FCC and ISED Test Report

Sepura Ltd

TETRA Mobile Radio, Model: SC2024

In accordance with FCC CFR 47 Part 15C, FCC CFR 47 Part 90, ISED RSS-247 and Industry Canada RSS-119 (Simultaneous Transmission)

Prepared for: Sepura Ltd

9000 Cambridge Research Park Beach Drive, Waterbeach, Cambridge

CB25 9TL, United Kingdom

FCC ID: XX6SC2024 IC: 8739A-SC2024

COMMERCIAL-IN-CONFIDENCE

Document 75950098-02 Issue 01

SIGNATURE			
5 MM			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Steve Marshall	Senior Engineer	Authorised Signatory	15 January 2021

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 15C, FCC CFR 47 Part 90, ISED RSS-247 and Industry Canada RSS-119. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Graeme Lawler	15 January 2021	GiLavla :

FCC Accreditation ISED Accreditation

90987 Octagon House, Fareham Test Laboratory 12669A Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC CFR 47 Part 15C: 2019, FCC CFR 47 Part 90: 2019, ISED RSS-247: Issue 2 (02-2017) and Industry Canada RSS-119: Issue 2 (05-2015) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2021 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	
1.2	Introduction	2
1.3	Brief Summary of Results	3
1.4	Application Form	4
1.5	Product Information	6
1.6	Deviations from the Standard	
1.7	EUT Modification Record	6
1.8	Test Location	6
2	Test Details	7
2.1	Radiated Spurious Emissions (Simultaneous Transmission)	7
3	Measurement Uncertainty	21

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	15-Jan-2021

Table 1

1.2 Introduction

Applicant Sepura Ltd
Manufacturer Sepura Ltd
Model Number(s) SC2024

Serial Number(s) 1PR002039GKP2KB

Hardware Version(s) Production

Software Version(s) 2001 797 07367

Number of Samples Tested 1

Test Specification/Issue/Date FCC CFR 47 Part 15C: 2019

FCC CFR 47 Part 90: 2019

ISED RSS-247: Issue 2 (02-2017)

Industry Canada RSS-119: Issue 2 (05-2015)

Order Number PLC-PO017051-1
Date 23-September-2020
Date of Receipt of EUT 30-October-2020
Start of Test 10-November-2020
Finish of Test 10-November-2020

Name of Engineer(s) Graeme Lawler

Related Document(s) ANSI C63.26: 2015

ANSI C63.10: 2013

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC CFR 47 Part 15C, FCC CFR 47 Part 90, ISED RSS-247 and Industry Canada RSS-119 is shown below.

Section		Specification Clause Test Description Result Comments,		Comments/Base Standard			
Section	Part 15C	Part 90	RSS-247	RSS-119	rest Description	Result	Comments/base standard
Configuration and Mode: TETRA (middle Tx channel) + 2.4 GHz			lle Tx channe	l) + 2.4 GHz \	<i>N</i> i-Fi (middle Tx channel).		
2.1	15.247 (d)	90.210	5.5	5.8	Radiated Spurious Emissions (Simultaneous Transmission)	Pass	ANSI C63.26: 2015 ANSI C63.10: 2013

Table 2

Note: The Bluetooth and WiFi cannot operate at the same time. For the purposes of simultaneous transmission assessment, 2.4 GHz WiFi was deemed as worst case.

COMMERCIAL-IN-CONFIDENCE Page 3 of 21

1.4 Application Form

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment)	The SC20 hand-portable terminal is a TETRA enabled radio with Bluetooth and Wi-Fi capability
Manufacturer:	Sepura
Model:	SC2024
Part Number:	N/A
Hardware Version:	Production
Software Version:	2001 797 07367
FCC ID (if applicable)	XX6SC2024
IC ID (if applicable)	8739A-SC2024

