

EX3DV4- SN:3759

December 13, 2018

10607- AAB	IEEE 802.11ac WiFI (20MHz, MCS0, 90pc duty cycle)	X	4.46	65.61	15.85	0.46	130.0	± 9.6 %
		Y	4.61	65.89	16.02		130.0	-
		Z	4.44	65.67	15.88		130.0	
10608- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.62	65.98	16.01	0.46	130.0	± 9.6 %
		Y	4.79	66.29	16.18		130.0	
		Z	4.60	66.04	16.04		130.0	
10609- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.51	65.80	15.83	0.46	130.0	± 9.6 %
1010	sope daty cycle)	Y	4.68	66.13	16.02		130.0	
		Z	4.49	65.86	15.85		130.0	
10610- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.56	65.97	16.00	0.46	130.0	± 9.6 %
		Y	4.73	66.29	16.18		130.0	-
		Z	4.55	66.03	16.03		130.0	
10611- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	x	4.48	65.77	15.84	0.46	130.0	± 9.6 %
		Y	4.65	66.10	16.03		130.0	
		Z	4.46	65.83	15.87		130.0	
10612- AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	x	4.48	65.91	15.88	0.46	130.0	± 9.6 %
		Y	4.66	66.25	16.07		130.0	
		Z	4.46	65.96	15.90		130.0	
10613- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	×	4.48	65.76	15.74	0.46	130.0	± 9.6 %
		Y	4.66	66.13	15.96		130.0	
		Z	4.46	65.81	15.76		130.0	
10614- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.43	65.96	15.99	0.46	130.0	± 9.6 %
		Y	4.60	66.32	16.18		130.0	
		Z	4.42	66.03	16.02		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.48	65.60	15.61	0.46	130.0	± 9.6 %
		Y	4.65	65.94	15.81		130.0	
		Z	4.45	65.64	15.62		130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.12	66.07	16.09	0.46	130.0	± 9.6 %
		Y	5.25	66.37	16.21		130.0	
		Z	5.09	66.11	16.11		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.19	66.29	16.18	0.46	130.0	± 9.6 %
		Y	5.32	66.52	16.26		130.0	
		Z	5.17	66.32	16.19		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.08	66.28	16.19	0.46	130.0	± 9.6 %
		Y	5.20	66.54	16.29		130.0	
-		Z	5.06	66.33	16.20		130.0	
10619- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	x	5.09	66.06	16.01	0.46	130.0	± 9.6 %
		Y	5.22	66.35	16.13		130.0	
		Z	5.06	66.10	16.02		130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.17	66.10	16.08	0.46	130.0	± 9.6 %
		Y	5.31	66.40	16.20		130.0	
		Z	5.15	66.14	16.09		130.0	
10621- AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.18	66.25	16.28	0.46	130.0	± 9.6 %
		Y	5.31	66.53	16.38		130.0	
		Z	5.16	66.30	16.30		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.20	66.45	16.37	0.46	130.0	± 9.6 %
		Y	5.32	66.67	16.45		130.0	

