

RADIO TESTREPORT

S T S

Report No: STS1807077W01

Issued for

FrSky Electronic Co., Ltd.

F-4, Building C, Zhongxiu Technology Park, No.3 Yuanxi Road, Wuxi, 214125, Jiangsu, China

Product Name:	900MHz radio system
Brand Name:	FrSky
Model Name:	R9M Lite
Series Model:	R9M Lite Pro, R9M Lite S, R9 Mini, R9 MM, R9 Pilot, R9 Stabilization, G-R9 Slim, G-R9 Mini, R9 Slim+, R9 Mini-
FCC ID:	XYFNR9MLSTR
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced we permission from STS, All Test Data Presented in this report is only applicable to presented Test sample VAL

Shenzhen STS Test Services Co., Ltd. 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

TEST RESULT CERTIFICATION

Applicant's name	FrSky Electronic Co., Ltd.
Address	F-4, Building C, Zhongxiu Technology Park, No.3 Yuanxi Road, Wuxi, 214125, Jiangsu, China
Manufacture's Name:	FrSky Electronic Co., Ltd.
Address	F-4, Building C, Zhongxiu Technology Park, No.3 Yuanxi Road, Wuxi, 214125, Jiangsu, China
Product description	
Product Name:	900MHz radio system
Brand Name:	FrSky
Model Name:	R9M Lite
SeriesModel	R9M Lite Pro, R9M Lite S, R9 Mini, R9 MM, R9 Pilot, R9 Stabilization, G-R9 Slim, G-R9 Mini, R9 Slim+, R9 Mini-
Test Standards	FCC Part15.247
Test procedure	. ANSI C63.10-2013
This device described above ha	as been tested by STS, the test results show that the equipment under

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests	09 July 2018 ~ 13 July 2018
Date of Issue	13 July 2018

Test Result..... Pass

Testing Engineer :	Chins cher
	(Chris chen)
Technical Manager :	Sean She APPROVAL
	(Sean she)
Authorized Signatory :	Mari
	(Vita Li)

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	11
2.5EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3. EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 TEST PROCEDURE	15
3.3 TEST SETUP	15
3.4 EUT OPERATING CONDITIONS	15
3.5 TEST RESULTS	16
4. RADIATED EMISSION MEASUREMENT	17
4.1 RADIATED EMISSION LIMITS	17
4.2 TEST PROCEDURE	18
4.3 TEST SETUP	19
4.4 EUT OPERATING CONDITIONS	19
4.5 FIELD STRENGTH CALCULATION	20
4.6 TEST RESULTS	21
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	28
5.1 REQUIREMENT	28
5.2TEST PROCEDURE	28
5.3 TEST SETUP	28
5.4 EUT OPERATION CONDITIONS	28
5.5 TEST RESULTS	29
6. POWER SPECTRAL DENSITY TEST	32
6.1 APPLIED PROCEDURES / LIMIT	32
6.2 TEST PROCEDURE	32
6.3 TEST SETUP	32
6.4 EUT OPERATION CONDITIONS	32

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

Table of Contents

6.5 TEST RESULTS	33
7. BANDWIDTH TEST	35
7.1 APPLIED PROCEDURES / LIMIT	35
7.2 TEST PROCEDURE	35
7.3 TEST SETUP	35
7.4 EUT OPERATION CONDITIONS	35
7.5 TEST RESULTS	36
8. PEAK OUTPUT POWER TEST	38
8.1 APPLIED PROCEDURES / LIMIT	38
8.2 TEST PROCEDURE	38
8.3 TEST SETUP	38
8.4 EUT OPERATION CONDITIONS	38
8.5 TEST RESULTS	39
9. ANTENNA REQUIREMENT	40
9.1 STANDARD REQUIREMENT	40
9.2 EUT ANTENNA	40
10. EUT TEST PHOTO	41

Page 5 of41Report No.: STS1807077W01

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	13 July 2018	STS1807077W01	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 DTS Meas Guidance v04

