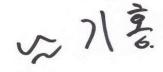


RADIO PERFORMANCE TEST REPORT


Test Report No.	: OT-22N-RWD-041
Reception No.	: 2209003085
Applicant	: UNION COMMUNITY
Address	: 12F, Munjeong Daemyeong Valeon bldg, 127 Beobwon-ro Songpa-gu, Seoul, South Korea
Manufacturer	: UNION COMMUNITY
Address	: 12F, Munjeong Daemyeong Valeon bldg, 127 Beobwon-ro Songpa-gu, Seoul, South Korea
Type of Equipment	: Access controller
FCC ID	: XX2-UBIO-X-FACESC
Model Name	: UBio-X Face SC
Multiple Model Name	e:N/A
Serial number	: N/A
Total page of Report	: 20 pages (including this page)
Date of Incoming	: October 06, 2022
Date of Issuing	: November 21, 2022

SUMMARY

The equipment complies with the requirements of *FCC CFR* 47 *PART* 15 *SUBPART C Section* 15.225 This test report contains only the result of a single test of the sample supplied for the examination.

It is not a general valid assessment of the features of the respective products of the mass-production.

This report is not correlated with the "KS Q ISO/IEC 17025 and KOLAS accreditation" of Korean Laboratory Accreditation Scheme.

Tested by Joon-Woo, Kim / Assistant Manager ONETECH Corp.

Reviewed by Tae-Ho, Kim / General Manager ONETECH Corp.

Approved by Ki-Hong, Nam / General Manager ONETECH Corp.

It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)

Page 2 of 20

CONTENTS

Page

1. VERIFICATION OF COMPLIANCE	5
2. GENERAL INFORMATION	6
2.1 PRODUCT DESCRIPTION	6
2.2 MODEL DIFFERENCES	6
2.3 Related Submittal(s) / Grant(s)	6
2.4 PURPOSE OF THE TEST	6
2.5 TEST METHODOLOGY	6
2.6 TEST FACILITY	6
3. SYSTEM TEST CONFIGURATION	7
3.1 JUSTIFICATION	7
3.2 PERIPHERAL EQUIPMENT	7
3.3 MODE OF OPERATION DURING THE TEST	7
3.4 Equipment Modifications	7
3.5 CONFIGURATION OF TEST SYSTEM	8
3.6 ANTENNA REQUIREMENT	8
4. PRELIMINARY TEST	8
4.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	8
4.2 RADIATED EMISSIONS TESTS	8
5. FINAL RESULT OF MEASUREMENT	9
5.1 CONDUCTED EMISSION TEST	9
5.2 RADIATED EMISSION TEST	11
5.2.1 Operation frequency band: (13.553 ~ 13.567) MHz	11
5.2.2 Operation frequency band: Below 13.553 MHz and above 13.567 MHz	
5.3 SPURIOUS EMISSION TEST	13
5.3.1 Spurious Radiated Emission Below 30 MHz	
5.3.2 Spurious Radiated Emission below 1 GHz	14
5.4 20 DB BANDWIDTH	15
5.4.1 Operating environment	15
5.4.2 Test set-up	
5.4.3 Test date	
5.4.4 Test data	

5.5 FREQUENCY STABILITY WITH TEMPERATURE VARIATION	17
5.5.1 Operating environment	
5.5.2 Test set-up	
5.5.3 Test date	
5.5.4 Test data	
5.6 FREQUENCY STABILITY WITH VOLTAGE VARIATION	
5.6.1 Operating environment	
5.6.2 Test set-up	
5.6.3 Test date	
5.6.4 Test data	
6. FIELD STRENGTH CALCULATION	
7. LIST OF TEST EQUIPMENT	20

Revision History

Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
0	OT-22N-RWD-041	November 21, 2022	Initial Release	All

1. VERIFICATION OF COMPLIANCE

- -. ADDRESS : 12F, Munjeong Daemyeong Valeon bldg, 127 Beobwon-ro Songpa-gu, Seoul, South Korea
- -. CONTACT PERSON : Dong Ho, Lee
- -. TELEPHONE NO : +82-2-6488-3054
- -. FCC ID : XX2-UBIO-X-FACESC
- -. MODEL NO/NAME : UBio-X Face SC
- -. SERIAL NUMBER : N/A
- -. DATE : November 21, 2022