Intentional Radiators

Technology	TETRA	BT Classic / EDR	BLE	Wi-Fi 802.11b, g	Wi-Fi 802.11n 20	Wi-Fi 802.11n 40
Frequency Band (MHz)	403 – 470	2402 – 2480	2402 - 2480	2412 - 2462	2412 - 2462	2412 - 2452
Conducted Declared Output Power (dBm)	34	7.382	7.4	16.5	16.5	16.5
Antenna Gain (dBi)	> 0	2.5	2.5	2.5	2.5	2.5
Supported Bandwidth(s) (MHz)	25 kHz	1	2	16.5 22	16.5	33
Modulation Scheme(s)	π/4 DQPSK	GFSK π/4 DQPSK 8DPSK	GFSK	802.11b: CCK, DBPSK, DQPSK 802.11g: BPSK, QPSK, 16QAM, 64QAM	BPSK, QPSK, 16QAM, 64QAM	BPSK, QPSK, 16QAM, 64QAM
ITU Emission Designator	22K0DXW	1M01F1D 1M01G1D	1M81F1D	19M7G1D	19M7D1D	36M8D1D
Bottom Frequency (MHz)	403	2402	2402	2412	2412	2422
Middle Frequency (MHz)	436.5	2441	2441	2437	2437	2437
Top Frequency (MHz)	470	2480	2480	2462	2462	2452

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	2480 MHz
Lowest frequency generated or used in the device or on which the device operates or tunes	32.768 kHz
Class A Digital Device (Use in commercial, industrial or business environment)	
Class B Digital Device (Use in residential environment only) \square	

DC Power Source

Nominal voltage:	7.4	V
Extreme upper voltage:	7.4	V
Extreme lower voltage:	6.2	V
Max current:	2	Α

Battery Power Source

Voltage:	7.4		V
End-point voltage:	6.2		V (Point at which the battery will terminate)
Alkaline □ Leclanche □ Lithium ⊠ Nicke	el Cadmium Lead A	.cid* □ *(Vehicle reg	ulated)
Other Please detail:			

Charging

Can the EUT transmit whilst being charged	Yes ⊠ No □
Can the EOT transmit whilst being charged	163 🖾 110 🗀

Temperature

Minimum temperature:	-20	°C
Maximum temperature:	+60	°C

Antenna Characteristics

Antenna connector ⊠ TETRA			State impedance	50	Ohm
Temporary antenna connector □		State impedance		Ohm	
Integral antenna ⊠	Туре:	PCB	State impedance	50	Ohm
External antenna	Туре:		State impedance		dBI

Ancillaries (if applicable)

Manufacturer:	Part Number:	
Model:	Country of Origin:	

The SC2024 may be used with standard SC20 accessories, batteries, chargers, belt clips, holsters, remote speaker and microphones, earpieces etc

I hereby declare that the information supplied is correct and complete.

Name: Chris Beecham

Position held: Conformance Engineer

Date: 30 October 2020

1.5 Product Information

1.5.1 Technical Description

The SC20 hand-portable terminal is a TETRA enabled radio with Bluetooth and Wi-Fi capability.

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
Model: SC2024, Se	rial Number: 1PR002039GKP2KB		
0	As supplied by the customer	Not Applicable	Not Applicable

Table 3

1.8 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation
Configuration and Mode: TETRA (middle Tx channel)	+ 2.4 GHz Wi-Fi (middle Tx channel).	
Radiated Spurious Emissions (Simultaneous Transmission)	Graeme Lawler	UKAS

Table 4

Office Address:

Octagon House Concorde Way Segensworth North Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Radiated Spurious Emissions (Simultaneous Transmission)

2.1.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (d) FCC CFR 47 Part 90, Clause 90.210 ISED RSS-247, Clause 5.5 Industry Canada RSS-119, Clause 5.8

2.1.2 Equipment Under Test and Modification State

SC2024, S/N: 1PR002039GKP2KB - Modification State 0

2.1.3 Date of Test

10-November-2020

2.1.4 Test Method

Testing was performed in accordance with ANSI C63.26, clause 5.5.

Prescans were performed using the direct field strength method. Any emissions found within 10 dB of the specification limit were formally measured using the substitution method.

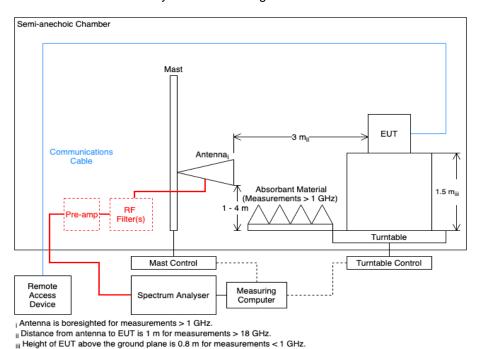


Figure 1

The EUT was placed on the non-conducting platform in a manner typical of a normal use. As the EUT could reasonable be used in multiple planes, pre-scans were performed with the EUT orientated in X, Y and Z planes with reference to the ground plane.

