

# ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

Test Report No. : W17NR-D045

AGR No. : A17OA-093

Applicant : UNION COMMUNITY

Address : Hyundai Topics Bldg. Bangi 2-dong, Songpa-gu, Seoul, South Korea

Manufacturer : UNION COMMUNITY

Address : Hyundai Topics Bldg. Bangi 2-dong, Songpa-gu, Seoul, South Korea

Type of Equipment : Access controller

FCC ID : XX2-AC5100

Model Name : AC-5100

Multiple Model Name : AC-5000PLUS

Serial number : N/A

Total page of Report : 21 pages (including this page)

Date of Incoming : October 20, 2017

Date of Issuing : November 15, 2017

## **SUMMARY**

The equipment complies with the requirements of FCC CFR 47 PART 15 SUBPART C Section 15.225

This test report contains only the result of a single test of the sample supplied for the examination.

It is not a general valid assessment of the features of the respective products of the mass-production.

Reviewed by:

Ki-Hong, Nam / Asst, Chief Engineer ONETECH Corp.

Approved by:

Keun-Young, Choi / Vice President

Report No.: W17NR-D045

ONETECH Corp.





## **CONTENTS**

| 1. VERIFICATION OF COMPLIANCE                                         |          |
|-----------------------------------------------------------------------|----------|
|                                                                       |          |
| 2. GENERAL INFORMATION                                                | 6        |
| 2.1 PRODUCT DESCRIPTION                                               | <i>6</i> |
| 2.2 Model Differences:                                                | <i>6</i> |
| 2.3 RELATED SUBMITTAL(S) / GRANT(S)                                   |          |
| 2.4 PURPOSE OF THE TEST                                               |          |
| 2.5 TEST METHODOLOGY                                                  | <i>.</i> |
| 2.6 TEST FACILITY                                                     | 7        |
| 3. SYSTEM TEST CONFIGURATION                                          | 8        |
| 3.1 JUSTIFICATION                                                     | 8        |
| 3.2 PERIPHERAL EQUIPMENT                                              |          |
| 3.3 MODE OF OPERATION DURING THE TEST                                 |          |
| 3.4 EQUIPMENT MODIFICATIONS                                           |          |
| 3.5 CONFIGURATION OF TEST SYSTEM                                      |          |
| 3.6 ANTENNA REQUIREMENT                                               |          |
| 4. PRELIMINARY TEST                                                   | 9        |
| 4.1 AC POWER LINE CONDUCTED EMISSIONS TESTS                           | g        |
| 4.2 RADIATED EMISSIONS TESTS                                          | g        |
| 5. FINAL RESULT OF MEASUREMENT                                        | 10       |
|                                                                       |          |
| 5.1 CONDUCTED EMISSION TEST                                           |          |
| 5.2 RADIATED EMISSION TEST                                            |          |
| 5.2.1 Operation frequency band: (13.553 ~ 13.567) MHz                 |          |
| 5.2.2 Operation frequency band: Below 13.553 MHz and above 13.567 MHz |          |
| 5.3 SPURIOUS EMISSION TEST                                            |          |
| 5.3.1 Spurious Radiated Emission Below 30 MHz                         |          |
| 5.3.2 Spurious Radiated Emission below 1 GHz                          |          |
| 5.4 20 DB BANDWIDTH                                                   |          |
| 5.4.1 Operating environment                                           |          |
| 5.4.2 Test set-up                                                     |          |
| 5.4.3 Test data                                                       |          |
| 5.5 FREQUENCY STABILITY WITH TEMPERATURE VARIATION                    |          |

Report No.: W17NR-D045

Page





| 5.5.1 Operating environment                    |    |
|------------------------------------------------|----|
| 5.5.2 Test set-up                              |    |
| 5.5.3 Test data                                |    |
| 5.6 FREQUENCY STABILITY WITH VOLTAGE VARIATION | 19 |
| 5.6.1 Operating environment                    |    |
| 5.6.2 Test set-up                              |    |
| 5.6.3 Test data                                | 19 |
| 6. FIELD STRENGTH CALCULATION                  | 20 |
| 7. LIST OF TEST EQUIPMENT                      | 21 |