Certificate No: EX3-3759_Dec18

```
Page 36 of 39
```


EX3DV4-SN:3759

December 13, 2018

10623- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.06	65.90	15.96	0.46	130.0	±9.6 %
-		Y	5.20	66.22	16.10		130.0	
		Z	5.04	65.93	15.97		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.26	66.14	16.15	0.46	130.0	±9.6 %
		Y	5.39	66.41	16.26		130.0	
		Z	5.23	66.17	16.16		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.51	66.80	16.54	0.46	130.0	±9.6 %
		Y	5.73	67.31	16.76		130.0	
		Z	5.48	66.81	16.54		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.44	66.14	16.07	0.46	130.0	±9.6 %
		Y	5.55	66.44	16.18		130.0	()
		Z	5.41	66.17	16.08		130.0	
10627- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.69	66.79	16.36	0.46	130.0	±9.6 %
		Y	5.77	66.95	16.39		130.0	
		Z	5.66	66.81	16.36		130.0	
10628- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	x	5.45	66.17	15.98	0.46	130.0	± 9.6 %
		Y	5.58	66.53	16.12		130.0	
		Z	5.42	66.19	15.98		130.0	
10629- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.54	66.28	16.03	0.46	130.0	± 9.6 %
		Y	5.65	66.57	16.13		130.0	
		Z	5.51	66.30	16.03		130.0	
10630- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	×	5.93	67.67	16.72	0.46	130.0	±9.6 %
		Y	6.03	67.89	16.79		130.0	
		Z	5.89	67.66	16.71		130.0	
10631- AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	5.82	67.45	16.81	0.46	130.0	±9.6 %
		Y	5.97	67.81	16.94		130.0	
		Z	5.79	67.49	16.83		130.0	
10632- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.66	66.88	16.55	0.46	130.0	±9.6 %
		Y	5.74	67.02	16.56		130.0	
		Z	5.64	66.92	16.56		130.0	
10633- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.51	66.37	16.11	0.46	130.0	±9.6 %
1010		Y	5.64	66.70	16.23		130.0	
		Z	5.49	66.40	16.12		130.0	
10634- AAB	IEEE 802.11ac WiFI (80MHz, MCS8, 90pc duty cycle)	X	5.49	66.38	16.18	0.46	130.0	±9.6 %
		Y	5.63	66.73	16.31		130.0	
		Z	5.47	66.41	16.19		130.0	
10635- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.37	65.68	15.55	0.46	130.0	± 9.6 %
		Y	5.51	66.08	15.72		130.0	
		Z	5.34	65.68	15.54		130.0	
10636- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	5.87	66.53	16.18	0.46	130.0	± 9.6 %
		Y	5.96	66.80	16.26		130.0	
		Z	5.84	66.55	16.18		130.0	
10637- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.02	66.93	16.36	0.46	130.0	± 9.6 %
		Y	6.10	67.16	16.42		130.0	
	Construction of the second statement	Z	5.99	66.94	16.36		130.0	
10638- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.02	66.89	16.32	0.46	130.0	± 9.6 %
		1				-	400.0	
		Y	6.11	67.15	16.40		130.0	

