5 Ref 30.00 dH 2 4 4 4 4 4 4 4 4 4 4 4 4 4	t SA AC D0000 GHz dB Bm dB Bm 4 2 4 2.481 9 GH3	2.4G Hop	SEPUSE	2MHz No-F	Hopping Log-Pwr 100/100	p 1.000 r cos:36 Mkr1 2. 15	ns (1001 pt SiON 31 PM Jan 04, 200 TRACE [1 2 3 4 5 TYPE [M NN N DET [P NN NT 481 9 GH 2.251 dBi -091 d 2.57800 GH ns (1001 pt
s BW 100 kHz Band Edge It Spectrum Analyzer - Swep L RF 50 9 Iter Freq 2.528000 Ref Offset 0.5 Ref 30.00 dl 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4	LSA AC D0000 GHz dB 3m 2.481 9 GHz 2.481 9 GHz 2.483 5 GHz	2.4G Hop	Dping 2482		Hopping Log-Pwr 100/100	p 1.000 r cos:36 Mkr1 2. 11 مرداسینی	ns (1001 pt SiON 31 PM Jan 04, 200 TRACE [1 2 3 4 5 TYPE [M NN N DET [P NN NT 481 9 GH 2.251 dBi -091 d 2.57800 GH ns (1001 pt
s BW 100 kHz Band Edge tt Spectrum Analyzer - Swep ter Freq 2.528000 Ref Offset 0.5 B/div Ref 30.00 dH 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4	LSA AC D0000 GHz dB Bm C AB C AB AC AC AC AC AC AC AC AC AC AC	2.4G Hop	Dping 2482		Hopping Log-Pwr 100/100	p 1.000 r cos:36 Mkr1 2. 11 مرداسینی	ns (1001 pt SiON 31 PM Jan 04, 200 TRACE [1 2 3 4 5 TYPE [M NN N DET [P NN NT 481 9 GH 2.251 dBi -091 d 2.57800 GH ns (1001 pt
s BW 100 kHz Band Edge It Spectrum Analyzer - Swep L RF 50 9 Iter Freq 2.528000 Ref Offset 0.5 Ref 30.00 dl 1 1 1 1 1 1 1 1 1 1 1 1 1	LSA AC D0000 GHz dB 3m 2.481 9 GHz 2.481 9 GHz 2.483 5 GHz	2.4G Hop	Dping 2482		Hopping Log-Pwr 100/100	p 1.000 r cos:36 Mkr1 2. 11 مرداسینی	ns (1001 pt SiON 31 PM Jan 04, 200 TRACE [1 2 3 4 5 TYPE [M NN N DET [P NN NT 481 9 GH 2.251 dBi -091 d 2.57800 GH ns (1001 pt

.


5. Band Edge(Hopping)

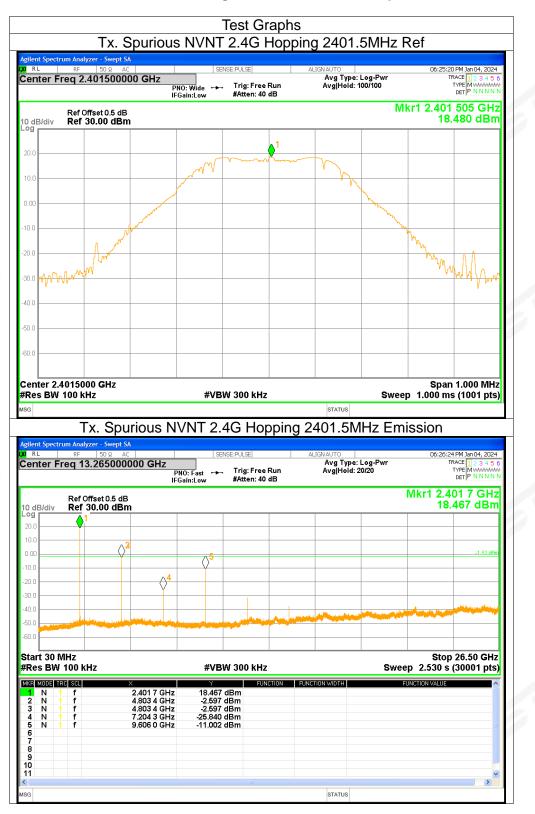
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2.4G Hopping	2401.5	Hopping	-55.48	<=-20	Pass
NVNT	2.4G Hopping	2482	Hopping	-45.97	<=-20	Pass