DEVICE TYPE	DXX – Low Power Communication Device Transmitter	
E.U.T. DESCRIPTION	Access controller	
THIS REPORT CONCERNS	Original Grant	
MEASUREMENT PROCEDURES	ANSI C63.10: 2013	
TYPE OF EQUIPMENT TESTED	Pre-Production	
KIND OF EQUIPMENT	Cartification	
AUTHORIZATION REQUESTED	Certification	
EQUIPMENT WILL BE OPERATED	FCC CFR47 Part 15 Subpart C Section 15.225	
UNDER FCC RULES PART(S)		
MODIFICATIONS ON THE EQUIPMENT	Nama	
TO ACHIEVE COMPLIANCE	None	
FINAL TEST WAS CONDUCTED ON	10 m Semi Anechoic Chamber	

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. GENERAL INFORMATION

2.1 Product Description

The UNION COMMUNITY, Model UBio-X Face SC (referred to as the EUT in this report) is an Access controller,

Product specification information	1 1 1 1 1	. 10 1.	1 4 1 4 7 1
Product specification information	n described herein was on	rained from product	data sheet or liser's manilal

DEVICE TYPE	Access controller
TRANSMITTING FREQUENCY	13.56 MHz, 2 402 MHz ~ 2 480 MHz
MODULATION	ASK
ANTENNA TYPE	PCB Antenna
LIST OF EACH OSC. or CRY.	13.559 1 MHz
FREQ.(FREQ. >= 1 MHz)	13.339 1 MHZ
	Output : DC 15 V, 4 A
USED AC/DC ADAPTER	Model No : KPL-060H-VI
	Manufacturer : Channel Well Technology(Guangzhou) Co.,Ltd.

2.2 Model Differences

-. None

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC PART 15 SUBPART C Section 15.225.

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si,

Gyeonggi-do, 12735, Korea.

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-20122/ C-14617/ G-10666/ T-11842

ISED (Innovation, Science and Economic Development Canada) - Registration No. Site# 3736A-3

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)

3. SYSTEM TEST CONFIGURATION

3.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
MAIN BOARD	N/A	FR-910B_V1.4	N/A
SUB BOARD	N/A	PFR910BSC01 V11	N/A
LED BOARD	N/A	PFR910BLD01 V10	N/A
DISPLAY	N/A	N/A	N/A
SUB FPCD BOARD	N/A	N/A	N/A
CAMERA	N/A	N/A	N/A
AI CAMERA	N/A	M20	N/A
CAMERA BOARD	N/A	M20_MB_V3	N/A
SPEAKER	N/A	N/A	N/A
Bluetooth Module	Union Community	F1DC2706-A	XX2- F1DC2706-A
13.56 MHz ANTENNA	N/A	PFR910BSA01 V11	N/A
ADAPTER	Channel Well Technology (Guangzhow)Co., LTd.	KPL-060H-VI	N/A

3.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	Description	Connected to
UBio-X Face SC	UNION COMMUNITY	Access controller (EUT)	-
KPL-060H-VI	Channel Well Technology (Guangzhow)Co., LTd.	ADAPTER	EUT
N/A	N/A	Door Open Switch	EUT
BHL-700C	ELECTRIC BOLT	Door lock	EUT
N/A	N/A	13.56 MHz Card	EUT

3.3 Mode of operation during the test

-. The EUT has 13.56 MHz RF boards for reading Card and program was used for making continuous transmission mode during the test.

3.4 Equipment Modifications

-. None

3.5 Configuration of Test System

Line Conducted Test :	The EUT was connected to adaptor and the power of adaptor was connected to LISN. All
	supporting equipments were connected to another LISN. Preliminary Power line Conducted
	Emission test was performed by using the procedure in ANSI C63.10: 2013 to determine
	the worse operating conditions.

Radiated Emission Test :Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:2013 to determine the worse operating conditions. The radiated emissions measurements
were performed on the 10 m Semi Anechoic Chamber.

For frequencies from 150 kHz to 30 MHz measurements were made of the magnetic H field. The measuring antenna is an electrically screened loop antenna.