Ports on the EUT were terminated with loads as described in ANSI C63.4 clause 6.2.4. Ancillary equipment and interconnecting cables were arranged to give worst case results.

2.1.5 Environmental Conditions

Ambient Temperature 21.6 °C Relative Humidity 51.6 %

2.1.6 Test Results

TETRA (middle Tx channel) + 2.4 GHz Wi-Fi (middle Tx channel).

The EUT was configured for simultaneous transmission in the following mode of operation:

Technology	Frequency Band (MHz)	Channel Frequency (MHz)
802.11b	2400 MHz to 2483.5 MHz	2437
Tetra RSS Band of Operation	406 MHz to 430 MHz	418.050
Tetra FCC Band of Operation	450 MHz to 470 MHz	460.025

Table 5 - Modes of Operation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 6 - 30 MHz to 25 GHz - X Orientation (FCC)

^{*} No emissions were detected within 10 dB of the limit.

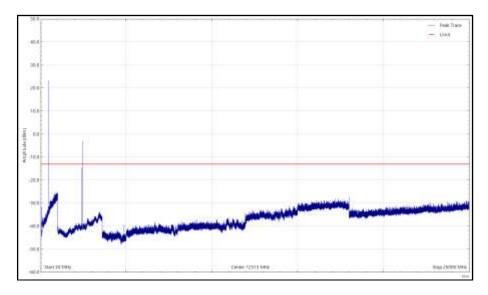


Figure 2 - 30 MHz to 25 GHz, Vertical – X Orientation (FCC)

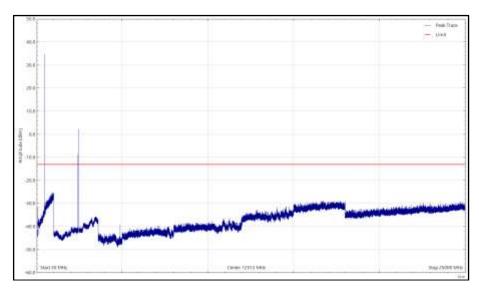


Figure 3 - 30 MHz to 25 GHz, Horizontal – X Orientation (FCC)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 7 - 30 MHz to 25 GHz - Y Orientation (FCC)

^{*} No emissions were detected within 10 dB of the limit.

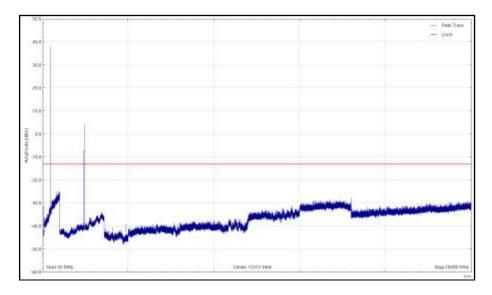


Figure 4 - 30 MHz to 25 GHz, Vertical – Y Orientation (FCC)

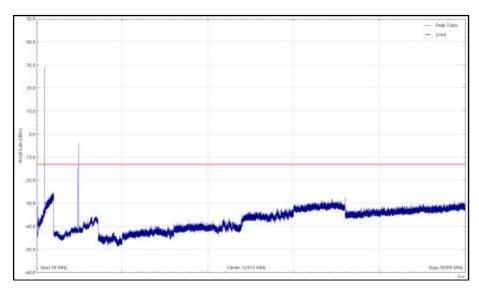


Figure 5 - 30 MHz to 25 GHz, Horizontal – Y Orientation (FCC)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 8 - 30 MHz to 25 GHz - Z Orientation (FCC)

^{*} No emissions were detected within 10 dB of the limit.

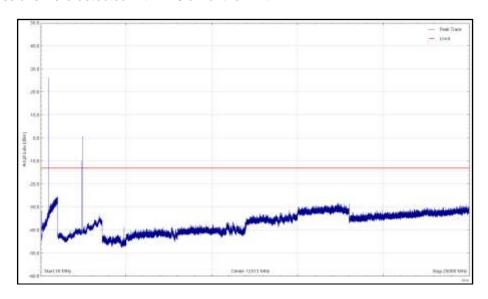


Figure 6 - 30 MHz to 25 GHz, Vertical – Z Orientation (FCC)

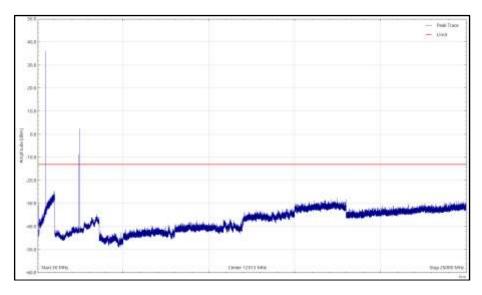


Figure 7 - 30 MHz to 25 GHz, Horizontal – Z Orientation (FCC)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 9 - 30 MHz to 25 GHz - X Orientation (ISED)

^{*} No emissions were detected within 10 dB of the limit.