FCC Part15.247,Subpart C							
Standard Section	Test Item	Judgment	Remark				
15.207	Conducted Emission	N/A					
15.247 (a)(2)	6dB Bandwidth	PASS					
15.247 (b)(3)	Output Power	PASS					
15.247 (c)	Radiated Spurious Emission	PASS					
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS					
15.247 (e)	Power Spectral Density	PASS					
15.205	Restricted Band Edge Emission	PASS					
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS					
15.203	Antenna Requirement	PASS					

NOTE:

(1)"N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China CNAS Registration No.: L7649;FCC Registration No.: 625569 IC Registration No.: 12108A; A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\ k=2$, providing a level of confidence of approximately 95 % $^\circ$

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power,conducted	±0.71dB
4	Spurious emissions, conducted	±0.63dB
5	All emissions, radiated (9KHz-30MHz)	±3.02dB
6	All emissions,radiated(30MHz-200MHz)	±3.80dB
7	All emissions,radiated(200MHz-1000MHz)	±3.97dB
8	All emissions,radiated(>1G)	±3.03dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name	900MHz radio system				
Trade Name	FrSky				
Model Name	R9M Lite				
Series Model		Lite S, R9 Mini, R9 MM, R9 Pilot, R9 Slim, G-R9 Mini, R9 Slim+, R9 Mini-			
Model Difference	Only different in mod	delnames.			
Product Description	The EUT is a900MHz radio systemOperation Frequency:904~925 MHzModulation Type:LORANumber Of Channel 43Antenna Designation:Please see Note 3.AntennaGain (dBi)2 dBi				
Channel List	Please refer to the N	lote 2.			
Power Rating	DC 6.8V-8.4V				
Hardware version number	N/A				
Software versionnumber	N/A				
Connecting I/O Port(s)	Please refer to the L	Jser's Manual			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page 9 of41Report No.: STS1807077W01

2.									
	Channel List								
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)	
	1	904	12	909.5	23	915	34	920.5	
	2	904.5	13	910	24	915.5	35	921	
	3	905	14	910.5	25	916	36	921.5	
	4	905.5	15	911	26	916.5	37	922	
	5	906	16	911.5	27	917	38	922.5	
	6	906.5	17	912	28	917.5	39	923	
	7	907	18	912.5	29	918	40	923.5	
	8	907.5	19	913	30	918.5	41	924	
	9	908	20	913.5	31	919	42	924.5	
	10	908.5	21	914	32	919.5	43	925	
	11	909	22	914.5	33	920			

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	FrSky	R9M Lite	Dipole Antenna	N/A	2	ANT

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

2.2 DESCRIPTION OF TEST MODES

Forconducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH01(904.1MHz)	1 MHz/LORA
Mode 2	TX CH22(914.5MHz)	1 MHz/LORA
Mode 3	TX CH43(925MHz)	1 MHz/LORA

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report

(3)Controlled using a bespoke application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission mode and to select the test channels, data rates and modulation schemes as required.

2.3BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious EmissionTest

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	PC	HP	N/A	N/A	N/A
E-3	Adapter	N/A	ASUC41a-050120	N/A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
C-1	USB Cable shielded line	NO	100cm	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.5EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESCI	102086	2017.10.15	2018.10.14
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2018.11.01
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1343	2017.10.27	2018.10.26
SHF-EHF Horn Antenna(18G-40GHz)	A-INFO	LB-180400-KF	N/A	2018.03.11	2019.03.10
Temperature & Humitidy	HH660	Mieo	N/A	2017.10.15	2018.10.14
Temperature & Humitidy	HH660	Mieo	N/A	2017.10.15	2018.10.14
Pre-mplifier (0.1M-3GHz)	EM	EM330	60538	2018.03.11	2019.03.10
PreAmplifier (1G-26.5GHz)	Agilent	8449B	60538	2017.10.15	2018.10.14
Passive Loop(9K30MHz)	ZHNAN	ZN3090C	16035	2018.03.11	2019.03.10
Low frequency cable	EM	R01	N/A	2018.03.11	2019.03.10
Low frequency cable	EM	R06	N/A	2018.03.11	2019.03.10
High frequency cable	SCHWARZBECK	R04	N/A	2018.03.11	2019.03.10
High frequency cable	SCHWARZBECK	R02	N/A	2018.03.11	2019.03.10
Semi-anechoic chamber	Changling	966	N/A	2017.10.15	2018.10.14
trun table	EM	SC100_1	60531	N/A	N/A
Antnna mast	EM	SC100	N/A	N/A	N/A
Max-full Antenna Corp	MF	MFA-440H	N/A	N/A	N/A