Page 4 of 21 Report No.: W17NR-D045

## **REVISION HISTORY**

| Issued Report No. | Issued Date       | Revisions     | Effect Section |
|-------------------|-------------------|---------------|----------------|
| W17NR-D045        | November 15, 2017 | Initial Issue | All            |



Page 5 of 21 Report No.: W17NR-D045

## 1. VERIFICATION OF COMPLIANCE

-. APPLICANT : UNION COMMUNITY

-. ADDRESS : Hyundai Topics Bldg. Bangi 2-dong, Songpa-gu, Seoul, South Korea

-. CONTACT PERSON : Dong-Ho, Lee / Junior Research Engineer

-. TELEPHONE NO : +82-02-6488-3054

-. FCC ID : XX2-AC5100

-. MODEL NO/NAME : AC-5100

-. SERIAL NUMBER : N/A

-. DATE : November 15, 2017

| DEVICE TYPE                    | DXX – Low Power Communication Device Transmitter |
|--------------------------------|--------------------------------------------------|
| E.U.T. DESCRIPTION             | Access controller                                |
| THIS REPORT CONCERNS           | Original Grant                                   |
| MEASUREMENT PROCEDURES         | ANSI C63.10: 2013                                |
| TYPE OF EQUIPMENT TESTED       | Pre-Production                                   |
| KIND OF EQUIPMENT              |                                                  |
| AUTHORIZATION REQUESTED        | Certification                                    |
| EQUIPMENT WILL BE OPERATED     | FCC CFD47 Post 15 S 1 and C Souther 15 225       |
| UNDER FCC RULES PART(S)        | FCC CFR47 Part 15 Subpart C Section 15.225       |
| MODIFICATIONS ON THE EQUIPMENT | Name                                             |
| TO ACHIEVE COMPLIANCE          | None                                             |
| FINAL TEST WAS CONDUCTED ON    | 10 m Semi Anechoic Chamber                       |

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.



Page 6 of 21 Report No.: W17NR-D045

#### 2. GENERAL INFORMATION

#### 2.1 Product Description

The UNION COMMUNITY, Model AC-5100 (referred to as the EUT in this report) is an Access controller, Product specification information described herein was obtained from product data sheet or user's manual.

|                           | -                   |
|---------------------------|---------------------|
| DEVICE TYPE               | Access controller   |
| TRANSMITTING FREQUENCY    | 13.560 4 MHz        |
| NUMBER OF CHANNELS        | 1                   |
| MODULATION                | ASK                 |
| ANTENNA TYPE              | PCB Pattern Antenna |
| LIST OF EACH OSC. or CRY. |                     |
| FREQ.(FREQ. >= 1 MHz)     | 25 MHz              |

#### 2.2 Model Differences:

-. The following lists consist of the added model and their differences.

| Model Name  | Differences                                                           | Tested |
|-------------|-----------------------------------------------------------------------|--------|
| AC-5100     | Basic Model                                                           |        |
| AC-5000PLUS | The model is identical to basic model except for the model name only. |        |

Note: 1. Applicant consigns only basic model to test. Therefore this test report just guarantees the units, which have been tested.

2. The Applicant/manufacturer is responsible for the compliance of all variants.

#### 2.3 Related Submittal(s) / Grant(s)

Original submittal only

#### 2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC PART 15 SUBPART C Section 15.225.

## 2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiate d testing was performed at a distance of 3 m from EUT to the antenna.



Page 7 of 21 Report No.: W17NR-D045

#### 2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-4112/C-14617/G-10666/T-1842

IC (Industry Canada) – Registration No. Site# 3736A-3

-. Site Accreditation:

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013





## 3. SYSTEM TEST CONFIGURATION

## 3.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

| DEVICE TYPE          | MANUFACTURER                            | MODEL/PART NUMBER   | FCC ID     |
|----------------------|-----------------------------------------|---------------------|------------|
| MAIN BOARD           | UNION COMMUNITY                         | PAC5000MA01 V31     | N/A        |
| SUB BOARD(1)         | UNION COMMUNITY                         | PAC5000PW01 V30     | N/A        |
| SUB BOARD(2)         | UNION COMMUNITY                         | PAC5000SC01 V10     | N/A        |
| FINGERPRINT BOARD(1) | UNION COMMUNITY                         | PFCS02MA01 V22      | N/A        |
| FINGERPRINT BOARD(2) | UNION COMMUNITY                         | PFF0S02TS03 V34     | N/A        |
| TOUCH BOARD          | UNION COMMUNITY                         | PAC5000KP01 V11     | N/A        |
| DISPLAY              | UNION COMMUNITY                         | PAC5000LI01 V12     | N/A        |
| CAMERA               | CAMERA UNION COMMUNITY                  |                     | N/A        |
| ANTENNA              | UNION COMMUNITY                         | PAC5000SA01 V10     | N/A        |
| Di anal IEM. Li      | DDOCHH D ING                            | DDI N51022          | 2AEEY-     |
| Bluetooth LE Module  | PROCHILD INC.                           | PBLN51822m          | PBLN51822m |
| ADAPTER              | Dee Van Electronics(Longchuan)Co., Ltd. | DSA-42D-12 1 120350 | N/A        |

## 3.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested: None

## 3.3 Mode of operation during the test

-. The EUT has 13.560 4 MHz RF boards for reading Card and program was used for making continuous transmission mode during the test.

## 3.4 Equipment Modifications

-. None



Page 9 of 21 Report No.: W17NR-D045

## 3.5 Configuration of Test System

Line Conducted Test: The EUT was connected to adaptor and the power of adaptor was connected to LISN. All

supporting equipments were connected to another LISN. Preliminary Power line Conducted

Emission test was performed by using the procedure in ANSI C63.10: 2013 to determine

the worse operating conditions.

Radiated Emission Test: Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:

2013 to determine the worse operating conditions. The radiated emissions measurements

were performed on the 10 m Semi Anechoic Chamber.

For frequencies from 150 kHz to 30 MHz measurements were made of the magnetic H field.

The measuring antenna is an electrically screened loop antenna.

The frequency spectrum from 30 MHz to 1 000 MHz was scanned and maximum emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization

of the receiving antenna.

#### 3.6 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### **Antenna Construction:**

The transmitter antenna of the EUT is a PCB pattern antenna so there is no consideration of replacement by the user.

## 4. PRELIMINARY TEST

#### 4.1 AC Power line Conducted Emissions Tests

During Preliminary Tests, the following operating mode was investigated

| Operation Mode | The Worse operating condition (Please check one only) |
|----------------|-------------------------------------------------------|
| Tx Mode        | X                                                     |

#### 4.2 Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

| Operation Mode | The Worse operating condition (Please check one only) |
|----------------|-------------------------------------------------------|
| Tx Mode        | X                                                     |



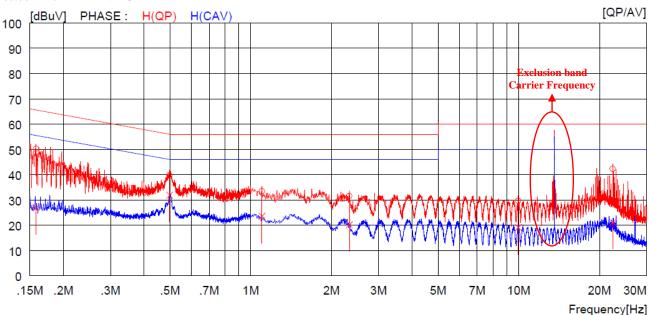


5. FINAL RESULT OF MEASUREMENT

Preliminary test was done in normal operation mode. And the final measurement was selected for the maximized emission level.