The frequency spectrum from 30 MHz to 1 000 MHz was scanned and maximum emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

3.6 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The transmitter antenna of the EUT is a PCB Antenna so there is no consideration of replacement by the user.

4. PRELIMINARY TEST

4.1 AC Power line Conducted Emissions Tests

During Preliminary Tests, the following operating mode was investigated

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	Х

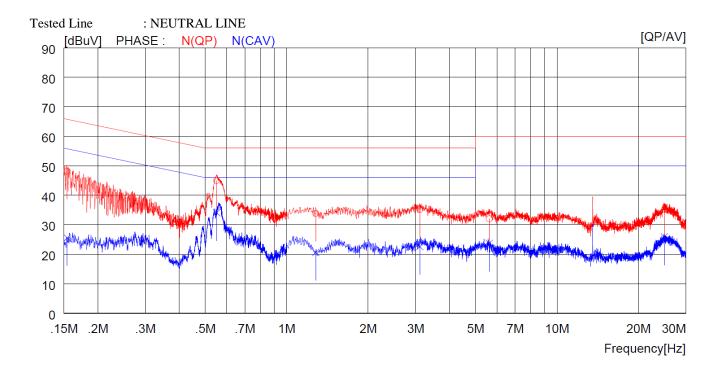
4.2 Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	Х

5. FINAL RESULT OF MEASUREMENT

Preliminary test was done in normal operation mode. And the final measurement was selected for the maximized emission level.


5.1 Conducted Emission Test

	ity Level apply to	: <u>52.6</u> : <u>FCC</u> : <u>PAS</u>	CFR		PA	<u>RT 1</u>	<u>5, 1</u>	SUBPAR'	<u>T B, S</u>	SECTION	<u>15.20</u>	<u>)7(a)</u>]	Гетре	rature	e: <u>22.5</u>	<u>°C</u>
EUT Detecto Tested		: Access controller Date: October 06, 2022 : CISPR Quasi-Peak (6 dB Bandwidth: 9 kHz) : HOT LINE																		
90 80 70 60 50 40 30 20 10		SE :	H(Q	P)					Arithun Marine								***			P/AV]
0 [_] .15	M .2M .	3M	.5	бM	.7	M	1	M	2	M 3	M	5	M	7N	1	10	M	Fre		30M cy[Hz]

NC) FREQ	READ	ING	C.FACTOR	RESU	ULT	LIM	IT	MAR	GIN	PHASE
		QP	AV		QP	AV	QP	AV	QP	AV	
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	
1	0.16100	37.9		10.0	47.9		65.4		17.5		H(QP)
2	0.55200	35.0		10.0	45.0		56.0		11.0		$H(\tilde{Q}P)$
3	1.58400	26.0		10.1	36.1		56.0		19.9		H(QP)
4	3.10400	25.8		10.1	35.9		56.0		20.1		H(QP)
5	24.88000	24.7		10.6	35.3		60.0		24.7		H(QP)
6	5.50500	22.5		10.2	32.7		60.0		27.3		H(QP)
7	0.16100		15.2	10.0		25.2		55.4		30.2	H(CAV)
8	0.55200		23.8	10.0		33.8		46.0		12.2	H(CAV)
9	1.58400		14.8	10.1		24.9		46.0		21.1	H(CAV)
10	3.10400		14.8	10.1		24.9		46.0		21.1	H(CAV)
11	24.88000		15.1	10.6		25.7		50.0		24.3	H(CAV)
12	5.50500		12.7	10.2		22.9		50.0		27.1	H(CAV)

It should not be reproduced except in full, without the written approval of ONETECH Corp.