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2017.10.15	2018.10.14
LISN	R&S	ENV216	101242	2017.10.15	2018.10.14
conduction Cable	EM	C01	N/A	2018.03.11	2019.03.10
Temperature & Humitidy	Mieo	HH660	N/A	2017.10.15	2018.10.14

Page 13 of41Report No.: STS1807077W01

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2017.10.15	2018.10.14
Power Meter	R&S	NRP	100510	2017.10.15	2018.10.14
Spectrum Analyzer	Agilent	N9020A	MY51110105	2018.03.08	2019.03.07
Signal Analyzer	Agilent	N9020A	MY49100060	2017.10.15	2018.10.14

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

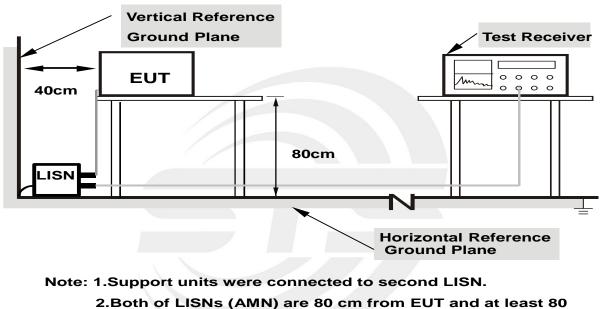
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

3.4EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

from other units and other metal planes

3.5TEST RESULTS

Temperature:	27.3°C	Relative Humidity:	62%
Test Voltage:	AC 120V/60Hz	Phase:	L/N
Test Mode:	N/A		

Note: denotes test is not applicable in this test report.

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength Measurement Dista	
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74 54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted		
band)	1MHz / 3MHz	

For Band edge

Spectrum Parameter	Setting
Detector	Peak/AV
Start/Stop Frequency	Lower Band Edge: 800to904 MHz
Start/Stop Frequency	Upper Band Edge: 924to1000 MHz
RB / VB (emission in restricted band)	1MHz / 3MHz

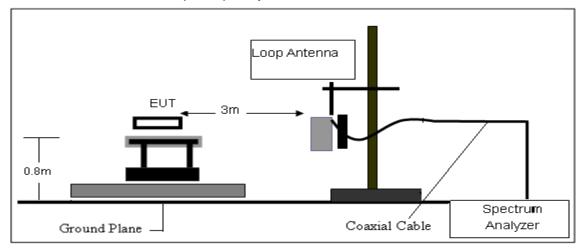
Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

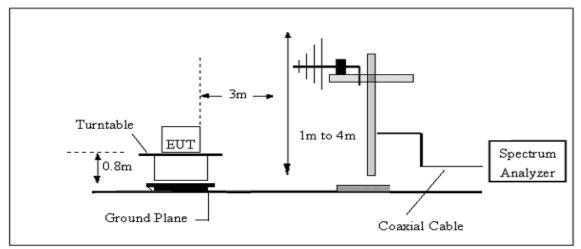
 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

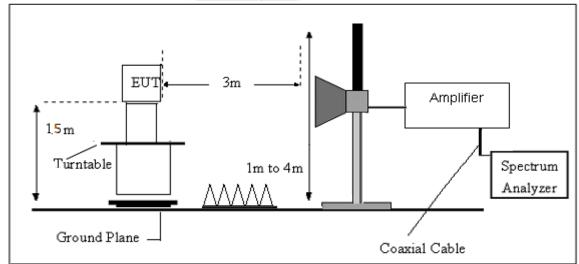
4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were testedand performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com