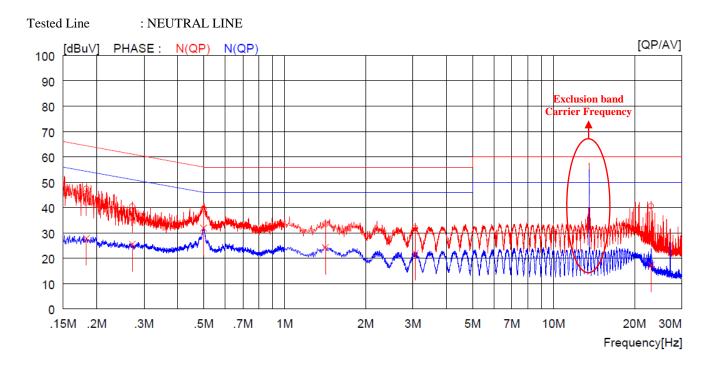
#### 5.1 CONDUCTED EMISSION TEST

Humidity Level :  $(45 \sim 46)$  % R.H. Temperature:  $(24 \sim 25)$  °C


Limits apply to : FCC CFR 47, PART 15, SUBPART B, SECTION 15.207(a)

Result : <u>PASSED</u>

EUT : Access controller Date: November 08, 2017


Detector : CISPR Quasi-Peak (6 dB Bandwidth: 9 kHz)

Tested Line : HOT LINE



| NC | FREQ     | READ         |              | C.FACTOR | RES          |              | LIM          |              |              |               | PHASE  |
|----|----------|--------------|--------------|----------|--------------|--------------|--------------|--------------|--------------|---------------|--------|
|    | [MHz]    | QP<br>[dBuV] | AV<br>[dBuV] | [dB]     | QP<br>[dBuV] | AV<br>[dBuV] | QP<br>[dBuV] | AV<br>[dBuV] | QP<br>[dBuV] | AV<br> [dBuV] |        |
| 1  | 0.15800  | 40.2         |              | 10.0     | 50.2         |              | 65.6         |              | 15.4         |               | H(QP)  |
| 2  | 0.49800  | 29.8         |              | 10.0     | 39.8         |              | 56.0         |              | 16.2         |               | H(QP)  |
| 3  | 1.10000  | 23.4         |              | 10.1     | 33.5         |              | 56.0         |              | 22.5         |               | H(QP)  |
| 4  | 2.33200  | 21.5         |              | 10.1     | 31.6         |              | 56.0         |              | 24.4         |               | H(QP)  |
| 5  | 9.96000  | 19.3         |              | 10.4     | 29.7         |              | 60.0         |              | 30.3         |               | H(QP)  |
| 6  | 22.43000 | 31.5         |              | 10.8     | 42.3         |              | 60.0         |              | 17.7         |               | H(QP)  |
| 7  | 0.15800  |              | 17.0         | 10.0     |              | 27.0         |              | 55.6         |              | 28.6          | H(CAV) |
| 8  | 0.49800  |              | 21.9         | 10.0     |              | 31.9         |              | 46.0         |              | 14.1          | H(CAV) |
| 9  | 1.10000  |              | 13.4         | 10.1     |              | 23.5         |              | 46.0         |              | 22.5          | H(CAV) |
| 10 | 2.33200  |              | 10.0         | 10.1     |              | 20.1         |              | 46.0         |              | 25.9          | H(CAV) |
| 11 | 9.96000  |              | 8.7          | 10.4     |              | 19.1         |              | 50.0         |              | 30.9          | H(CAV) |
| 12 | 22.43000 |              | 10.3         | 10.8     |              | 21.1         |              | 50.0         |              | 28.9          | H(CAV) |





| NC | FREQ     | READ         |              | C.FACTOR |              | ULT          | LIM          |              |              |               | PHASE  |
|----|----------|--------------|--------------|----------|--------------|--------------|--------------|--------------|--------------|---------------|--------|
|    | [MHz]    | QP<br>[dBuV] | AV<br>[dBuV] | [dB]     | QP<br>[dBuV] | AV<br>[dBuV] | QP<br>[dBuV] | AV<br>[dBuV] | QP<br>[dBuV] | AV<br>][dBuV] |        |
| 1  | 0.18300  | 37.4         |              | 10.0     | 47.4         |              | 64.3         |              | 16.9         |               | N(QP)  |
| 2  | 0.27100  | 30.4         |              | 10.0     | 40.4         |              | 61.1         |              | 20.7         |               | N(QP)  |
| 3  | 0.49900  | 29.5         |              | 10.0     | 39.5         |              | 56.0         |              | 16.5         |               | N(QP)  |
| 4  | 1.41600  | 23.4         |              | 10.1     | 33.5         |              | 56.0         |              | 22.5         |               | N(QP)  |
| 5  | 3.05600  | 21.7         |              | 10.2     | 31.9         |              | 56.0         |              | 24.1         |               | N(QP)  |
| 6  | 23.04000 | 29.7         |              | 10.8     | 40.5         |              | 60.0         |              | 19.5         |               | N(QP)  |
| 7  | 0.18300  |              | 17.9         | 10.0     |              | 27.9         |              | 54.3         |              | 26.4          | N(CAV) |
| 8  | 0.27100  |              | 15.6         | 10.0     |              | 25.6         |              | 51.1         |              | 25.5          | N(CAV) |
| 9  | 0.49900  |              | 21.9         | 10.0     |              | 31.9         |              | 46.0         |              | 14.1          | N(CAV) |
| 10 | 1.41600  |              | 14.1         | 10.1     |              | 24.2         |              | 46.0         |              | 21.8          | N(CAV) |
| 11 | 3.05600  |              | 11.7         | 10.2     |              | 21.9         |              | 46.0         |              | 24.1          | N(CAV) |
| 12 | 23.04000 |              | 6.6          | 10.8     |              | 17.4         |              | 50.0         |              | 32.6          | N(CAV) |

Remark: Margin (dB) = Limit - Level (Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

Tested by: Tae-Ho, Kim / Manager



Page 12 of 21 Report No.: W17NR-D045

#### 5.2 RADIATED EMISSION TEST

## 5.2.1 Operation frequency band: (13.553 ~ 13.567) MHz

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Humidity Level : 49.0 % R.H. Temperature: 24.1 ℃

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

Type of Test : Low Power Transmitter below 1 705 kHz

Result : <u>PASSED</u>

EUT : Access controller Date: November 08, 2017

Operating Condition: Transmitting Mode

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 9 kHz)

Distance : 3 m

| Radiated Emission |                    | Ant  | <b>Correction Factors</b> |            | Total              | FC                | CC          |
|-------------------|--------------------|------|---------------------------|------------|--------------------|-------------------|-------------|
| Freq. (MHz)       | Amplitud<br>(dBµV) | Pol. | Antenna<br>(dB/m)         | Cable (dB) | Amplitude (dBμV/m) | Limit<br>(dBµV/m) | Margin (dB) |
| 13.560 4          | 17.64              | Н    | 19.98                     | 1.09       | 38.71              | 124               | 85.29       |
| 13.560 4          | 17.08              | V    | 19.98                     | 1.09       | 38.15              | 124               | 85.85       |

Note: According to the distance of measurements was reduced to 3 m, the limit was extrapolated by using the square of an inverse linear distance extrapolation factor (40 dB/decade) as follows.

Limit calculation: Limit at specified distance  $+40\log (30/3) = 84 \text{ dB}\mu\text{V/m} + 40 \text{ dB}$ 

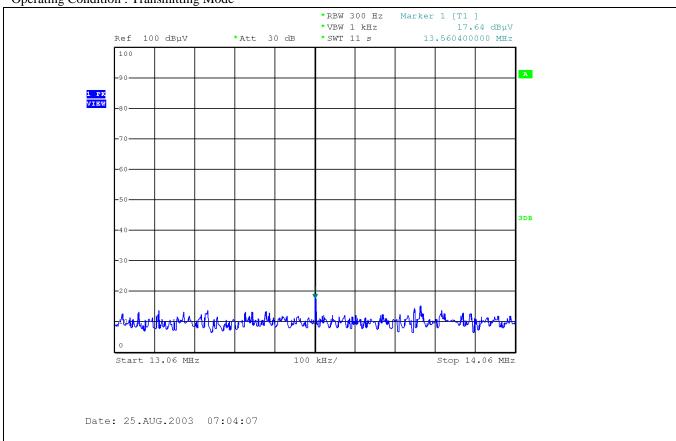


Page 13 of 21 Report No.: W17NR-D045

## 5.2.2 Operation frequency band: Below 13.553 MHz and above 13.567 MHz

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Humidity Level : 49.0 % R.H. Temperature: 24.1 ℃


Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

Type of Test : Low Power Transmitter below 1 705 kHz

Result : <u>PASSED</u>

EUT : Access controller Date: November 08, 2017

Operating Condition: Transmitting Mode



cc. to above test data, the field strength level of 13.560 4 MHz is 17.64 dBuV/m and the worst limit subject to 15.225 (b) and (c) is 80.5 dBuV/m, so the EUT meets the requirement.



Page 14 of 21 Report No.: W17NR-D045

## **5.3 SPURIOUS EMISSION TEST**

## 5.3.1 Spurious Radiated Emission Below 30 MHz

Humidity Level : 49.0 % R.H. Temperature: 24.1 ℃

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

Type of Test : Low Power Transmitter below 1 705 kHz

Frequency Range : 9 kHz ~ 30 MHz

Result : <u>PASSED</u>

EUT : Access controller Date: November 08, 2017

Operating Condition : Transmitting Mode

Distance : 3 m

| Frequency | Reading | Ant. Pol. | Ant.       | Angle | Ant. Factor | Cable | Emission      | Limits        | Margin |
|-----------|---------|-----------|------------|-------|-------------|-------|---------------|---------------|--------|
| (MHz)     | (dBµV)  | (H/V)     | Height (m) | (°)   | (dB/m)      | Loss  | Level(dBµV/m) | $(dB\mu V/m)$ | (dB)   |

It was not observed any emissions from the EUT.



Page 15 of 21 Report No.: W17NR-D045

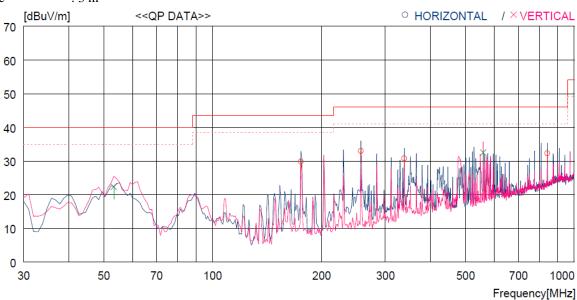
## 5.3.2 Spurious Radiated Emission below 1 GHz

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Humidity Level :  $(45 \sim 46)$  % R.H. Temperature:  $(24 \sim 25)$  °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

Type of Test : Low Power Transmitter below 1 705 kHz


Frequency range : 30 MHz ~ 1 000 MHz

Result : <u>PASSED</u>

EUT : Access controller Date: November 06, 2017

Operating Condition: Transmitting Mode

Distance : 3 m



| No.              | FREQ                                     | READING<br>QP F | ANT<br>ACTOR                | LOSS                     | GAIN                         | RESULT                       | LIMIT                        | MARGIN                       | ANTENNA                  | TABLE                    |
|------------------|------------------------------------------|-----------------|-----------------------------|--------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------|--------------------------|
|                  | [MHz]                                    | [dBuV]          | [dB]                        | [dB]                     | [dB]                         | [dBuV/m]                     | [dBuV/m]                     | [dB]                         | [cm]                     | [DEG]                    |
| H                | orizontal -                              |                 |                             |                          |                              |                              |                              |                              |                          |                          |
| 1<br>2<br>3<br>4 | 175.500<br>256.980<br>338.460<br>841.881 | 50.1            | 9.2<br>12.3<br>14.6<br>21.0 | 3.2<br>3.7<br>4.3<br>6.7 | 33.1<br>33.1<br>33.1<br>33.0 | 29.8<br>33.0<br>30.8<br>32.3 | 43.5<br>46.0<br>46.0<br>46.0 | 13.7<br>13.0<br>15.2<br>13.7 | 200<br>100<br>100<br>100 | 139<br>359<br>359<br>149 |
| Ve               | ertical                                  |                 |                             |                          |                              |                              |                              |                              |                          |                          |
| 5<br>6           | 53.280<br>559.619                        | 39.8<br>42.7    | 13.8<br>17.7                | 1.8<br>5.4               | 33.1<br>33.3                 | 22.3<br>32.5                 | 40.0<br>46.0                 | 17.7<br>13.5                 | 300<br>300               | 154<br>82                |



Page 16 of 21 Report No.: W17NR-D045

#### 5.4 20 dB BANDWIDTH

## **5.4.1 Operating environment**

Temperature :  $24.1 \, ^{\circ}\text{C}$ 

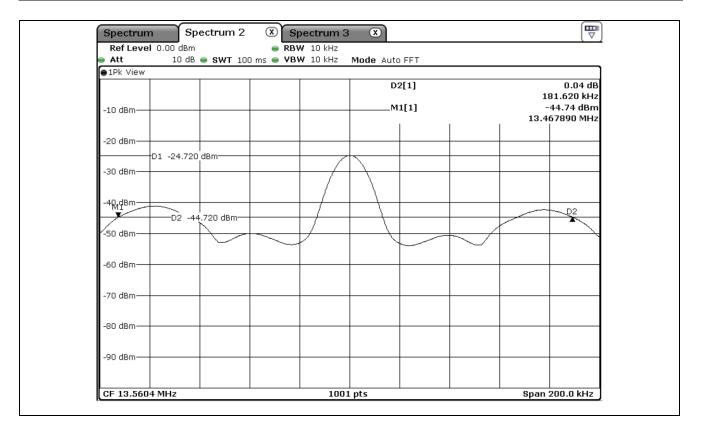
Relative humidity : 49.0 % R.H.

## 5.4.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 10 kHz, and peak detection was used. The 20 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 20 dB.






Page 17 of 21 Report No.: W17NR-D045

#### 5.4.3 Test data

-. Test Date : November 08, 2017

-. Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.209

| Operating Freq. (MHz) | Measured Value (kHz) | Assigned Operating Frequency Band (kHz) | Result |
|-----------------------|----------------------|-----------------------------------------|--------|
| 13.560 4              | 181.62               | 900                                     | PASS   |





Page 18 of 21 Report No.: W17NR-D045

## 5.5 FREQUENCY STABILITY WITH TEMPERATURE VARIATION

## **5.5.1** Operating environment

Temperature :  $24.1 \, ^{\circ}\text{C}$ 

Relative humidity : 49.0 % R.H.

## 5.5.2 Test set-up

Turn EUT off and set chamber temperature to -20 °C and then allow sufficient time (approximately 20 to 30 minutes after chamber reach the assigned temperature) for EUT to stabilize. Turn ON EUT and measure the EUT operating frequency and then turn off the EUT after the measurement. The temperature in the chamber was raised 10 °C step from -20 °C to +50 °C. Repeat above method for frequency measurements every 10 °C step and then record all measured frequencies on each temperature step.

#### 5.5.3 Test data

-. Test Date : November 08, 2017

-. Result : <u>PASSED</u>

| Temperature (°C) | Carrier Freq. (Hz) | Measured Freq. (Hz) | Margin (Hz) | Limit (Hz) |
|------------------|--------------------|---------------------|-------------|------------|
| -20              |                    | 13 560 427          | 1 329.04    |            |
| -10              |                    | 13 560 415          | 1 341.04    |            |
| 0                |                    | 13 560 437          | 1 319.04    |            |
| 10               | 13 560 400         | 13 560 423          | 1 333.04    | 1 25004    |
| 20               |                    | 13 560 421          | 1 335.04    | ± 1 356.04 |
| 30               |                    | 13 560 418          | 1 338.04    |            |
| 40               |                    | 13 560 409          | 1 347.04    |            |
| 50               |                    | 13 560 411          | 1 345.04    |            |



Page 19 of 21 Report No.: W17NR-D045

## 5.6 FREQUENCY STABILITY WITH VOLTAGE VARIATION

## **5.6.1** Operating environment

Temperature :  $24.1 \, ^{\circ}\text{C}$ 

Relative humidity : 49.0 % R.H.

## 5.6.2 Test set-up

An external DC power supply was connected to the input of the EUT. The voltage of EUT set to 115 % of the nominal value and then was reduced to 85 % of nominal voltage. The output frequency was recorded at each step.