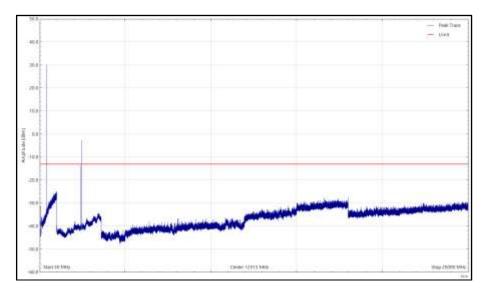


Figure 8 - 30 MHz to 25 GHz, Vertical – X Orientation (ISED)

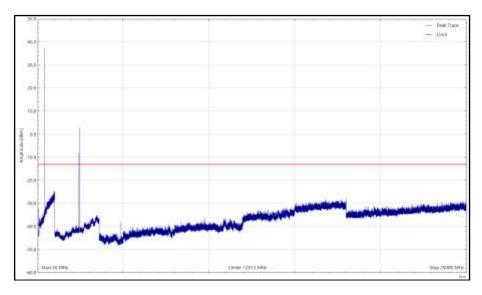


Figure 9 - 30 MHz to 25 GHz, Horizontal – X Orientation (ISED)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 10 - 30 MHz to 25 GHz - Y Orientation (ISED)

^{*} No emissions were detected within 10 dB of the limit.

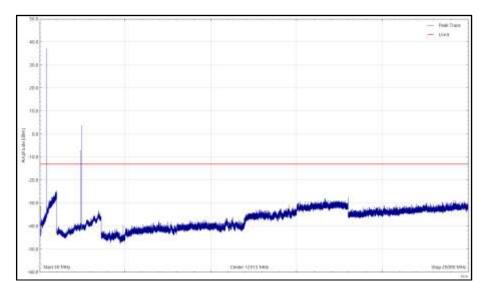


Figure 10 - 30 MHz to 25 GHz, Vertical – Y Orientation (ISED)

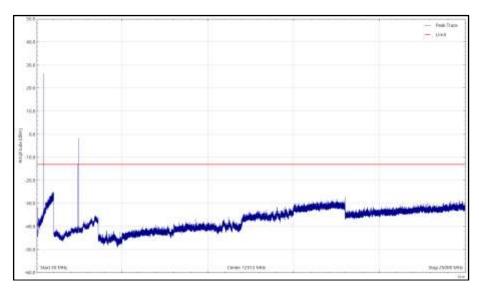


Figure 11 - 30 MHz to 25 GHz, Horizontal - Y Orientation (ISED)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 11 - 30 MHz to 25 GHz - Z Orientation (ISED)

^{*} No emissions were detected within 10 dB of the limit.

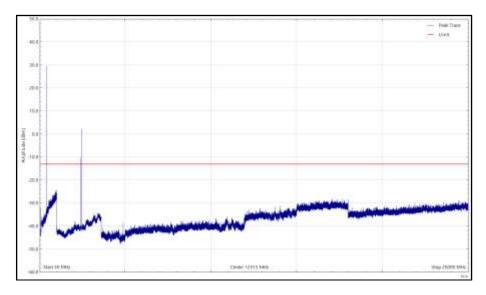


Figure 12 - 30 MHz to 25 GHz, Vertical – Z Orientation (ISED)

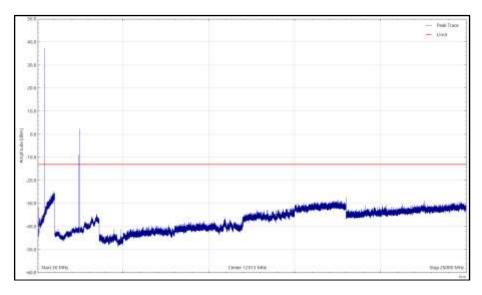


Figure 13 - 30 MHz to 25 GHz, Horizontal - Z Orientation (ISED)