NO	FREQ	READING	C.FACTOR	RES		LIM			GIN	PHASE
	[MHz]	QP AV [dBuV] [dBuV	/] [dB]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]]
1	0.15400	38.2	- 10.0	48.2		65.8		17.6		N(QP)
2	0.55100	35.0	- 10.0	45.0		56.0		11.0		N(QP)
3	1.28000	23.8	- 10.1	33.9		56.0		22.1		N(QP)
4	3.10800	25.1	- 10.1	35.2		56.0		20.8		N(QP)
5	24.96000	24.6	- 10.6	35.2		60.0		24.8		N(QP)
6	5.61000	21.8	- 10.2	32.0		60.0		28.0		N(QP)
7	0.15400	15.0	5 10.0		25.6		55.8		30.2	N(CAV)
8	0.55100	24.1	L 10.0		34.1		46.0		11.9	N(CAV)
9	1.28000	10.5	5 10.1		20.6		46.0		25.4	N(CAV)
10	3.10800	12.5	5 10.1		22.6		46.0		23.4	N(CAV)
11	24.96000	15.3	3 10.6		25.9		50.0		24.1	N(CAV)
12	5.61000	13.5	5 10.2		23.7		50.0		26.3	N(CAV)

Remark: Margin (dB) = Limit – Level (Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN),

cable loss and attenuator.

5.2 RADIATED EMISSION TEST

5.2.1 Operation frequency band: (13.553 ~ 13.567) MHz

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Engenerati	Dooding	Amt Dol	Ant.	Ant.	Cable	Emission	T invita	Manain
Distance	: 3 m							
Detector	: CISF	PR Quasi-Peak	(6 dB Bandw	idth: 9 kHz)				
Operating Cor	dition : Tran	smitting Mode	2					
EUT	: Acce	ess controller			Date	: October 06, 2	2022 ~ Octob	er 12, 2022
Result	: <u>PAS</u>	SED						
Type of Test	: <u>L</u> ow	Power Comm	unication Devi	ice Transmitte	r			
Limits apply to	b : <u>FCC</u>	CFR 47, PAR	T 15, SUBPA	RT C, SECTI	ON 15.225			
Humidity Leve	el : <u>48 %</u>	R.H.					Tempera	ature: <u>22 °C</u>

Frequency (MHz)	Reading (dBµV)	Ant. Pol. (H/V)	Ant. Height (m)	Ant. Factor (dB/m)	Cable Loss	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)
13.56	23.86	Н	1	21.30	0.75	45.91	124	78.09
13.56	16.67	V	1	21.30	0.75	38.72	124	85.28

Remark. The EUT was tested at 3 m, so conversation factor was included at above limit.

5.2.2 Operation frequency band: Below 13.553 MHz and above 13.567 MHz

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Humidity Level	: <u>48 % R.H.</u>	Temperature: <u>22 °C</u>
Limits apply to	: FCC CFR 47, PART 15, SUBPART C, SECTION 15.225	
Type of Test	: Low Power Communication Device Transmitter	
Result	: <u>PASSED</u>	

EUT

: Access controller

Date: October 06, 2022 ~ October 12, 2022

Operating Condition : Transmitting Mode

Receiver	Spectrum	Spectrum 2	Spectrum 3	Spectrum 🗴	14 ⊗) 🖑
Ref Level 97	7.00 dBµV	RBW (EMI)	9 kHz		
Att	O dB SWT 2	298.1 µs 👄 VBW	30 kHz – Mode Auto F	FT Input 1 DC	
⊖1Pk View					
Limit Che	ck	PASS	M1[1]		23.86 dBµV
90 depresentation	FID	PASS		1 1	13.56000 MHz
FCCRFID					
70 dBµV					
60 dBµV					
50 dBµV					
40 dBµV					
30 dвµV					
50 GDD V			M1		
			T I		
20 dBµV					
/10,dBuV	ىمەتىرەبىيە،مە <mark>م</mark> ەم ^م ەم مەمىي	adaman and a a a a a a a a a a a a a a a a a	L has a a construction of the second	all and a large of the second s	بريدهم كاليدهم وكالاربي
0 dBµV					
Start 13.01 M	Hz	100)1 pts	St	op 14.11 MHz

cc. to above test data, the field strength level of 13.56 MHz is 23.86 dBuV/m and the worst limit subject to 15.225 (b) and

(c) is 80.5 dBuV/m, so the EUT meets the requirement.