Certificate No: EX3-3759_Dec18

Page 37 of 39

EX3DV4- SN:3759

December 13, 2018

AAA		Y	100.00	112.00	25.89		60.0	
A A A								
10659-	Pulse Waveform (200Hz, 20%)	X	100.00	107.89	23.77	6.99	60.0	±9.6 %
10050	Pulse Manufactor (00011- 00011	Z	11.47	84.03	19.31		50.0	
		Y	100.00	114.13	27.80		50.0	
AAA	Land in the second			01.01	21.00	10.00	00.0	1 0.0 %
10658-	Pulse Waveform (200Hz, 10%)	X	22.73	65.61 92.81	16.49 21.68	10.00	80.0 50.0	± 9.6 %
		Z	4.27 4.08	66.19	16.86		80.0	
AAE	Clipping 44%)	Y	4.07	00.40	40.00		00.0	
0655-	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1,	X	4.02	65.33	16.40	2.23	80.0	± 9.6 %
		Z	4.01	65.65	16.45		80.0	
		Y	4.21	66.20	16.82		80.0	
AD	Clipping 44%)	^	0.00	00.00	10.30	2.20	80.0	± 9.0 %
10654-	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1,	X	4.01	65.99	16.41 16.35	2.23	80.0 80.0	± 9.6 %
		Z	4.24 4.01	66.55 65.99	16.83		80.0	
AAD	Clipping 44%)	Y	4.04	CC FF	40.00		00.0	
0653-	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1,	X	3.95	65.70	16.32	2.23	80.0	±9.6 %
		Z	3.47	66.55	16.10		80.0	
		Y	3.73	67.27	16.73		80.0	
AAD	Clipping 44%)	^	0.00	00.13	10.99	2.23	80.0	± 9.0 %
0652-	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1,	X	0.43	60.23 66.19	7.08	2.23	150.0	± 9.6 %
-		Y Z	0.64	62.67	10.12		150.0	
AAA			0.01		10.10			
10648-	CDMA2000 (1x Advanced)	X	0.46	60.48	7.48	0.00	150.0	± 9.6 %
		Z	15.19	105.38	36.00		60.0	
		Y	28.98	121.44	41.35		60.0	-
AAF	QPSK, UL Subframe=2,7)	X	12.88	102.80	35.56	9.30	60.0	±9.6 %
0647-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	Z	17.09	107.30	36.45	0.00	60.0	10.00
		Y	34.83	124.98	42.17		60.0	
AAF	QPSK, UL Subframe=2,7)	-						
10646-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz,	Х	14.66	105.10	36.14	9.30	60.0	±9.6 %
		Z	6.15	67.13	16.48		130.0	
		Y	6.48	67.96	16.85		130.0	
AAC	90pc duty cycle)	^	0.10	07.13	10.49	0.40	130.0	I 9.0 %
10645-	IEEE 802.11ac WiFi (160MHz, MCS9,	X	6.18	67.03	16.46	0.46	130.0	±9.6 %
		Z	6.17 6.00	67.43 67.03	16.63 16.46		130.0	
AAC	90pc duty cycle)	Y	6.47	67.40	40.00		400.0	
10644-	IEEE 802.11ac WiFi (160MHz, MCS8,	X	6.02	67.01	16.47	0.46	130.0	±9.6 %
		Z	5.89	66.71	16.29		130.0	
		Y	6.01	66.95	16.37		130.0	
AAC	90pc duty cycle)	^	0.92	00.08	10.29	0.40	130.0	± 9.0 %
10643-	IEEE 802.11ac WiFi (160MHz, MCS7,	X	6.05 5.92	67.01 66.69	16.55 16.29	0.46	130.0	±9.6 %
		Z	6.18	67.28	16.63		130.0	
AAC	90pc duty cycle)		0.10		10.00			
10642-	IEEE 802.11ac WiFi (160MHz, MCS6,	X	6.07	66.99	16.54	0.46	130.0	± 9.6 %
		Z	6.03	66.81	16.27		130.0	
		Y	6.13	67.01	16.33		130.0	
AAC	90pc duty cycle)	^	0.05	66.80	16.28	0.46	130.0	±9.6 %
10641-	IEEE 802.11ac WiFi (160MHz, MCS5.	Z	5.95 6.05	66.81	16.25	0.40	130.0	
		Y	6.09	67.11	16.37		130.0	
AAC	90pc duty cycle)							
10640-	IEEE 802.11ac WiFi (160MHz, MCS4,	X	5.98	66.79	16.25	0.46	130.0	±9.6 %
		Z	5.96	66.82	16.32		130.0	
		Y	6.09	67.11	16.42		130.0	
AAC	90pc duty cycle)	-						

Certificate No: EX3-3759_Dec18

Page 38 of 39

EX3DV4-SN:3759

December 13, 2018

10660- AAA	Pulse Waveform (200Hz, 40%)	X	100.00	103.98	20.71	3.98	80.0	±9.6 %
MAA		Y	100.00	111.62	24.50		80.0	
		Z	100.00	102.80	20.39		80.0	
10661- Pulse Waveform (200Hz, 60%)	X	100.00	97.71	16.95	2.22	100.0	± 9.6 %	
		Y	100.00	112.86	23.84		100.0	
		Z	12.87	82.54	13.42		100.0	
10662- Pulse Waveform (200Hz, 80%) AAA	X	0.20	60.00	3.58	0.97	120.0	±9.6 %	
		Y	100.00	113.04	22.31		120.0	
		Z	0.23	60.00	3.32		120.0	
10670- Bluetooth Low Energy AAA	X	100.00	103.45	19.60	2.19	100.0	± 9.6 %	
		Y	100.00	115.24	25.21		100.0	
		Z	100.00	101.01	18.73		100.0	