Page 49 of 59

Band Edge(Hopping) NVNT 2.4G Hopping 2482MHz Hopping Ref 14 PM Jan 04, 202 TRACE 1 2 3 4 5 TYPE M WMMM DET P N N N N B L Center Freq 2.482000000 GHz Avg Type: Log-Pwr Avg|Hold: 5000/5000 Trig: Free Run #Atten: 40 dB PNO: Wide IFGain:Low -----Mkr1 2.478 424 GHz Ref Offset 0.5 dB Ref 30.00 dBm 19.105 dBm 10 dB/div n n 10.0 20. 30.0 man 40.0 50.0 Center 2.482000 GHz Span 8.000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) SG STATUS Band Edge(Hopping) NVNT 2.4G Hopping 2482MHz Hopping Emission gilent Spectrum Analyzer - Swept SA B L :34 PM Jan 04. Avg Type: Log-Pwr Avg|Hold: 5000/5000 Center Freq 2.528000000 GHz TYPE MWWWW DET P N N N N PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 40 dB Mkr1 2.481 6 GHz Ref Offset 0.5 dB Ref 30.00 dBm 19.239 dBm 10 dB/div Log -0.90 d 0.0 10.0 20.0 \Diamond^4 30.0 $\langle \rangle$ 40.0 path. -50.0 Start 2.47800 GHz Stop 2.57800 GHz #VBW 300 kHz #Res BW 100 kHz Sweep 9.600 ms (1001 pts) MKR MODE TRC SCL FUNCTION TION VALUE 2.481 6 GHz 2.483 5 GHz 2.500 0 GHz 2.485 3 GHz 19.239 dBm -38.647 dBm -42.095 dBm -26.862 dBm N N N 2 3 4 5 6 7 8 9 10 11 STATUS SG

6. Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2.4G Hopping	2401.5	-21.07	<=-20	Pass
NVNT	2.4G Hopping	2442	-26.21	<=-20	Pass
NVNT	2.4G Hopping	2482	-28.48	<=-20	Pass



Page 52 of 59

Tx. Spurious NVNT 2.4G Hopping 2442MHz Ref D6:31:45 PM Jan 04, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N B L Center Freq 2.442000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 40 dB PNO: Wide ↔ IFGain:Low Mkr1 2.442 095 GHz Ref Offset 0.5 dB Ref 30.00 dBm 18.889 dBm 10 dB/div 0.00 10.0 20. 30.0 40.0 50.0 Center 2.4420000 GHz Span 1.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz ISG STATUS Tx. Spurious NVNT 2.4G Hopping 2442MHz Emission gilent Spectrum Analyzer - Swept SA 06:32:49 PM Jan 04, 2 R L TYPE M WWWWW DET P N N N N Center Freg 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 20/20 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 40 dB Mkr1 2.442 3 GHz Ref Offset 0.5 dB 18.360 dBm 10 dB/div Ref 30.00 dBm 20.1 -1.11 d 0.0 (10.0 20.0 30.0 40.0 $\langle\rangle^4$ -50.0 Start 30 MHz Stop 26.50 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.530 s (30001 pts) MKR MODE TRC SCL FUNCTION WIDTH ION VALUE JNCTION × 2.442 3 GHz 4.883 7 GHz 4.883 7 GHz 7.237 8 GHz 9.767 4 GHz 18.360 dBm -7.320 dBm -7.320 dBm -47.789 dBm -11.654 dBm 1 2 3 4 5 6 7 8 9 10 N N N N N > STATUS SG