5.3 SPURIOUS EMISSION TEST

Humidity Level	: <u>48 % R.H.</u>	Temperature: <u>22 °C</u>
Limits apply to	: FCC CFR 47, PART 15, SUBPART C, SECTION	15.209
Type of Test	: Low Power Communication Device Transmitter	
Frequency Range	: 9 kHz ~ 30 MHz	
Result	: <u>PASSED</u>	
EUT	: Access controller	Date: October 06, 2022 ~ October 12, 2022
Operating Conditio	n : Transmitting Mode	
Distance	: 3 m	
I		

Frequency	Reading	Ant. Pol.	Ant.	0	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)		(dB/m)	Loss	Level(dBμV/m)	(dBµV/m)	(dB)
			It was not o	observed a	any emissions :	from the I	EUT.		

5.3.2 Spurious Radiated Emission below 1 GHz

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Humidity Level : <u>48 % R.H.</u> Limits apply to : <u>FCC CFR 47, PART 15, SUBPART C, SECTION 15.209</u> Type of Test : <u>J.Ow Power Communication Device Transmitter</u> Frequency range : 30 MHz ~ 960 MHz Result : <u>PASSED</u> EUT : Access controller Date: October 06, 2022 - October 12, 2022 Operating Condition : Transmitting Mode Distance : 3 m	The for	lowing		ws the	ingnesi	levels	orraula	eu ennissio		ui polariza		rizontal and	vertical.	
Type of Test :: Low Power Communication Device Transmitter Frequency range :: 30 MHz ~ 960 MHz Result :: PASSED EUT :: Access controller Date: October 06, 2022 ~ October 12, 2022 Operating Condition :: Transmitting Mode Distance :: 3 m	Humid	ity Leve	el : <u>4</u>	8 % R.	<u>H.</u>							Τe	emperature	: <u>22 °C</u>
Frequency range : 30 MHz ~ 960 MHz Result : PASSED EUT : Access controller : Date: October 06, 2022 ~ October 12, 2022 Operating Condition : Transmitting Mode Distance : 3 m	Limits	apply to) : <u>F</u>	FCC CE	FR 47, 1	PART	15, SUB	PART C,	SECTIO	<u>N 15.209</u>				
Result : PASSED EUT : Access controller Date: October 06, 2022 ~ October 12, 2022 Operating Condition : Transmitting Mode Distance : 3 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Type o	f Test	: <u>I</u>	Low Po	wer Co	mmur	ication D	evice Tra	nsmitter					
EUT : Access controller Date: October 06, 2022 ~ October 12, 2022 Operating Condition : Transmitting Mode Distance : 3 m	Freque	ncy ran	ge : 3	0 MHz	z ~ 960	MHz								
Operating Condition: Transmitting Mode Distance : 3 m 0 OPORATA OPORATA	Result		: <u>P</u>	ASSEI	D									
Distance : 3 m	EUT		: A	Access (control	ler				Date	e: October	06, 2022 ~ 0	October 12	, 2022
(dBuV/m) (QP DATA> (HORZONTAL / × VERTICAL (dbuV/m) (QP DATA> (HORZONTAL / × VERTICAL (dbuV/m) (QP DATA> (HORZONTAL / × VERTICAL (dbuV/m) (QP DATA> (HORZONTAL / × VERTICAL (dbuV/m) (QP DATA> (HORZONTAL / × VERTICAL (dbuV/m) (dbuV/m) (dbuV/m) (dbuV/m) (dbuV/m) (dbuV/m) (dbuV/m) (dbuV/m) (dbuV/m) (dbuV (db) (db) (db) (db) (db) (dbuV (db) (db) (db) (db) (db) (db) (dbuV) (db) (db) (db) (db) (db) (db) (db)	Operati	ing Con	dition : T	ransmi	itting M	lode								
80 70 60 60 60 60 60 60 60 60 60 6	Distanc	ce	: 3	m										
80 70 60 60 60 60 60 60 60 60 60 6			ml		~~OP		~~							TICAL
60 202 60 60 202 60 60 202 60 60 200 70 100 <td>80</td> <td></td> <td>RIZONTAL</td> <td></td> <td></td>	80											RIZONTAL		
50 0	70													
50 0	60													
40 40 40 40 40 40 40 40 40 40														
30 40 40 40 40 40 40 40 40 40 4	50													
20 0 0 0 0 0 0 0 0 0 0 0 0 0	40								*	I	Υ.			*
10 0 30M 50M 70M 100M 200M 300M 500M 700M 1G No. FREQ READING ANT LOSS GAIN RESULT LIMIT MARGIN ANTENNA TABLE QP FACTOR [MHz] [dBuV] [dB] [dB] [dB] [dBuV/m] [dB] [cm] [DEG] Horizontal 1 63.950 41.4 12.5 1.0 32.0 22.9 40.0 17.1 400 172 2 334.580 51.0 19.7 2.4 32.2 40.9 46.0 5.1 100 0 3 587.748 45.0 24.0 3.1 32.4 39.7 46.0 6.3 200 178 Vertical 4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324 <td>30</td> <td>~~~</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Δ Δ</td> <td></td> <td>MAMM</td> <td>MMIMM</td> <td>ten Unian</td> <td></td> <td>Visionentela</td>	30	~~~						Δ Δ		MAMM	MMIMM	ten Unian		Visionentela