4.6TEST RESULTS

(Between 9KHz - 30 MHz)

Temperature:	27.3 ℃	Relative Humidtity:	62%
Test Voltage:	DC 7V	Polarization:	
Test Mode:	TX Mode		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

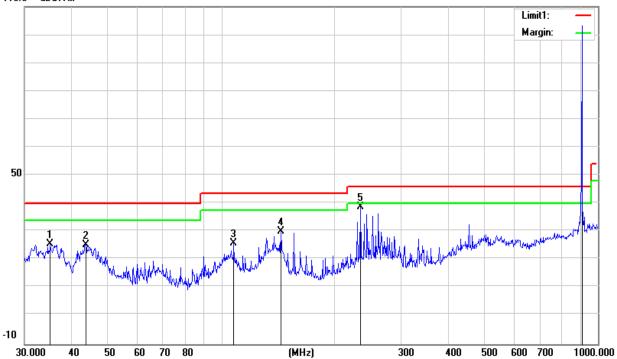
Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

(30MHz -1000MHz)


Temperature:	27.3 ℃	Relative Humidity:	62%
Test Voltage:	DC 7V	Phase:	Horizontal
Test Mode:	Mode1/2/3(Mode 3-1M worst	mode)	

Frequency	Reading	Correct	Result	Limit	Margin	Remark	
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
35.1278	39.37	-13.82	25.55	40.00	-14.45	QP	
43.6584	43.57	-18.21	25.36	40.00	-14.64	QP	
107.8877	44.40	-18.52	25.88	43.50	-17.62	QP	
143.8295	47.60	-17.69	29.91	43.50	-13.59	QP	
234.1684	56.90	-18.18	38.72	46.00	-7.28	QP	
904.0000	105.49	-2.12	103.37	46.00	57.37	Peak	

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

Page 23 of41Report No.: STS1807077W01

Temperature:	27.3 ℃	Relative Humidity:	62%
Test Voltage:	DC 7V	Phase:	Vertical
Test Mode:	Mode1/2/3(Mode 3-1M worst	mode)	

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
44.1202	43.95	-18.45	25.50	40.00	-14.50	QP
55.4147	52.30	-23.03	29.27	40.00	-10.73	QP
107.8877	43.15	-18.52	24.63	43.50	-18.87	QP
143.8295	43.09	-17.69	25.40	43.50	-18.10	QP
261.0583	51.98	-15.09	36.89	46.00	-9.11	QP
904.0000	104.93	-2.12	102.81	46.00	56.81	Peak

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

110.0 dBu¥/m

(1GHz-25GHz)Restricted band and Spurious emission Requirements

Low Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Low	Channel (904.1	MHz)				
1229.44	47.92	44.70	6.70	28.20	-9.80	38.12	74.00	-35.88	PK	Vertical
1229.44	39.62	44.70	6.70	28.20	-9.80	29.82	54.00	-24.18	AV	Vertical
1229.48	49.07	44.70	6.70	28.20	-9.80	39.27	74.00	-34.73	PK	Horizontal
1229.48	38.61	44.70	6.70	28.20	-9.80	28.81	54.00	-25.19	AV	Horizontal
1808.34	58.83	44.20	9.04	31.60	-3.56	55.27	74.00	-18.73	PK	Vertical
1808.34	38.75	44.20	9.04	31.60	-3.56	35.19	54.00	-18.81	AV	Vertical
1808.47	58.78	44.20	9.04	31.60	-3.56	55.22	74.00	-18.78	PK	Horizontal
1808.47	38.71	44.20	9.04	31.60	-3.56	35.15	54.00	-18.85	AV	Horizontal
2015.92	45.68	44.20	9.86	32.00	-2.34	43.34	74.00	-30.66	PK	Vertical
2015.92	37.53	44.20	9.86	32.00	-2.34	35.19	54.00	-18.81	AV	Vertical
2015.98	45.55	44.20	9.86	32.00	-2.34	43.21	74.00	-30.79	PK	Horizontal
2015.98	38.46	44.20	9.86	32.00	-2.34	36.12	54.00	-17.88	AV	Horizontal
2705.95	51.15	43.50	11.40	35.50	3.40	54.55	74.00	-19.45	PK	Vertical
2705.95	33.70	43.50	11.40	35.50	3.40	37.10	54.00	-16.90	AV	Vertical
2705.81	50.79	43.50	11.40	35.50	3.40	54.19	74.00	-19.81	PK	Horizontal
2705.81	32.78	43.50	11.40	35.50	3.40	36.18	54.00	-17.82	AV	Horizontal

Page 25 of41Report No.: STS1807077W01

Mid Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Mid	Channel (914.5 l	MHz)				
1224.76	49.01	44.70	6.70	28.20	-9.80	39.21	74.00	-34.79	PK	Vertical
1224.76	38.17	44.70	6.70	28.20	-9.80	28.37	54.00	-25.63	AV	Vertical
1224.62	48.08	44.70	6.70	28.20	-9.80	38.28	74.00	-35.72	PK	Horizontal
1224.62	38.49	44.70	6.70	28.20	-9.80	28.69	54.00	-25.31	AV	Horizontal
1828.41	59.21	44.20	9.04	31.60	-3.56	55.65	74.00	-18.35	PK	Vertical
1828.41	38.93	44.20	9.04	31.60	-3.56	35.37	54.00	-18.63	AV	Vertical
1828.54	59.58	44.20	9.04	31.60	-3.56	56.02	74.00	-17.98	PK	Horizontal
1828.54	38.99	44.20	9.04	31.60	-3.56	35.43	54.00	-18.57	AV	Horizontal
2010.80	45.34	44.20	9.86	32.00	-2.34	43.00	74.00	-31.00	PK	Vertical
2010.80	38.12	44.20	9.86	32.00	-2.34	35.78	54.00	-18.22	AV	Vertical
2010.92	45.99	44.20	9.86	32.00	-2.34	43.65	74.00	-30.35	PK	Horizontal
2010.92	37.58	44.20	9.86	32.00	-2.34	35.24	54.00	-18.76	AV	Horizontal
2741.68	50.74	43.50	11.40	35.50	3.40	54.14	74.00	-19.86	PK	Vertical
2741.68	32.94	43.50	11.40	35.50	3.40	36.34	54.00	-17.66	AV	Vertical
2741.81	51.75	43.50	11.40	35.50	3.40	55.15	74.00	-18.85	PK	Horizontal
2741.81	33.48	43.50	11.40	35.50	3.40	36.88	54.00	-17.12	AV	Horizontal

Page 26 of41Report No.: STS1807077W01

High Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				High	h Channel (925 M	ЛНz)				
1221.00	48.86	44.70	6.70	28.20	-9.80	39.06	74.00	-34.94	PK	Vertical
1221.00	38.91	44.70	6.70	28.20	-9.80	29.11	54.00	-24.89	AV	Vertical
1221.08	48.76	44.70	6.70	28.20	-9.80	38.96	74.00	-35.04	PK	Horizontal
1221.08	38.54	44.70	6.70	28.20	-9.80	28.74	54.00	-25.26	AV	Horizontal
1850.36	58.36	44.20	9.04	31.60	-3.56	54.80	74.00	-19.20	PK	Vertical
1850.36	39.53	44.20	9.04	31.60	-3.56	35.97	54.00	-18.03	AV	Vertical
1850.61	59.09	44.20	9.04	31.60	-3.56	55.53	74.00	-18.47	PK	Horizontal
1850.61	39.32	44.20	9.04	31.60	-3.56	35.76	54.00	-18.24	AV	Horizontal
1998.00	45.86	44.20	9.86	32.00	-2.34	43.52	74.00	-30.48	PK	Vertical
1998.00	37.56	44.20	9.86	32.00	-2.34	35.22	54.00	-18.78	AV	Vertical
1998.32	46.34	44.20	9.86	32.00	-2.34	44.00	74.00	-30.00	PK	Horizontal
1998.32	37.17	44.20	9.86	32.00	-2.34	34.83	54.00	-19.17	AV	Horizontal
2774.91	51.99	43.50	11.40	35.50	3.40	55.39	74.00	-18.61	PK	Vertical
2774.91	33.01	43.50	11.40	35.50	3.40	36.41	54.00	-17.59	AV	Vertical
2774.77	51.13	43.50	11.40	35.50	3.40	54.53	74.00	-19.47	PK	Horizontal
2774.77	32.68	43.50	11.40	35.50	3.40	36.08	54.00	-17.92	AV	Horizontal
Noto										

Note:

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

4.6 TEST RESULTS(Restricted Bands Requirements)

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
					LORA					
902.00	67.36	43.80	4.91	25.90	-12.99	54.37	74.00	-19.63	PK	Vertical
902.00	53.33	43.80	4.91	25.90	-12.99	40.34	54.00	-13.66	AV	Vertical
902.00	69.03	43.80	4.91	25.90	-12.99	56.04	74.00	-17.96	PK	Horizontal
902.00	52.39	43.80	4.91	25.90	-12.99	39.40	54.00	-14.60	AV	Horizontal
928.00	69.22	43.80	5.12	25.90	-12.78	56.44	74.00	-17.56	PK	Vertical
928.00	52.47	43.80	5.12	25.90	-12.78	39.69	54.00	-14.31	AV	Vertical
928.00	70.31	43.80	5.12	25.90	-12.78	57.53	74.00	-16.47	PK	Horizontal
928.00	53.48	43.80	5.12	25.90	-12.78	40.70	54.00	-13.30	AV	Horizontal

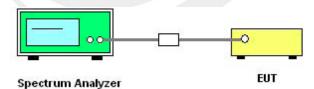
Low measurement frequencies is range from 2300 to 2403 MHz, high measurement frequencies is range from 2479 to 2500 MHz.

Only show the worst point data of the emissions in the frequency 2300-2403 MHz and 2479-2500 MHz.

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


5.2TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting				
Detector	Peak				
Stort/Stop Fraguener	Lower Band Edge: 800 to 904 MHz				
Start/Stop Frequency	Upper Band Edge: 924 to 1000 MHz				
RB / VB (emission in restricted band)	100 KHz/300 KHz				
Trace-Mode:	Max hold				

5.3 TEST SETUP

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

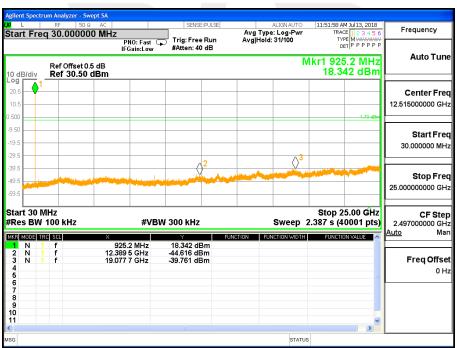
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Voltage:	DC 7V	Test Mode:	TX Mode /CH01, CH22, CH43

Marker	11:33:31 AM Jul 13, 2018 TRACE 1 2 3 4 5 6	ALIGNAUTO		E:PULSE	SENSI		50Ω AC		L	_
Select Marker	DET P P P P P	: Log-Pwr 29/100	Avg Type Avg Hold:		Trig: Free #Atten: 4	VIHZ PNO: Fast (IFGain:Low	0000000	903.950	ker 1	lar
1	kr1 904.0 MHz 18.293 dBm	M					et 0.5 dB .50 dBm		B/div	0 d
Norm									1 A!	20.5
Norm										10.5
	1.71 dBm									500 1.50
Delt										19.5
									i	9.5
				× *						39.5
Fixed										19.5 59.5
o	Stop 25.00 GHz .387 s (40001 pts)	<u> </u>			W 300 kHz	#VB		100 kHz		Re
	FUNCTION VALUE	ICTION WIDTH	ICTION FUN	Bm	Y 18.293 dl	04.0 MHz		f	MODE TR	1
Properties					-44.583 di -41.171 di	184 1 GHz 147 8 GHz		f	N 1 N 1	2 3 4 5
										67
Мо										8 9
1 of	~									0 1

01 CH

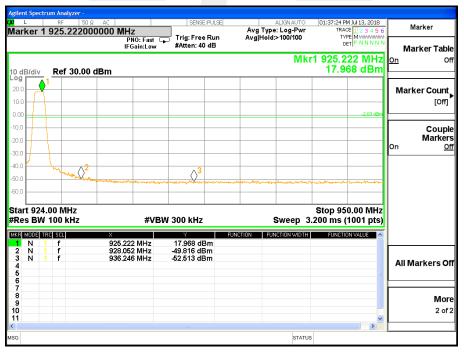

Shenzhen STS Test Services Co., Ltd.

<mark>ilent</mark> R L	Spe	strun		lyzer - S											F
	t Fr	ea	RF 30.	50 : 00000		lz			NSE:PULSE		Туре	LIGNAUTO	TRA	AM Jul 13, 2018 ACE <u>1 2 3 4 5 6</u>	Frequency
						Р	NO: Fast Gain:Low	Trig: F #Atten	ree Run : 40 dB	Avg	Hold:	27/100	т	DET P P P P P P	
0 dE	//div			Offset 0 30.50								N		4.6 MHz 301 dBm	Auto Tun
og 20.5		1													Center Fre
0.5	ľ														12.51500000 GH
500														-1.69 dBm	12.0100000000
.50															
9.5															Start Fre
9.5															30.000000 MH
9.5								2			$\langle \rangle^3$			L. L. Ballin	
9.5				al			L. Y	and strength of	Sec. 1	- Internet	N _{el}				Stop Fre
9.5				and an a start of the provided of the start											25.00000000 GH
		MH N 1		٢Hz			#VB	W 300 KI	١z			Sweep 2		25.00 GH2 40001 pts)	CF Ste 2.49700000 GH
		TRC			×			Y		FUNCTION	FUN	ICTION WIDTH	FUNCT	ION VALUE	Auto Ma
	N N		f				6 MHz 7 GHz	18.301							
	N		f		1	6.715	6 GHz	-40.965	dBm						Freq Offs
4 5 7 8														=	01
5															
3															
5 1															
														×	
												STATUS			

22 CH

43 CH

Page 31 of41Report No.: STS1807077W01



For Band edge

L RF	50 Ω AC	SENSE:PULSE	ALIGNAUTO	01:32:41 PM Jul 13, 2018	Marker
rker 1 903.82	5000000 MHz PNO: F IFGain:1		Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 123456 TYPE MWWWWW DET PNNNNN	Select Marke
IB/div Ref 30	.00 dBm		Mkr	1 903.825 MHz 17.928 dBm	
				<u>\$</u>	Norm
				2.07 dBp	Norn
				-2.07 dem	
)					De
) 				^2	
)	MANUA June - and an	une and have a some	methoder and any	and the and the state of the st	Fixe
)					
rt 880.00 MHz es BW 100 kHz	: ;	≠VBW 300 kHz	Sweep 3.	Stop 905.00 MHz 067 ms (1001 pts)	(
Mode TRO SCU	× 903.825 MH		FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
N 1 F N 1 F N 1 F	903.825 MF 902.025 MF 898.050 MF	lz -45.476 dBm		н	Propertie
					M
					1 c

01CH

43CH

6. POWER SPECTRAL DENSITY TEST

6.1APPLIED PROCEDURES / LIMIT

	FCC Part15.247,Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	902-928	PASS			

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 7V		TX Mode /CH01, CH22, CH43

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3KHz)	Result
904 MHz	4.605	≤8	PASS
914.5 MHz	4.682	≤8	PASS
925 MHz	4.684	≤8	PASS

TX CH01

	AC AC		SENSE:PULSE		LIGNAUTO		1 Jul 13, 2018	Peak Search
arker 1 904.21600	PNO:	Wide 🕞 Trig n:Low #Att	: Free Run en: 30 dB	Avg Type: Avg Hold:>		TYP	E 1 2 3 4 5 6 E MWWWWW T P P P P P P	
Ref Offset 0. dB/div Ref 20.50					Mkr1	904.216 4.60	0 MHz 05 dBm	NextPea
5								Next Pk Rig
0		Monor	www.www.	When M				
	www.world.com	₩V			1/m			Next Pk Le
	N				N.			
5	×					N _{Nu.}		Marker Del
5						White Line	- -	
5							May My Maring	Mkr→C
5 								Mkr→RefL
Ĭ								wiki →Rei L
5								
								Мо 1 о
nter 904.0000 MHz es BW 3.0 kHz		#VBW 10 k	u-	-	husen d	Span 1. 26.5 ms (200 MHz	10
ES DW J.U KHZ		#VDVV IUK	ΠZ	-	weep i	20.5 ms (1001 pts)	

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

TX CH22

TX CH43

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

7. BANDWIDTH TEST

7.1APPLIED PROCEDURES / LIMIT

FCC Part15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	902-928	PASS

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

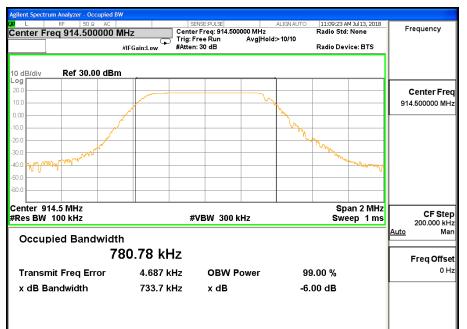
7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 7V		TX Mode /CH01, CH22, CH43

Frequency	y 6dB Bandwidth (MHz)		Result
904 MHz	0.731	>=500KHz	PASS
914.5 MHz	0.734	>=500KHz	PASS
925 MHz	0.726	>=500KHz	PASS


TX CH 01

Shenzhen STS Test Services Co., Ltd.

TX CH 22

TX CH 43

STATUS

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

8. PEAK OUTPUT POWER TEST

8.1APPLIED PROCEDURES / LIMIT

FCC Part15.247,Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				Result
15.247(b)(3)	Output Power	1 watt or 30dBm	902-928	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Meter

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 7V	Lest Minde.	TX Mode /CH01, CH22, CH43

TX Mode					
Test Channel	Frequency Conducted Output Power		LIMIT		
	(MHz)	Peak (dBm)	AVG (dBm)	dBm	
CH01	904	21.24	18.04	30	
CH22	914.5	21.37	18.16	30	
CH43	925	21.42	18.24	30	

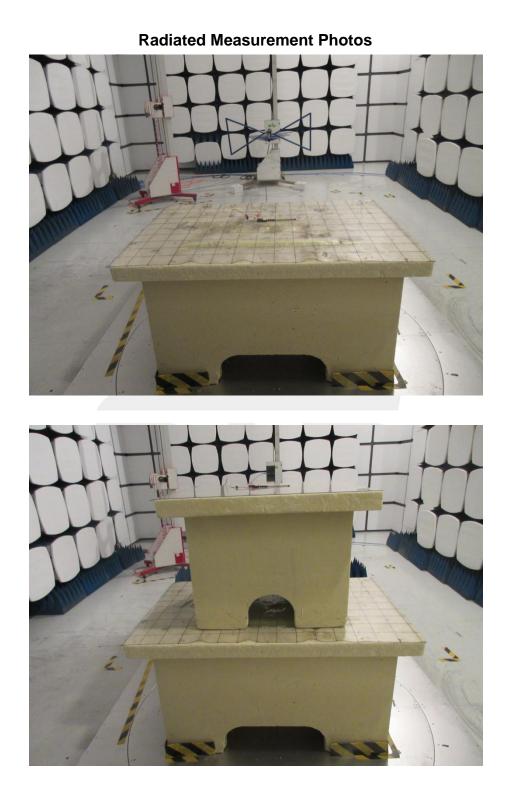
Shenzhen STS Test Services Co., Ltd.

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shallbe designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

9.2 EUT ANTENNA


The EUT antenna is Dipole Antenna, the antenna connector is reverse polarity (external thread with needle), It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

* * * * * END OF THE REPORT * * * *

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com