Figure 14 – Test Setup - 30 MHz to 1 GHz – X Orientation

Figure 15 – Test Setup - 30 MHz to 1 GHz – Y Orientation

Figure 16 – Test Setup - 30 MHz to 1 GHz – Z Orientation

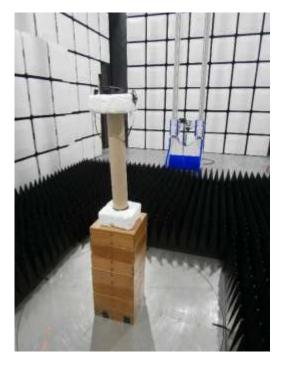


Figure 17 – Test Setup - 1 GHz to 18 GHz – X Orientation

Figure 18 – Test Setup - 1 GHz to 18 GHz – Y Orientation

Figure 19 – Test Setup - 1 GHz to 18 GHz – Z Orientation

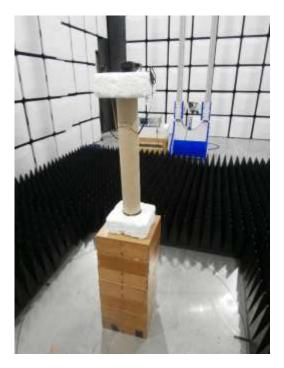


Figure 20 – Test Setup - 18 GHz to 25 GHz – X Orientation

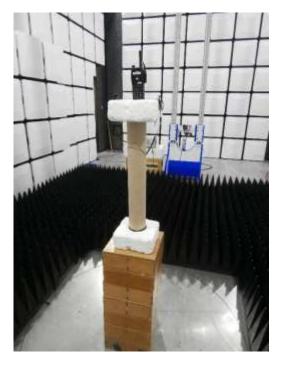


Figure 21 – Test Setup - 18 GHz to 25 GHz – Y Orientation

Figure 22 – Test Setup - 18 GHz to 25 GHz – Z Orientation

FCC and ISED Limit Clause

The least stringent limit from the applicable rule parts was used to determine compliance for Radiated Emissions testing of multiple transmission sources.

The least stringent applicable limit was:

The load divingent applicable with was.					
	Clause	Limit			
	Part 90.210	-13 dBm (EIRP) Emission Mask B			
	RSS-119	-13 dBm (EIRP) Emission Mask B			

Table 12

2.1.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Antenna 18-40GHz (Double Ridge Guide)	Link Microtek Ltd	AM180HA-K-TU2	230	24	27-Jul-2022
Antenna with permanent attenuator (Bilog)	Schaffner	CBL6143	287	24	14-Oct-2022
18GHz - 40GHz Pre- Amplifier	Phase One	PSO4-0087	1534	12	18-Feb-2021
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	03-Jan-2021
Cable 1503 2M 2.92(P)m 2.92(P)m	Rhophase	KPS-1503A-2000- KPS	4293	12	16-Nov-2020
Cable (18 GHz)	Rosenberger	LU7-071-2000	5106	12	09-Dec-2020
EmX Emissions Software	TUV SUD	V2.0.1	5125	-	Software
Thermo-Hygro-Barometer	PCE Instruments	OCE-THB-40	5470	12	16-Mar-2021
1m K-Type Cable	Junkosha	MWX241- 01000KMSKMS/A	5511	12	03-Apr-2021
8m N-Type Cable	Junkosha	MWX221- 08000NMSNMS/B	5520	12	24-Mar-2021
2 m K Type Cable	Junkosha	MWX241- 02000KMSKMS/A	5523	12	03-Apr-2021
DRG Horn Antenna (7.5- 18GHz)	Schwarzbeck	HWRD750	5610	12	22-Sep-2021
Broadband Horn Antenna (1-10 GHz)	Schwarzbeck	BBHA 9120 B	5611	12	22-Sep-2021
Turntable & Mast Controller	Maturo Gmbh	NCD/498/2799.01	5612	-	TU
Tilt Antenna Mast TAM 4.0-P	Maturo Gmbh	TAM 4.0-P	5613	-	TU
3m Semi Anechoic Chamber	MVG	EMC-3	5621	36	11-Aug-2023

Table 13

TU - Traceability Unscheduled

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Radiated Spurious Emissions (Simultaneous Transmission)	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB

Table 14

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.