O 30M 50M 70M 100M 200M 300M 500M 700M 1G No. FREQ READING ANT LOSS GAIN RESULT LIMIT MARGIN ANTENNA TABLE QP FACTOR QP GBI [dB] [dB] [dB] [dB] [cm] [DEG] Horizontal 1 63.950 41.4 12.5 1.0 32.0 22.9 40.0 17.1 400 172 2 334.580 51.0 19.7 2.4 32.2 40.9 46.0 5.1 100 0 3 587.748 45.0 24.0 3.1 32.4 39.7 46.0 6.3 200 178 Vertical 4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324	20			M						MAMIM	WWWW	muljuur loem	Y TOWER T	
30M 50M 70M 100M 200M 300M 500M 700M 1G No. FREQ READING ANT LOSS GAIN RESULT LIMIT MARGIN ANTENNA TABLE MHz] [dBuV] [dB] [dB] [dB] [dBuV/m][dBuV/m][dBuV/m] [dB] [cm] [DEG] 1 63.950 41.4 12.5 1.0 32.0 22.9 40.0 17.1 400 172 2 334.580 51.0 19.7 2.4 32.2 40.9 46.0 5.1 100 0 3 587.748 45.0 24.0 3.1 32.4 39.7 46.0 6.3 200 178 Vertical 4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324	10		\sim		MC2				· ·					
30M 50M 70M 100M 200M 300M 500M 700M 1G No. FREQ READING ANT LOSS GAIN RESULT LIMIT MARGIN ANTENNA TABLE MHz] [dBuV] [dB] [dB] [dB] [dBuV/m][dBuV/m][dBuV/m] [dB] [cm] [DEG] 1 63.950 41.4 12.5 1.0 32.0 22.9 40.0 17.1 400 172 2 334.580 51.0 19.7 2.4 32.2 40.9 46.0 5.1 100 0 3 587.748 45.0 24.0 3.1 32.4 39.7 46.0 6.3 200 178 Vertical 4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324	0													
No. FREQ READING ANT LOSS GAIN RESULT LIMIT MARGIN ANTENNA TABLE QP FACTOR [MHz] [dBuV] [dB] [dB] [dB] [dBuV/m][dBuV/m] [dB] [cm] [DEG] Horizontal 1 63.950 41.4 12.5 1.0 32.0 22.9 40.0 17.1 400 172 2 334.580 51.0 19.7 2.4 32.2 40.9 46.0 5.1 100 0 3 587.748 45.0 24.0 3.1 32.4 39.7 46.0 6.3 200 178 Vertical 4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324		M	50	M	70M		100M		200N	1 30	0M	500M	700M	1G
QP FACTOR [MHz] [dBuV] [dB] [dB] [dB] [dBuV/m][dBuV/m][dB] [cm] [DEG] Horizontal 1 63.950 41.4 12.5 1.0 32.0 22.9 40.0 17.1 400 172 2 334.580 51.0 19.7 2.4 32.2 40.9 46.0 5.1 100 0 3 587.748 45.0 24.0 3.1 32.4 39.7 46.0 6.3 200 178 Vertical 4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324													Frequen	cy[Hz]
QP FACTOR [MHz] [dBuV] [dB] [dB] [dB] [dBuV/m][dBuV/m][dB] [cm] [DEG] Horizontal 1 63.950 41.4 12.5 1.0 32.0 22.9 40.0 17.1 400 172 2 334.580 51.0 19.7 2.4 32.2 40.9 46.0 5.1 100 0 3 587.748 45.0 24.0 3.1 32.4 39.7 46.0 6.3 200 178 Vertical 4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324														
Horizontal 1 63.950 41.4 12.5 1.0 32.0 22.9 40.0 17.1 400 172 2 334.580 51.0 19.7 2.4 32.2 40.9 46.0 5.1 100 0 3 587.748 45.0 24.0 3.1 32.4 39.7 46.0 6.3 200 178 Vertical 4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324		No. E	'REQ F				LOSS	GAIN R	ESULT	LIMIT	MARGIN	ANTENNA	TABLE	
1 63.950 41.4 12.5 1.0 32.0 22.9 40.0 17.1 400 172 2 334.580 51.0 19.7 2.4 32.2 40.9 46.0 5.1 100 0 3 587.748 45.0 24.0 3.1 32.4 39.7 46.0 6.3 200 178 Vertical 4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324		[[MHz]	[dBu\	V]	[dB]	[dB]	[dB] [dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]	
2 334.580 51.0 19.7 2.4 32.2 40.9 46.0 5.1 100 0 3 587.748 45.0 24.0 3.1 32.4 39.7 46.0 6.3 200 178 Vertical 4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324	-	!	Horizon	tal -										
3 587.748 45.0 24.0 3.1 32.4 39.7 46.0 6.3 200 178 Vertical 4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324														
4 35.820 39.8 18.8 0.8 32.0 27.4 40.0 12.6 100 202 5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324		2 3 3 5	34.580 87.748	51 45	• 0 • 0	19.7 24.0	2.4 3.1	32.2 32.4	40.9 39.7	46.0 46.0	5.1 6.3	100 200		
5 173.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324	-	· ,	Vertica	.1 -										
5 1/3.560 48.4 16.9 1.7 32.1 34.9 43.5 8.6 400 324 6 844.791 36.1 27.2 3.8 32.2 34.9 46.0 11.1 100 0														
		5 1 6 8	/3.560 44.791	48. 36.	•4 •1	16.9 27.2	1.7 3.8	32.1 32.2	34.9 34.9	43.5 46.0	8.6 11.1	400		