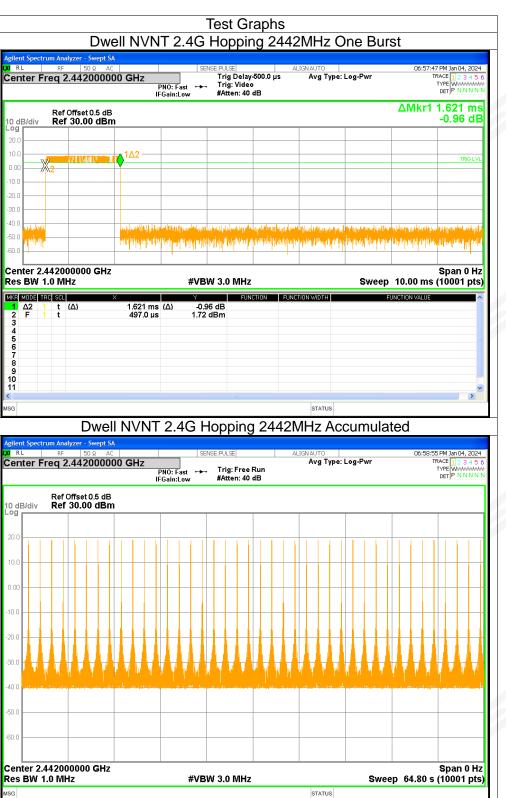
Tx. Spurious NVNT 2.4G Hopping 2482MHz Ref 148 PM Jan 04, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N B L Center Freq 2.482000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 40 dB PNO: Wide ↔ IFGain:Low Mkr1 2.482 094 GHz Ref Offset 0.5 dB Ref 30.00 dBm 19.083 dBm 10 dB/div 0.00 10.0 30.0 40.0 50.0 Center 2.4820000 GHz Span 1.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Tx. Spurious NVNT 2.4G Hopping 2482MHz Emission gilent Spectrum Analyzer - Swept SA 52 PM Jan 04, R L TRACE 1 2 3 4 5 (TYPE MWWWW DET P N N N N 1 Center Freg 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 20/20 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 40 dB Mkr1 2.482 0 GHz Ref Offset 0.5 dB Ref 30.00 dBm 19.048 dBm 10 dB/div 20.1 -0.92 d 0.0 **∮**⁵ $\langle \rangle$ 20.0 30.0 40.0 -50.0 Start 30 MHz Stop 26.50 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.530 s (30001 pts) MKR MODE TRC SCL FUNCTION ION VALUE INCTION * 2.482 0 GHz 4.964 0 GHz 4.964 0 GHz 7.446 0 GHz 9.928 0 GHz 19.048 dBm -9.405 dBm -9.405 dBm -19.695 dBm -13.909 dBm 1 N N N N N 2 3 4 5 6 7 8 9 10 11 STATUS SG

7. Number of Hopping Channel

		Hopping Number		Vorunot
NVNT 2.4G Ho	pping	162	>=15	Pass

Page 56 of 59

	Test G		
Норрі	ng No. NVNT 2.	4G Hopping Hopp	ping
Agilent Spectrum Analyzer - Swept SA Mark RE 50 Q AC C Center Freq 2.441750000 GHz	PNO: Fast Filler IFGain:Low #Atten: 40		
Ref Offset 0.5 dB			Mkr1 2.401 419 5 GHz 18.303 dBm
Log 20.0 10.0 -10.0 -10.0 -20.0 -30.0 -40.0 -60.0 -60.0			איז
Start 2.40000 GHz #Res BW 100 kHz	#VBW 300 kH:	z	Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)
MSS MODE TFG SCL X 1 N 1 f 2.401 419 5 2 2 N 1 f 2.401 419 5 3 3 4 5 6 6 6 7 8 9 10 11 1	GHz 18.303 dBm	NCTION FUNCTION WIDTH	
MSG		STATUS	×


8. Dwell Time

Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	2.4G Hopping	2442	1.621	64.84	40	64800	<=400	Pass

Page 58 of 59

APPENDIX 2-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *