

Page 1 of 70 FCC ID: XYFTWINX14SP

Report No.: LCSA01064075E

Report No.: LCSA01064075E01

Issued for

FrSky Electronic Co., Ltd.

F-4, Building C, Zhongxiu Technology Park, No.3 Yuanxi Road, Wuxi, 214125, Jiangsu, China

Product Name: Twin digi

Twin digital radio system

立讯检测限份 LCS Testing Lab

Brand Name: F

TWIN X14

FRSKY

Series Model(s): TWINX18S,TWIN

Test Standards:

Model Name:

X18SE,TWSR6,TWR10,TWSR10,TWR12 ,TWSR12

FCC ID: XYFTWINX14SP

ANSI/IEEE Std. C95.1-2019 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013

TWIN X14S, TWIN X14SE, TWIN X18,

Max. SAR (1g) Body: 0.765W/kg

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 2 of 70 FCC ID: XYFTWINX14SP

Test Report Certification

Applicant's name:	FrSky Electronic Co., Ltd.
Address	F-4, Building C, Zhongxiu Technology Park, No.3 Yuanxi Road, Wuxi, 214125, Jiangsu, China
Manufacturer's Name	FrSky Electronic Co., Ltd.
Address	F-4, Building C, Zhongxiu Technology Park, No.3 Yuanxi Road, Wuxi, 214125, Jiangsu, China
Product description	
Product name:	Twin digital radio system
Brand name:	FRSKY
Model name:	TWIN X14
Series Model:	TWIN X14S,TWIN X14SE,TWIN X18, TWINX18S,TWIN X18SE,TWSR6,TWR10,TWSR10,TWR12,TWSR12 ANSI/IEEE Std. C95.1-2019
Standards	FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013
	oduced in whole or in part for non-commercial purposes as lo pliance. Testing Laboratory I td. is acknowledged as copyrid

ong as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	04 Jan. 2024
Date of Issue	05 Jan. 2024
Test Result	Pass

Compiled by:

Supervised by:

Approved by:

Jay Zhan / File administrators

Cary Luo / Technique principal

Gavin Liang/ Manager

Table of Contents

1. General Information	6
1.1 EUT Description	6
1.2 Test Environment	7
1.3 Test Factory	7
2. Test Standards and Limits	8
2.SAR Measurement System	9
3.1 SAR Measurement Set-up	9
3.20PENSAR E-field Probe System	10
3.3Phantoms	11
3.4Device Holder	12
3.5Scanning Procedure	12
3.6Data Storage and Evaluation	14
4. Tissue Simulating Liquids	16
4.1 Simulating Liquids Parameter Check	16
5. SAR System Validation	18
5.1 Validation System	18
5.2 Validation Result	18
6. SAR Evaluation Procedures	19
7. EUT Antenna Location Sketch	20
7.1 SAR test exclusion consider table	21
8. EUT Test Position	23
8.1 Body-worn Position Conditions	23
9. Uncertainty	24
9.1 Measurement Uncertainty	24
10. Conducted Power Measurement	25
10.1 Test Result	25
11. EUT and Test Setup Photo	26
11.1 EUT Photo	26
11.2 Setup Photo	27
12. SAR Result Summary	29
12.1 Body-worn SAR	29
13. Equipment List	30
Appendix A. System Validation Plots	31
Appendix B. SAR Test Plots	33
CALIBRATION CERTIFICATES	35

Probe-EPGO376 Calibration Certificate	35
SID2450 Dipole Calibration Ceriticate	46
SAR System PHOTOGRAPHS	68
SETUP PHOTOGRAPHS	69
EUT PHOTOGRAPHS	70

Page 5 of 70 FCC ID: XYFTWINX14SP

Report No.: LCSA01064075E

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	05 Jan. 2024	LCSA01064075E	ALL	Initial Issue

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

Product Name	duct Name Twin digital radio system			
Brand Name	FRSKY			
Model Name	TWIN X14			
Series Model		TWIN X14S,TWIN X14SE,TWIN X18, TWINX18S,TWIN X18SE,TWSR6,TWR10,TWSR10,TWR12,TWSR12		
Model Difference	Only diffe	rence in model.		
Battery	Charge L	Rated Voltage: Charge Limit Voltage: Capacity:		
Device Category	Portable			
Product stage	Productio	Production unit		
RF Exposure Environment	General Population / Uncontrolled			
Hardware Version	Rev0.2			
Software Version	ersion 1.4.14			
Frequency Range 2.4G: 2401.5-2482MHz				
Max. Reported	Band	Mode	Body Worn (W/kg)	
SAR(1g):	DSS	FSK	0.364	
(Limit:1.6W/kg)	DSS	LORA	0.765	
FCC Equipment Class	Part 15 Spread Spectrum Transmitter (DSS)			
Operating Mode:	2.4G: FSK/LoRA			
Antenna Specification:	2.4G: Monopole antenna			
DTM Mode	Not Support			
Note: 1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power				

1.1 EUT Description

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required	
Temperature (°C)	18-25	
Humidity (%RH)	30-70	

1.3 Test Factory

Shenzhen LCS Compliance Testing Laboratory Ltd..

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China FCC test Firm Registration No.: 625569

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

ISED Designation Number is 9642A

Test Firm Registration Number: 254912.