^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3759_Dec18

Page 39 of 39

ANNEX B

DIPOLE CALIBRATION REPORTS

chmid & Partner Engineering AG eughausstrasse 43, 8004 Zurich	y of h, Switzerland	SC CREATE COLOR	Service suisse d'étalonnage Servizio svizzero di taratura
ccredited by the Swiss Accredita he Swiss Accreditation Service ultilateral Agreement for the re	e is one of the signatorie	s to the EA	ccreditation No.: SCS 0108
ient TüV SÜD UK		Certificate N	o: D450V3-1094_Dec17
Dbject	D450V3 - SN:109		
Calibration procedure(s)	QA CAL-15.v8 Calibration proce	dure for dipole validation kits bel	ow 700 MHz
Calibration date:	December 08, 20	17	
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical ur robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards	rtainties with confidence p sted in the closed laborator FE critical for calibration)	robability are given on the following pages any facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP	rtainties with confidence p sted in the closed laborator IFE critical for calibration) ID # SN: 104778	robability are given on the following pages any facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91	rtainties with confidence p sted in the closed laborator FE critical for calibration)	robability are given on the following pages as ry facility: environment temperature (22 ± 3)° <u>Cal Date (Certificate No.)</u> 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	rtainties with confidence p sted in the closed laborator IE critical for calibration) ID # SN: 104778 SN: 103244	robability are given on the following pages any facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination	rtainties with confidence p sted in the closed laborator IE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	rtainties with confidence p cted in the closed laborator FE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x)	robability are given on the following pages at ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3877_Dec16)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877 SN: 654	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17)	nd are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877	robability are given on the following pages as ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	rtainties with confidence p cted in the closed laborator FE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 654 ID #	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor E4412A Power sensor E4412A	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103245 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 654 ID # SN: GB41293874	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. 217-02529) 01-Dec-16 (No. EX3-3877_Dec16) 04-Apr-17 (No. 217-02529) 05-Apr-17 (No. 217-02528)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	rtainties with confidence p ted in the closed laborator FE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 654 ID # ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 04-Apr-17 (No. 217-02522) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02284) 06-Apr-16 (No. 217-02284) 06-Apr-16 (No. 217-02284) 06-Apr-16 (No. 217-02284)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	rtainties with confidence p cted in the closed laborator FE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: WY41498087 SN: 000110210	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. 217-02529) 31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-17)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 04-Apr-17 (No. 217-02522) 04-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. 217-02289) 06-Apr-16 (No. 217-02289) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02284) 06-Ap	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Oct-18
The measurements and the unce	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. 217-02529) 31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-17)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Oct-18

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

Servizio svizzero di taratura

Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

encounty.	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1094_Dec17

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.8 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.49 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.748 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.00 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.7 ± 6 %	0.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.58 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	0.775 W/kg

Certificate No: D450V3-1094_Dec17

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	58.7 Ω - 4.0 jΩ
Return Loss	- 21.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	58.5 Ω - 5.4 jΩ	
Return Loss	- 20.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.349 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 15, 2015