It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)

5.4 20 dB BANDWIDTH

5.4.1 Operating environment

Temperature	:	22 °C
Relative humidity	:	48 % R.H.

5.4.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 % to 5 % of the OBW and video bandwidth (VBW) shall be approximately three times RBW. The 20 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 20 dB.

5.4.3 Test date

October 06, 2022 ~ October 12, 2022

5.4.4 Test data

Limits apply to	: FCC CFR 47, PART 15, SUBPART C, SECTION 15.215	

FREQUENCY (MHz)	MEASURED VALUE (kHz)	Result
13.559 1	0.734 3	PASS

Spectru	n Ϊ	Spec	trum 2	×	Spe	ctrum 3	: (X	Spe	ctrum 4	×		
Ref Leve					RBW	300 Hz						(*
Att			SWT 6.				Mode	Auto FF	т			
o 1Pk View		20 0.0	0/11 0.	11112			Houe	Autori				
UTK HOW								M1[1]	1			79.64 dBµ\
90 dBuV—											13.55	908590 MH
50 abpv								ndB			20100	20.00 dE
80 dBµV—						N	11	Bw			734.29	99999999 Hz
00 0000								Q fac	tor			18466.2
70 dBµV—												
70 ubµv—						7						
60 dBµV—						Ţ∦		Ę2				
оо авру—						7						
no do de						[AL.				
50 dBµV—					-17							
10.10.11					- 1/			1				
40 dBµV—												
30 dBµV—												
20 dBµV—												
10 dBµV—												
0 dBµV—												
CF 13.55	90809 M	1Hz				1001	l pts				S	pan 5.0 kHz
Marker	- 1											
	ef Trc	_	X-value			-value		unction		Fun	ction Resu	
M1 T1	1		13.559085 13.558711			79.64 dB		ndB dov	vn dB		734.29	20.00 dB
T2	1		13.558711			59.48 dBj 59.75 dBj		Q fact				20.00 UB 18466
	1	· ·	13.339440	10 14112		39.75 UD		Qiact	.01			10+00

5.5 FREQUENCY STABILITY WITH TEMPERATURE VARIATION

5.5.1 Operating environment

Temperature	:	22 °C
Relative humidity	:	48 % R.H.

5.5.2 Test set-up

Turn EUT off and set chamber temperature to -20 °C and then allow sufficient time (approximately 20 to 30 minutes after chamber reach the assigned temperature) for EUT to stabilize. Turn ON EUT and measure the EUT operating frequency and then turn off the EUT after the measurement. The temperature in the chamber was raised 10 °C step from -20 °C to +50°C. Repeat above method for frequency measurements every 10 °C step and then record all measured frequencies on each temperature step.

5.5.3 Test date

October 06, 2022 ~ October 12, 2022

5.5.4 Test data

Result	PASSED			
Temperature (°C)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Margin (Hz)	Limit (Hz)
-20		13,559,435	349	
-10	13,559,086	13,559,434	348	
0		13,559,277	191	
10		13,559,050	-36	1 255 00
20		13,559,210	124	± 1 355.90
30		13,559,335	249	
40		13,559,388	302	
50		13,559,627	541	

5.6 FREQUENCY STABILITY WITH VOLTAGE VARIATION

5.6.1 Operating environment

Temperature	:	22 °C
Relative humidity	:	48 % R.H.

5.6.2 Test set-up

An external DC power supply was connected to the input of the EUT. The voltage of EUT set to 115 % of the nominal value and then was reduced to 85 % of nominal voltage. The output frequency was recorded at each step.

5.6.3 Test date

October 06, 2022 ~ October 12, 2022

5.6.4 Test data

-. Result : <u>PASSED</u>

Voltage (Vdc)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Margin (Hz)	Limit (Hz)
17.25(115 %)		13,559,483	397	
15.0(100 %)	13,559,086	13,559,403	317	± 1 355.90
12.75(85 %)		13,559,671	585	

6. FIELD STRENGTH CALCULATION

Meter readings are compared to the specification limit correcting for antenna and cable losses.

+ Meter reading	$(dB\mu V)$
- Amplifier Gain	(dB)
+ Cable Loss	(dB)
- Antenna Factor	(dB/m)
= Corrected Result	$(dB\mu V/m)$

Margin (dB)

Specification Limit	(dBuV/m)
- Corrected Result	(dBuV/m)
= dB Relative to Spec	(± dB)

7. LIST OF TEST EQUIPMENT

Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
FSV40-N	Rohde & Schwarz	SIGNAL ANALYZER	101372	Jul. 14, 2022 (1Y)
ESR	Rohde & Schwarz	EMI Test Receiver	101615	Fed. 24, 2021 (1Y)
310N	Sonoma Instrument	AMPLIFIER	392756	Oct. 14, 2022 (1Y)
HLP-2008	TDK	Hybrid Antenna	131316	Mar. 07, 2022 (2Y)
DT2000-2t	Innco System	Turn Table	N/A	N/A
CO3000	Innco Systems GmbH	Controller	1026/40960617/P	N/A
MA-4640-XPET	Innco Systems GmbH	Antenna Master	MA4640/652/ 43100318/P/-	N/A
HLA 6121	TESEQ	Loop Antenna	50841	Apr. 13, 2022 (2Y)
ESCI	Rohde & Schwarz	Test Receiver	101012	Fed. 24, 2022 (1Y)
NSLK8128	Schwarzbeck	V - LISN (4*32/50A)	8128216	Mar. 14, 2022 (1Y)
ESH3-Z2	Rohde & Schwarz	Pulse Limiter	100655	Mar. 14, 2022 (1Y)
SH-242	ESPEC	Temperature & Humidity Chamber	00931001589	Jan. 18, 2022 (1Y)
GP-4303D	LG Precision Co.,Ltd	DC Power Supply	5071069	Jan. 03, 2022 (1Y)