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 648474 D04 v01r03	SAR Evaluation Considerations for Wireless Handsets
8	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)
 Whole-Body Partial-Body Hands, Wrists, Feet and Ankles
 0.08
 1.6
 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. **Population/Uncontrolled Environments:**

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE

PARTIAL BODY LIMIT

1.6 W/kg

2. SAR Measurement System

3.1 SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

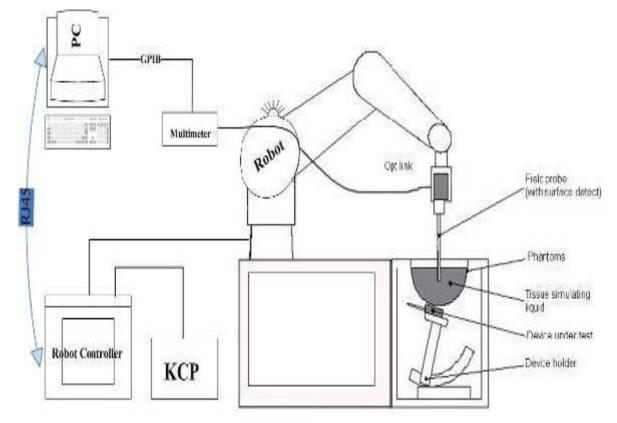
The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software

Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.


The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

Page 10 of 70 FCC ID: XYFTWINX14SP

3.20PENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO376(manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

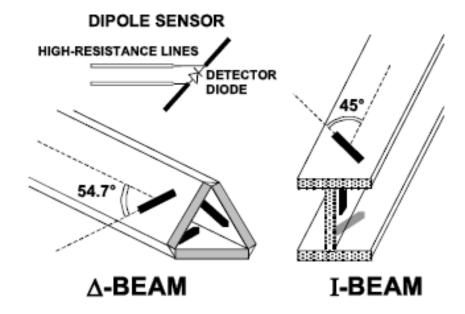
Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB

Page 11 of 70 FCC ID: XYFTWINX14SP


Report No.: LCSA01064075E

Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

3.5Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement The reference and drift jobs are useful jobs for monitoring the power drift of the device under test

Page 13 of 70 FCC ID: XYFTWINX14SP

Report No.: LCSA01064075E

in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$	
	$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^{\circ}$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 5 \text{ mm}^* \\ 4-6 \text{ GHz:} \leq 4 \text{ mm}^* \end{array}$
	uniform g		$\leq 5 \text{ mm}$	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface graded		Δz _{Zoom} (1): between 1 st two points closest to phantom surface	$\leq 4 \text{ mm}$	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid <u> $\Delta z_{Zoom}(n \ge 1)$:</u> between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoo}$	m(n-1) mm
Minimum zoom scan volume	x, y, z		\geq 30 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz} : \geq 28 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz} : \geq 25 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz} : \geq 22 \ \mathrm{mm} \end{array}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi
- Diode compression point	Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

 $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$ E – fieldprobes : H – field probes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ (i = x, y, z)(i = x, y, z)With Vi = compensated signal of channel i = sensor sensitivity of channel i Normi [mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution = sensor sensitivity factors for H-field probes aij = carrier frequency [GHz] f Ei = electric field strength of channel i in V/m Hi = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$ The primary field data are used to calculate the derived field units. $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

				1110 0	<u> </u>					9				
Ingredi ent	750 I	ИНz	8351	ИНz	1800	MHz	1900	MHz	2450	MHz	2600	MHz	5000	MHz
(%	Hea	Bod	Hea	Bod	Hea	Bod	Hea	Bod	Hea	Bod	Hea	Bod	Hea	Bod
Weight)	d	У	d	У	d	у	d	у	d	у	d	У	d	У
Water	39.2	51.	41.4	52.	54.5	40.2	54.9	40.4	62.7	73.2	60.3	71.4	65.	78.
Water	8	3	5	5	54.5	40.2	54.9	40.4	02.7	13.2	00.5	71.4	5	6
Prevent	0.10	0.1	0.10	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0
ol	0.10	0	0.10	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0
HEC	1.00	1.0	1.00	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0
TEC	1.00	0	1.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0
DGBE	0.00	0.0	0.00	0.0	45.3	59.3	44.9	59.1	36.8	26.7	39.1	28.4	0.0	0.0
DGBE	0.00	0	0.00	0	3	1	2	0	0	0	0	0	0	0
Triton	0.00	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.	10.
X-100	0.00	0	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2	7

The composition	of the tissue	simulating liquid
		Simulating liquid

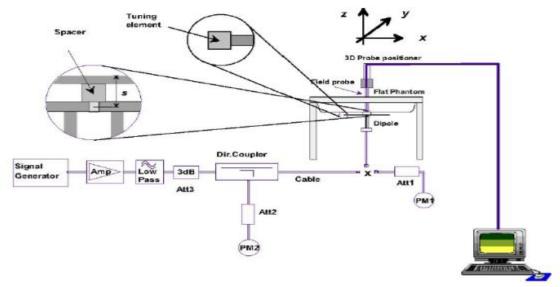
Target Frequency	Н	ead
(MHz)	٤r	σ(S/m)
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1640	40.2	1.31
1800	40.0	1.40
1900	40.0	1.40
2000	40.0	1.40
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
5200	36.0	4.66
5800	35.3	5.27

Page 17 of 70 FCC ID: XYFTWINX14SP

Report No.: LCSA01064075E

Data	Am	bient	Simulating Liquid		Parameters	Tanat	Magazinad	Deviation	Limited									
Date	Temp.	Humidity	Frequency	-requency Temp.		Target	Measured	%	%									
	[°C]	%	(MHz) [°C]															
2024-01-04	21.5	44	2401.5	21.2	Permittivity	39.29	39.38	0.24	±5									
2024-01-04	21.5	44	2401.5	2401.0	2401.5	2401.5	2401.5	2401.5	2401.5	2401.5	2401.0	2401.0	21.2	Conductivity	1.76	1.74	-0.96	±5
2024-01-04	21.6	44	2442	21.4	Permittivity	39.21	40.11	2.28	±5									
2024-01-04	21.0	44	2442 21.4	Conductivity	1.79	1.80	0.40	±5										
2024-01-04	21.7	45	2450	21.5	Permittivity	39.20	39.94	1.89	±5									
2024-01-04	21.7	40	45	40	40	2400	2450	21.5	Conductivity	1.80	1.79	-0.56	±5					
2024 01 04	21.7	45	2480	21.5	Permittivity	39.15	39.38	0.60	±5									
2024-01-04	21.7	40	2400	21.3	Conductivity	1.83	1.84	0.73	±5									

LIQUID MEASUREMENT RESULTS



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2021-09-29	-25.59		44.7		-1.1	
2022-09-29	-25.68	0.35	44.8	0.1	-1.0	0.1
2023-09-29	-25.70	0.43	44.5	-0.2	-1.1	0.0

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Date	Freq.	Power	Tested Value	Normalized SAR	Target SAR	Tolerance	Limit
	(MHz)	(mW)	(W/Kg)	(W/kg)	1g(W/kg)	(%)	(%)
2024-01-04	2450	100	5.549	55.49	54.70	1.44	10

Note:

1. The tolerance limit of System validation ±10%.

2. The dipole input power (forward power) was 100 mW.

3. The results are normalized to 1 W input power.

Page 19 of 70 FCC ID: XYFTWINX14SP

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface

- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

7. EUT Antenna Location Sketch

It is Twin digital radio system, support 2.4G mode.

Antenna Separation Distance(cm)							
ANT	Front Side	Back Side	Left Side	Right Side	Top Side	Bottom Side	
FSK	1	1.5	3.5	3.5	≪0.5	19	
LORA	1	1.5	3.5	3.5	≪0.5	19	

Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

7.1 SAR test exclusion consider table

The WEAR DI CAR evaluation of Maximum power (abin) summing toleranoe	Maximum power (dBm) summing tolerance.
--	--

Exposure	Wireless Interface	FSK	LORA
Position	Calculated Frequency(GHz)	2.422	2.48
	Maximum Turn-up power (dBm)	19.5	18.5
	Maximum rated power(mW)	14.13	31.62
	Separation distance (cm)	1.5	1.5
Back Side	exclusion threshold(mW)	22.32	22.03
	Testing required?	NO	YES
	Separation distance (cm)	1	1
Front Side	exclusion threshold(mW)	10.33	10.17
	Testing required?	YES	YES
	Separation distance (cm)	3.5	3.5
Left Side	exclusion threshold(mW)	111.62	110.63
	Testing required?	NO	NO
	Separation distance (cm)	3.5	3.5
Right Side	exclusion threshold(mW)	111.62	110.63
	Testing required?	NO	NO
	Separation distance (cm)	≤0.5	≤0.5
Top Side	exclusion threshold(mW)	2.77	2.72
	Testing required?	YES	YES
	Separation distance (cm)	19	19
Bottom Side	exclusion threshold(mW)	2775.90	2775.17
	Testing required?	NO	NO

Note:

- 1. maximum power is the source-based time-average power and represents the maximum RF output power among production units.
- 2. Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. Per KDB 447498 D04, if the maximum time-averaged power available does not exceed 1 mW. This stand-alone SAR exemption test.
- 4. Per KDB 447498 D04, the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the

following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by:

$$P_{th} (mW) = \begin{cases} ERP_{20 \ cm} (d/20 \ cm)^x & d \le 20 \ cm \\ ERP_{20 \ cm} & 20 \ cm < d \le 40 \ cm \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{\textit{ERP}_{20}\,\textit{cm}\sqrt{f}}\right) \, \text{and} \, f \, \text{is in GHz};$$

and

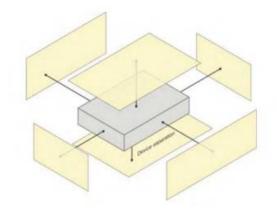
$$ERP_{20\ cm}\ (\text{mW}) = \begin{cases} 2040f & 0.3\ \text{GHz} \le f < 1.5\ \text{GHz} \\ \\ 3060 & 1.5\ \text{GHz} \le f \le 6\ \text{GHz} \end{cases}$$

d = the separation distance (cm);

5. Per KDB 447498 D04, An alternative to the SAR-based exemption is using below table and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in below table to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF Source frequency (MHz)	Threshold ERP(watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8.for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded.


8. EUT Test Position

This EUT was tested in Back Side, Front Side and Top Side.

8.1 Body-worn Position Conditions

Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

.

9. Uncertainty

9.1 Measurement Uncertainty

Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR according to KDB865664D01.

10. Conducted Power Measurement

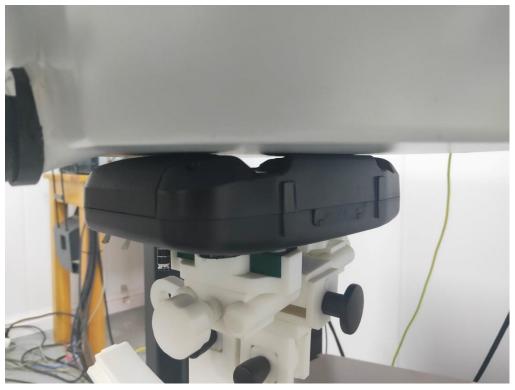
10.1 Test Result

2.4G				
Mode		FSK ANT Power	LORA ANT Power	
Wode	Frequency (MHz)	(dBm)	(dBm)	
	2401.5	18.6	16.79	
2.4G	2442	18.99	17.62	
	2482	19.13	18.39	

11. EUT and Test Setup Photo

11.1 EUT Photo

Front side



Back side

11.2 Setup Photo

Back Side (separation distance is 0mm)

Front Side (separation distance is 0mm)

Top Side (separation distance is 0mm)

12. SAR Result Summary

12.1 Body-worn SAR

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas.No.
2.4G FSK	FSK	Front Side	2442	0.085	1.86	19.50	19.13	0.093	/
2.40 For	FOR	Top Side	2442	0.334	2.35	19.50	19.13	0.364	1
		Front Side	2480	0.122	0.41	15.00	14.85	0.126	/
		Back Side	2480	0.088	-2.39	18.50	18.39	0.090	/
2.4G LORA	LORA	Top Side	2401.5	0.435	3.91	18.50	18.39	0.446	/
		Top Side	2442	0.421	-2.74	18.50	18.39	0.432	/
		Top Side	2480	0.746	-1.12	18.50	18.39	0.765	2

Note:

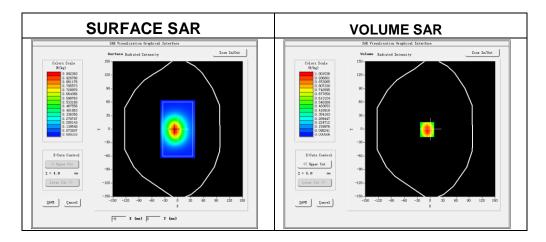
- 1. The test separation of all above table is 0mm.
- 2. The FSK and LORA can't simultaneous transmission at the same time.
- 3. Per KDB 447498 D04, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

- b. For FSK/LORA: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 4. 2.4G does not support MIMO mode.

13. Equipment List

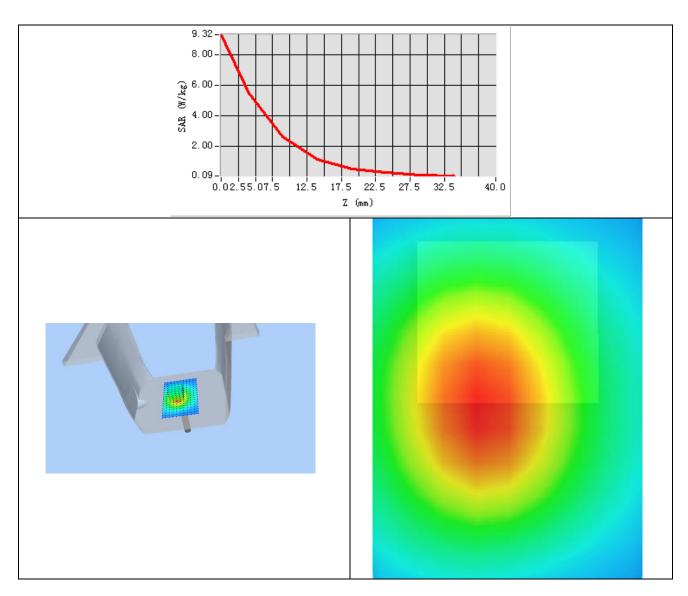
Item	Equipment	Manufacture r	Model No.	Serial No.	Cal Date	Due Date
1	PC	Lenovo	G5005	MY42081102	N/A	N/A
2	SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A
3	Signal Generator	Agilent	E4438C	MY49072627	2023-06-09	2024-06-08
4	S-parameter Network Analyzer	Agilent	8753ES	US38432944	2023-06-09	2024-06-08
5	Wideband Radio Communication Tester	R&S	CMW500	103818-1	2023-10-25	2024-10-24
6	E-Field PROBE	MVG	SSE2	SN 25/22 EPGO376	2023-06-22	2024-06-21
7	DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	2021-09-29	2024-09-28
8	DIPOLE 1900	SATIMO	SID 1900	SN 38/18 DIP 1G900-466	2021-09-22	2024-09-21
9	DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	2021-09-29	2024-09-28
10	COMOSAR OPENCoaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	2023-10-25	2024-10-24
11	Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	2023-10-25	2024-10-24
12	FEATURE PHONEPOSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
13	DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
14	SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
15	Liquid measurement Kit	HP	85033D	3423A03482	N/A	N/A
16	Power meter	Agilent	E4419B	MY45104493	2023-10-25	2024-10-24
17	Power meter	Agilent	E4419B	MY45100308	2023-10-25	2024-10-24
18	Power sensor	Agilent	E9301H	MY41495616	2023-10-25	2024-10-24
19	Power sensor	Agilent	E9301H	MY41495234	2023-10-25	2024-10-24
20	Directional Coupler	MCLI/USA	4426-20	03746	2023-06-09	2024-06-08


Appendix A. System Validation Plots

System Performance Check Data (2450MHz)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2024-01-04

Experimental conditions.

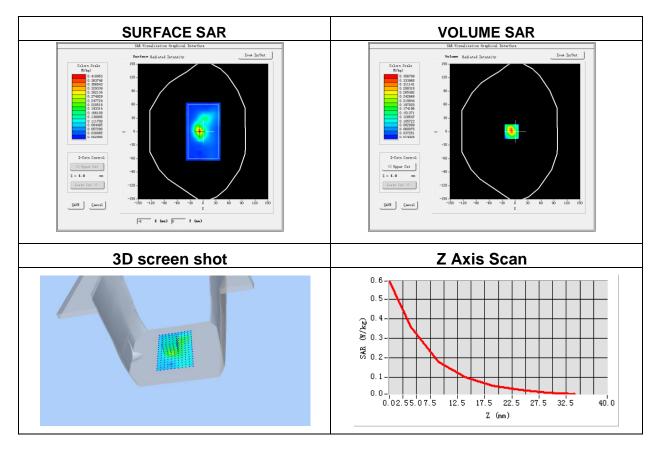

Phantom	Validation plane
Device Position	-
Band	2450MHz
Channels	-
Signal	CW
Frequency (MHz)	2450MHz
Relative permittivity	39.94
Conductivity (S/m)	1.79
Probe	SN 25/22 EPGO376
ConvF	2.60
Crest factor:	1:1

Maximum location: X=5.00, Y=1.00

SAR 10g (W/Kg)	2.449152
SAR 1g (W/Kg)	5.549067

Z Axis Scan

Appendix B. SAR Test Plots


Plot 1: DUT: Twin digital radio system; EUT Model: TWIN X14

Test Date	2024-01-04
ConvF	2.60
Probe	SN 25/22 EPGO376
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Top Side
Band	2.4G
Signal	FSK
Frequency (MHz)	2442
Relative permittivity (real part)	40.11
Conductivity (S/m)	1.80

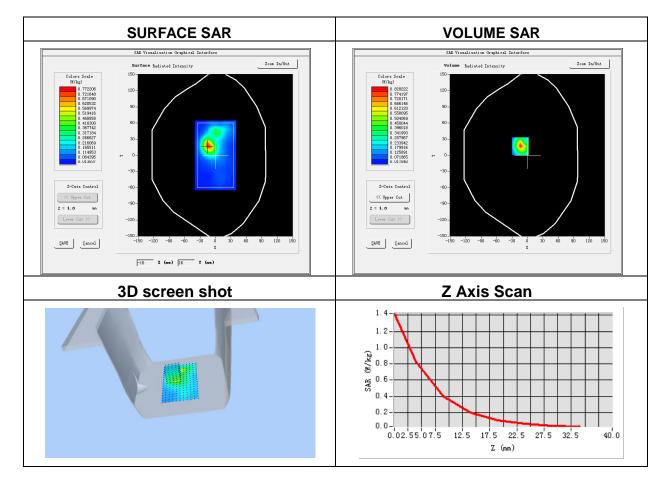
Maximum location: X=-8.00, Y=0.00

SAR Peak: 0.62 W/kg

SAR 10g (W/Kg)	0.150289
SAR 1g (W/Kg)	0.334038

Plot 2: DUT: Twin digital radio system; EUT Model: TWIN X14

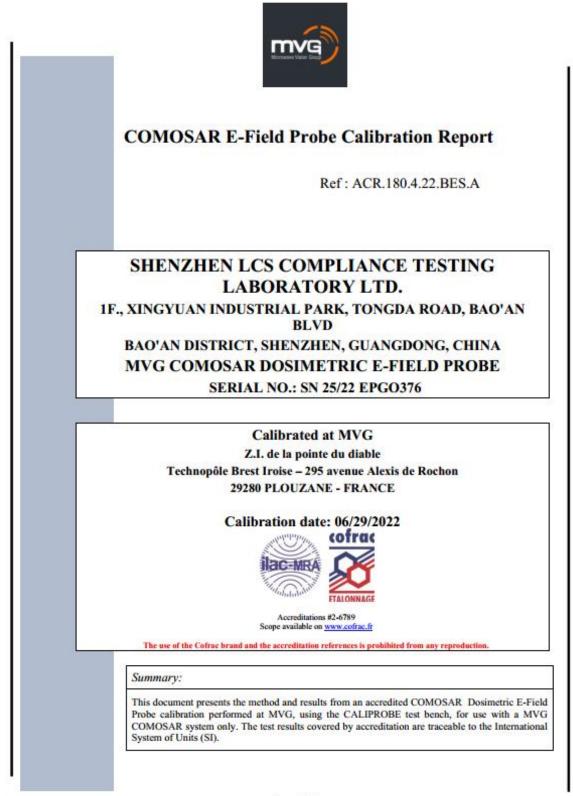
Page 34 of 70 FCC ID: XYFTWINX14SP


Report No.: LCSA01064075E

Test Date	2024-01-04
ConvF	2.60
Probe	SN 25/22 EPGO376
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	To[Side
Band	2.4G
Signal	LORA
Frequency (MHz)	2480
Relative permittivity (real part)	39.38
Conductivity (S/m)	1.84

Maximum location: X=-14.00, Y=17.00

SAR Peak: 1.43 W/kg


SAR 10g (W/Kg)	0.325145
SAR 1g (W/Kg)	0.746105

CALIBRATION CERTIFICATES

Probe-EPGO376 Calibration Certificate

Report No.: LCSA01064075E

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.22.BES.A

8	Name	Function	Date	Signature
Prepared by :	Jérôme Le Gall	Measurement Responsible	6/30/2022	T
Checked & approved by:	Jérôme Luc	Technical Manager	6/30/2022	JS
Authorized by:	Yann Toutain	Laboratory Director	6/30/2022	Yaan ТОИТАЛЫ

^{2022.06.30} 13:37:53 +02'00'

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Name	Date	Modifications
A	Jérôme Le Gall	6/30/2022	Initial release
3			

Page: 2/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.22.BES.A

TABLE OF CONTENTS

1	1 Device Under Test4					
2	Prod	uct Description4				
	2.1	General Information	4			
3	Mea	surement Method4				
	3.1	Linearity	4			
	3.2	Sensitivity	4			
	3.3	Lower Detection Limit	5			
	3.4	Isotropy	5			
	3.1	Boundary Effect	5			
4	Mea	surement Uncertainty6				
5	Cali	bration Measurement Results				
	5.1	Sensitivity in air	6			
	5.2	Linearity	7			
	5.3	Sensitivity in liquid	8			
	5.4	Isotropy	9			
6	List	of Equipment				

Page: 3/11

1

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.22.BES.A

DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE			
Manufacturer	MVG			
Model	SSE2			
Serial Number	SN 25/22 EPGO376			
Product Condition (new / used)	New			
Frequency Range of Probe	0.15 GHz-6GHz			
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.193 MΩ			
	Dipole 2: R2=0.188 MΩ			
	Dipole 3: R3=0.198 MΩ			

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

Page: 4/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.22.BES.A

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{be} + d_{step}$ along lines that are approximately normal to the surface:

$$SAR_{uncertainty} [\%] = \delta SAR_{be} \frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{be}/(\delta \beta)}\right)}{\delta/2} \quad \text{for } \left(d_{be} + d_{step}\right) < 10 \text{ mm}$$

is the uncertainty in percent of the probe boundary effect
is the distance between the surface and the closest zoom-scan measurement
point, in millimetre
is the separation distance between the first and second measurement points that
are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible
is the minimum penetration depth in millimetres of the head tissue-equivalent
liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;
in percent of SAR is the deviation between the measured SAR value, at the
distance dbe from the boundary, and the analytical SAR value.

The measured worst case boundary effect SAR uncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.22.BES.A

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

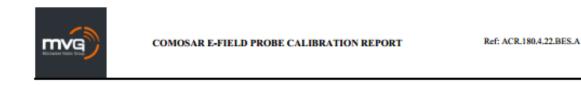
Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Expanded uncertainty 95 % confidence level k = 2					14 %

5 CALIBRATION MEASUREMENT RESULTS

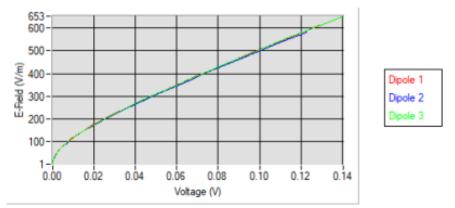
Calibration Parameters			
Liquid Temperature	20 +/- 1 °C		
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

5.1 SENSITIVITY IN AIR

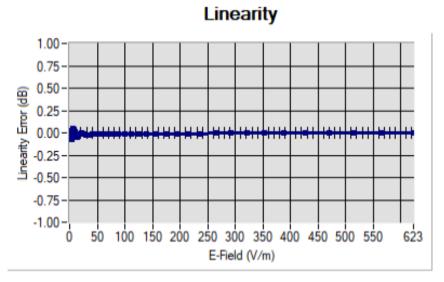
		Normz dipole 3 (µV/(V/m) ²)
0.76	0.78	0.76


		DCP dipole 3
(mV)	(mV)	(mV)
106	107	108

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: $E = \sqrt{E_1^2 + E_2^2 + E_3^2}$


Page: 6/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK



Calibration curves

5.2 LINEARITY

Linearity:+/-1.81% (+/-0.08dB)

Page: 7/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.22.BES.A

5.3 SENSITIVITY IN LIQUID

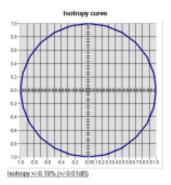
Liquid	Frequency	ConvF
	<u>(MHz +/-</u>	
	100MHz)	
HL450*	450*	1.74*
BL450*	450*	1.67•
HL750	750	1.69
BL750	750	1.73
HL850	835	1.75
BL850	835	1.80
HL900	900	1.87
BL900	900	1.85
HL1800	1800	2.09
BL1800	1800	2.15
HL1900	1900	2.14
BL1900	1900	2.27
HL2000	2000	2.31
BL2000	2000	2.34
HL2300	2300	2.46
BL2300	2300	2.51
HL2450	2450	2.60
BL2450	2450	2.70
HL2600	2600	2.39
BL2600	2600	2.50
HL5200	5200	1.85
BL5200	5200	1.81
HL5400	5400	2.07
BL5400	5400	2.00
HL5600	5600	2.19
BL5600	5600	2.11
HL5800	5800	2.01
BL5800	5800	1.97

* Frequency not cover by COFRAC scope, calibration not accredited

LOWER DETECTION LIMIT: 7mW/kg

Page: 8/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.22.BES.A

5.4 ISOTROPY

HL1800 MHz

Page: 9/11

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.22.BES.A

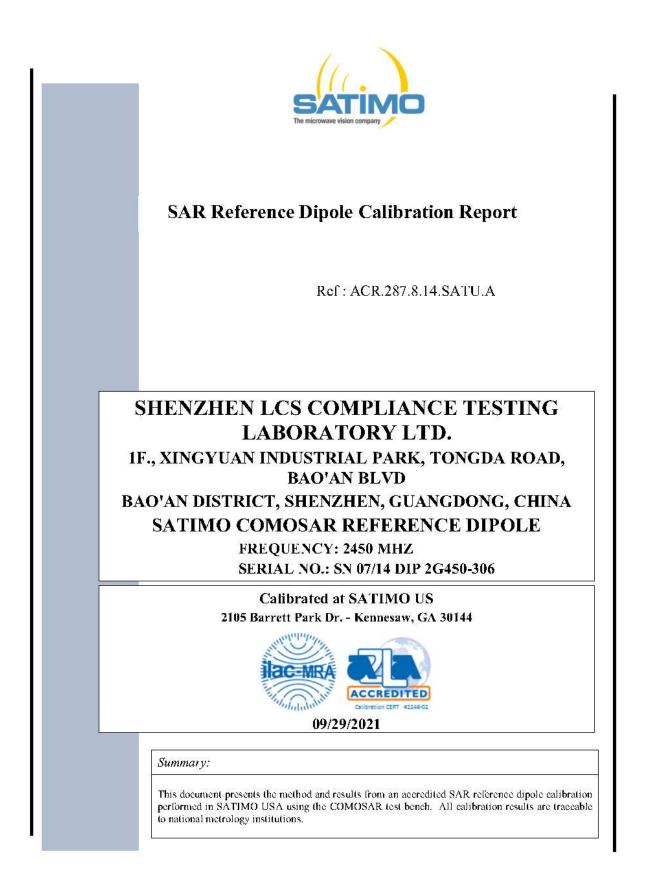
6 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	cation No. Current Calibration Date Next Calibration		
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2022	
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027	
Multimeter	Keithley 2000	1160271	02/2020	02/2023	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2021	06/2024	
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2019	11/2022	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.	

Page: 10/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

COMOSAR E-FIELD PROBE CALIBRATION REPORT


Ref: ACR.180.4.22.BES.A

Liquid transition	MVG			Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 11/11

SID2450 Dipole Calibration Ceriticate

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

100

2	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/12/2021	JS
Checked by :	Jérôme LUC	Product Manager	10/12/2021	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	10/12/2021	thim thirthowski

	Customer Name	
	Shenzhen LCS	
Distribution :	Compliance Testing Laboratory Ltd.	

Issue	Date	Mod fications	
A	10/12/2021	Initial release	

Page: 2/11

Ref: ACR.287.8.14.SATU.A

TABLE OF CONTENTS

1	Intro	duction4	
2	Dev	ice Under Test4	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mca	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Мса	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results6	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment	

Page: 3/11

Ref: ACR.287.8.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID2450			
Serial Number	SN 07/14 DIP 2G450-306			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU, A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Expanded Uncertainty on Return Lo		
0.1 dB		

5.2 **DIMENSION MEASUREMENT**

The following uncertainties apply to the dimension measurements:

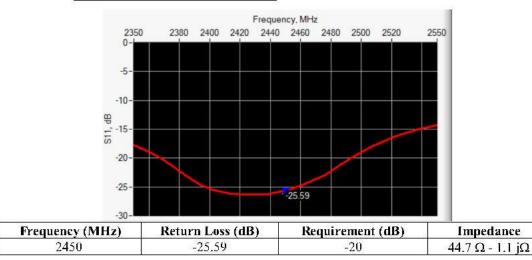
Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty	
lg	20.3 %	
10 g	20.1 %	

Page: S/11



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 <u>MECHANICAL DIMENSIONS</u>

Frequency MHz	Ln	Lmm hmm		m	d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.	8	6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.	2	6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.	-	3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.	-	3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

Ref: ACR.287.8.14.SATU.A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

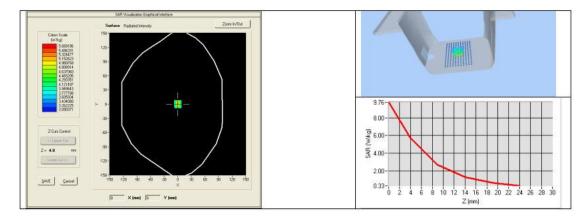
Frequency MHz	Relative permittivity (s,')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 39.0 sigma : 1.77
Distance between dipole center and liquid	10.0 mm
Area sean resolution	dx=8mm/dy=8mm

Page: 7/11



Ref: ACR.287.8.14.SATU.A

Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	2450 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5,55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	2
1640	34.2		18.4	
1750	36.4		19.3	5
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	5
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	5
2450	52.4	53.89 (5.39)	24	24.15 (2.42)
2600	55.3		24.6	
3000	63.8		25.7	2
3500	67.1		25	

Page: 8/11

Ref: ACR.287.8.14.SATU.A

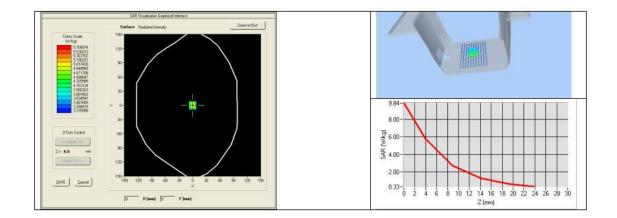
7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛ,')	Conductivi	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %	5	1.40 ±5 %	
1800	53.3 ±5 %	2	1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS
2600	52.5 ±5 %	5	2.16 ±5 %	
3000	52.0 ±5 %	2	2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %	5	5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 53.0 sigma: 1.93
Distance between dipole center and liquid	10.0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Page: 9/11



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	54.65 (5.46)	24.58 (2.46)

Page: 10/11

Ref: ACR.287.8.14.SATU.A

8 LIST OF EQUIPMENT

	Equi	pment Summary S	Sheet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2021	02/2024
Calipers	Carrera	CALIPER-01	12/2018	12/2021
Reference Probe	Satimo	EPG122 SN 18/11	10/2021	10/2022
Multimeter	Keithley 2000	1188656	12/2018	12/2021
Signal Generator	Agilent E4438C	MY49070581	12/2018	12/2021
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2018	12/2021
Power Sensor	HP ECP-E26A	US37181460	12/2018	12/2021
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2021	8/2024

Page: 11/11

SAR Reference Dipole Calibration Report

Ref: ACR.273.2.18.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. 1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 1900 MHZ SERIAL NO.: SN 38/18 DIP 1G900-466

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 09/22/2021

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	09/28/2021	JS
Checked by :	Jérôme LUC	Product Manager	09/28/2021	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	09/28/2021	thim nuthoushi

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Mod.fications
A	09/28/2021	Initial release
: 2		

Page: 2/11

Ref: ACR.273.2.18.SATU.A

TABLE OF CONTENTS

1	Intro	duction4	
2	Dev	iee Under Test	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mca	surement Method	
	4.1	Return Loss Requirements	5
24	4.2	Mechanical Requirements	5
5	Mca	surement Uncertainty	
13	5.1	Return Loss	5
8	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Calil	bration Measurement Results	
5	6.1	Return Loss and Impedance In Head Liquid	6
1	6.2	Return Loss and Impedance In Body Liquid	6
1	6.3	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
68	7.2	SAR Measurement Result With Head Liquid	8
35	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment11	

Page: 3/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.2.18.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID1900
Serial Number	SN 38/18 DIP 1G900-466
Product Condition (new/used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

Ref: ACR.273.2.18.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 <u>MECHANICAL REQUIREMENTS</u>

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

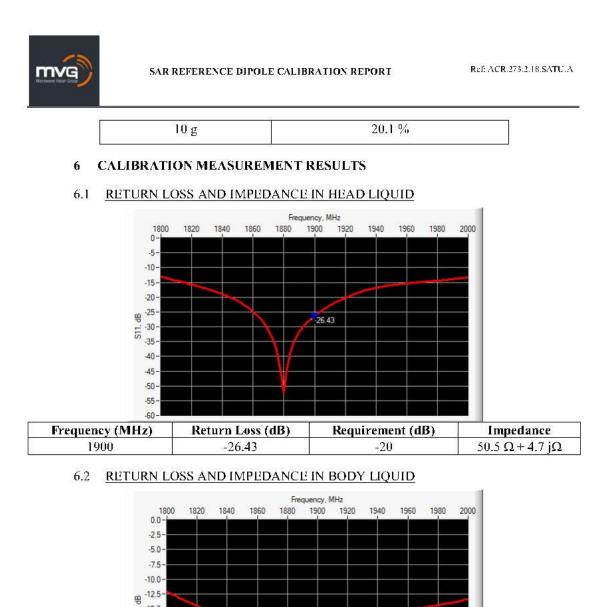
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 **DIMENSION MEASUREMENT**

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm


5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Expanded Uncertainty
20.3 %

Page: S/11

6.3 MECHANICAL DIMENSIONS

Return Loss (dB)

-24.64

-15.0--17.5--20.0--22.5--25.0-

-27.5-

Frequency (MHz)

1900

Frequency MHz	Ln	ากา	hm	1m	dir	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

24.64

Requirement (dB)

-20

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Impedance

 $46.2 \Omega + 4.4 j\Omega$

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.2.18.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.	PASS	39.5 ±1 %.	PASS	3.6 ±1 %.	PAS
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity ($\boldsymbol{\epsilon}_{r}$ ')		Conductivity (ơ) S/r	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.2.18.SATU.A

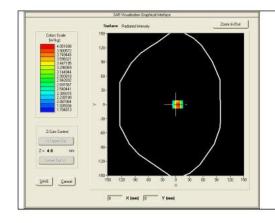
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

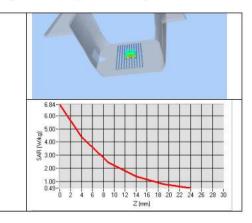
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 38.5 sigma : 1.45
Distance between dipole center and liquid	10.0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Sean Resolution	dx=8nm/dy=8nm/dz=5nm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	


Page: 8/11



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.2.18.SATU.A

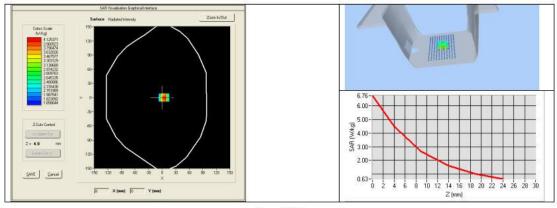
1900	39.7	40.03 (4.00)	20.5	20.55 (2.06)
1950	40.5		20.9	
2000	41.1		2 1.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %	PASS	1.52 ±5 %	PASS
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.273.2.18.SATU.A

2300	52.9 ±5 %	1.81 ±5 %
2450	52.7 ±5 %	1.95 ±5 %
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
3700	51.0 ±5 %	3.55 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 53.3 sigma: 1.56
Distance between dipole center and liquid	10.0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Sean Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1900	40.91 (4.09)	21.40 (2.14)

Page: 10/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.2.18.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	06/2021	06/2024		
Calipers	Carrera	CALIPER-01	01/2020	01/2023		
Reference Probe	M∀G	EPG122 SN 18/11	08/2021	08/2022		
Multimeter	Keithley 2000	1188656	01/2020	01/2023		
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	11/2020	11/2023		
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	150798832	11/2020	11/2023		

Page: 11/11

SAR System PHOTOGRAPHS

Liquid depth≧15cm

SETUP PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of SAR.

Page 70 of 70 FCC ID: XYFTWINX14SP

Report No.: LCSA01064075E

EUT PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of SAR

.....The End of Test Report.....