Certificate No: D450V3-1094_Dec17

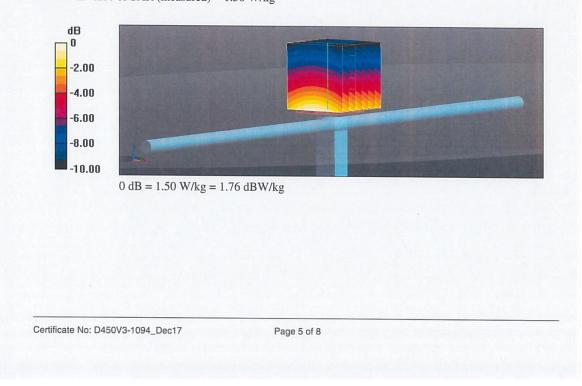
Page 4 of 8

DASY5 Validation Report for Head TSL

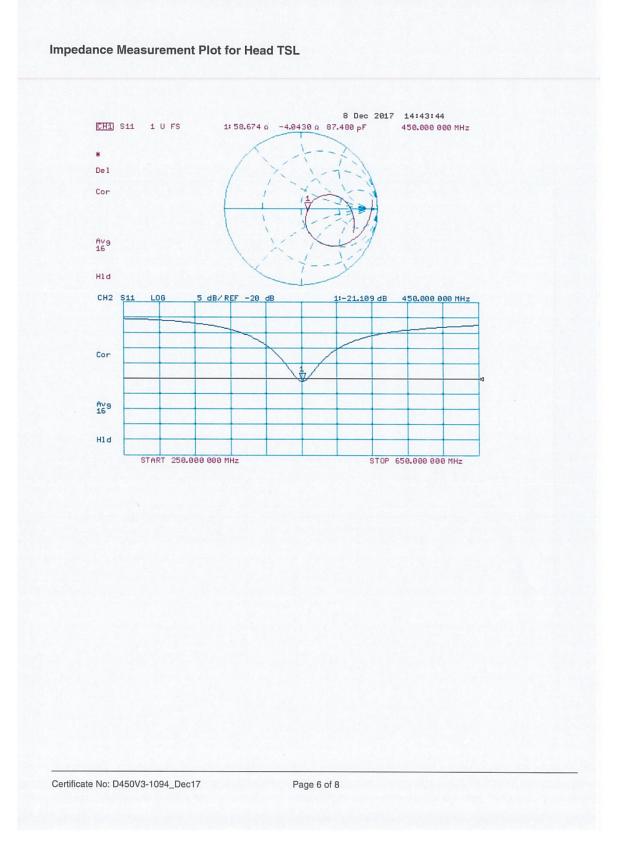
Date: 08.12.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:1094


Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; σ = 0.87 S/m; ϵ_r = 43.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN3877; ConvF(10.5, 10.5, 10.5); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 24.07.2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

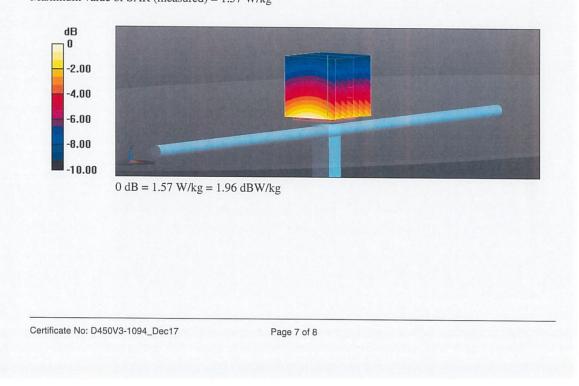
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 43.09 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.748 W/kg Maximum value of SAR (measured) = 1.50 W/kg

DASY5 Validation Report for Body TSL

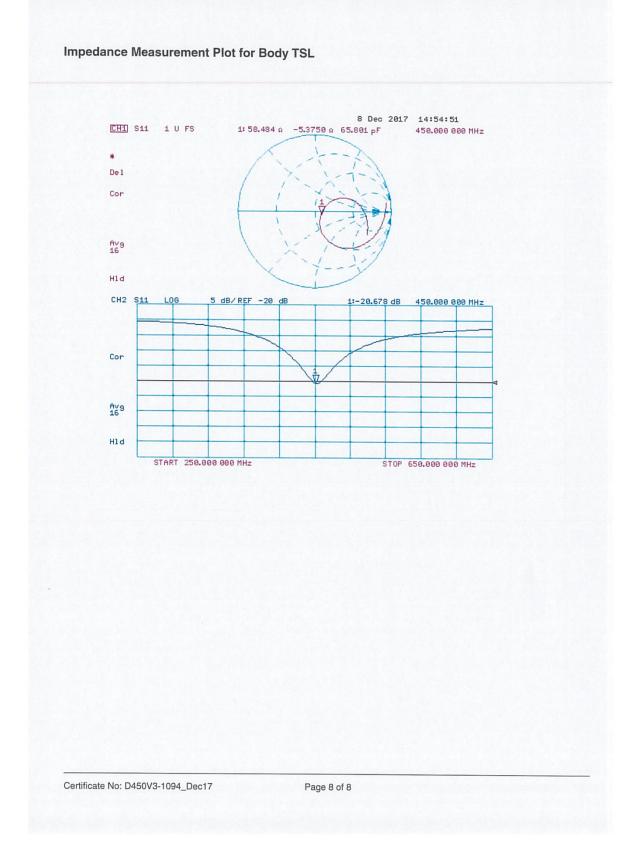
Date: 08.12.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:1094


Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 55.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN3877; ConvF(10.7, 10.7, 10.7); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 24.07.2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 41.62 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.82 W/kg SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.775 W/kg Maximum value of SAR (measured) = 1.57 W/kg

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Hac-MBA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: D2450V2-715_Dec18

s

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client TÜV SÜD UK

Dbject	D2450V2 - SN:71	15	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	we 700 MHz
Calibration date:	December 11, 20	018	
		onal standards, which realize the physical un robability are given on the following pages an	
		ry facility: environment temperature $(22 \pm 3)^{\circ}$	
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	12/2
Calibrated by:			
Calibrated by: Approved by:	Katja Pokovic	Technical Manager	aller

Calibration Laboratory of Schmid & Partner

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage

- Service suisse d'etaionnage Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue
ConvF	sens
N/A	not a

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-715_Dec18

Page 2 of 8

Measurement Conditions

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	2
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	$37.8 \pm 6 \%$	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.15 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	$51.0 \pm 6 \%$	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.00 W/kg

Certificate No: D2450V2-715_Dec18

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.5 Ω + 1.4 jΩ
Return Loss	- 26.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9 Ω + 3.1 jΩ	
Return Loss	- 30.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction) 1.158 ns	Electrical Delay (one direction)	1.158 ns
---	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2002

Certificate No: D2450V2-715_Dec18

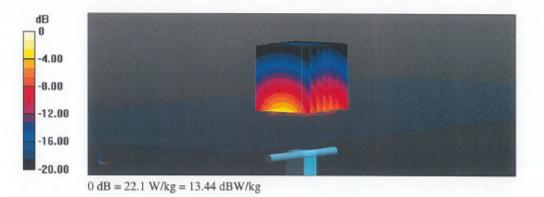
Page 4 of 8

Date: 11.12.2018

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:715


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ _r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.2 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 22.1 W/kg

Page 5 of 8

Elle Yew Channel Sweep Calibration Trace Scale Marker System Window Help 2.450000 GHz 54.498 Ω 87.764 pH 1.3510 Ω 2.450000 GHz 44.941 mU 15.977 ° Ch 1 Avg = 20 Ch1: Start 2.25000 GHz Stop 2.65000 GHz 10.00 50000 GH2 947 dB 5.00 0.00 -5.00 10.00 15.00 -20.00 25.00 -30.00 35.00 40.00 Ch 1 Avg = 20 Ch 1: Start 2 25000 GHz Stop 2.65000 GHz Status CH 1: 511 C" 1-Port Avg=20 Delay LCL

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-715_Dec18

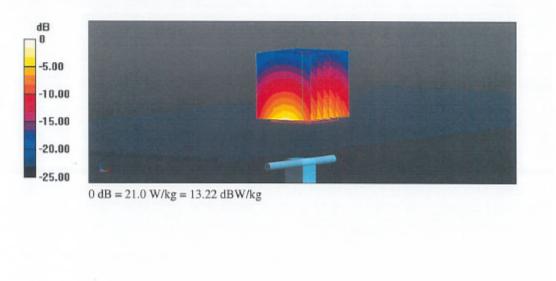
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 11.12.2018

Test Laboratory: SPEAG, Zurich, Switzerland

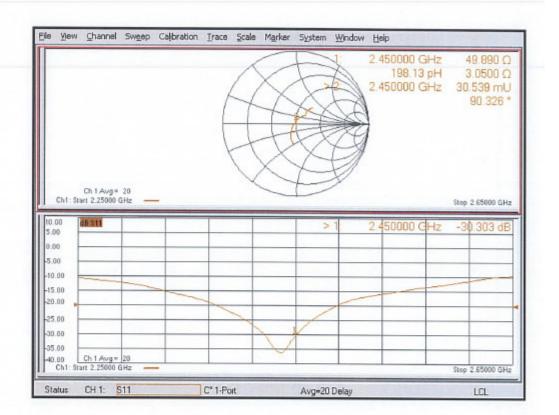
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:715


 $\begin{array}{l} \mbox{Communication System: UID 0 - CW; Frequency: 2450 MHz} \\ \mbox{Medium parameters used: } f = 2450 \mbox{ MHz; } \sigma = 2.03 \mbox{ S/m; } \epsilon_r = 51; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section} \\ \mbox{Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)} \\ \end{array}$

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.6 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.7 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6 W/kg Maximum value of SAR (measured) = 21.0 W/kg

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-715_Dec18

Page 8 of 8