#### 5.6.3 Test data

-. Test Date : November 08, 2017

-. Result : <u>PASSED</u>

| Voltage (Vac) | Carrier Freq. (Hz) | Measured Freq. (Hz) | Margin (Hz) | Limit (Hz) |
|---------------|--------------------|---------------------|-------------|------------|
| 264.5(115 %)  |                    | 13 560 429          | 1 327.04    |            |
| 230(100 %)    | 13 560 400         | 13 560 416          | 1 340.04    | ± 1 356.04 |
| 195.5(85 %)   |                    | 13 560 435          | 1 321.04    |            |





## 6. FIELD STRENGTH CALCULATION

Meter readings are compared to the specification limit correcting for antenna and cable losses.

| + Meter reading       | (dBµV)        |  |  |  |  |  |
|-----------------------|---------------|--|--|--|--|--|
| - Amplifier Gain      | (dB)          |  |  |  |  |  |
| + Cable Loss          | (dB)          |  |  |  |  |  |
| - Antenna Factor      | (dB/m)        |  |  |  |  |  |
| = Corrected Result    | $(dB\mu V/m)$ |  |  |  |  |  |
|                       |               |  |  |  |  |  |
| Margin (dB)           |               |  |  |  |  |  |
| Specification Limit   | (dBuV/m)      |  |  |  |  |  |
| - Corrected Result    | (dBuV/m)      |  |  |  |  |  |
| = dB Relative to Spec | (± dB)        |  |  |  |  |  |





# 7. LIST OF TEST EQUIPMENT

| No. | EQUIPMENTS               | MFR.                 | MODEL                     | SER. NO.                  | LAST CAL      | DUE CAL  | USE |
|-----|--------------------------|----------------------|---------------------------|---------------------------|---------------|----------|-----|
| 1.  |                          | R/S                  | ESCI                      | 101013                    | Apr. 04, 2017 | One Year |     |
| 2.  | Test receiver            | R/S                  | ESPI                      | 101278                    | Oct. 26, 2017 | One Year |     |
| 3.  |                          | R/S                  | ESU                       | 100261                    | Apr. 05, 2017 | One Year |     |
| 4.  | Spectrum analyzer        | R/S                  | FSU26                     | 200319                    | Apr. 04, 2017 | One Year |     |
| 5.  | Spectrum analyzer        | R/S                  | FSV30                     | 101199                    | Apr. 05, 2017 | One Year |     |
| 6.  | Amplifier                | Sonoma<br>Instrument | 310N                      | 312544                    | Apr. 04, 2017 | One Year |     |
| 7.  | Amplifier                | Sonoma<br>Instrument | 310N                      | 312545                    | Apr. 04, 2017 | One Year |     |
| 8.  | TRILOG Broadband Antenna | Schwarzbeck          | VULB9163                  | 9163-255                  | May. 20, 2016 | Two Year |     |
| 9.  | TRILOG Broadband Antenna | Schwarzbeck          | VULB9163                  | 9163-419                  | Aug. 05, 2016 | Two Year |     |
| 10. | Controller               | Innco System         | CO3000                    | CO3000/904/<br>37211215/L | N/A           | N/A      |     |
|     | LICN                     | EMCO                 | 3825/2                    | 9109-1867                 | Apr. 07, 2017 | One Year |     |
| 11  |                          |                      |                           | 9109-1869                 | Apr. 06, 2017 | One Year |     |
| 11. | LISN                     | Schwarzbeck          | NSLK8126                  | 8126-404                  | Apr. 03, 2017 | One Year |     |
|     |                          | Schwarzbeck          | NSLK8128                  | 8128-216                  | Apr. 05, 2017 | One Year |     |
| 12. | Turn Table               | Innco System         | DT3000                    | 930611                    | N/A           | N/A      |     |
| 13. | Antenna Master           | Innco System         | MA-4000XPET               | MA4000/509/<br>37211215/L | N/A           | N/A      | •   |
| 14. | Antenna Master           | Innco System         | MA4000-EP                 | MA4000/332/<br>27030611/L | N/A           | N/A      |     |
| 15. | Loop Antenna             | Schwarzbeck          | FMZB 1513                 | 1513-235                  | Jun. 10, 2016 | Two Year |     |
| 16. | Frequency Counter        | HP                   | 53152A                    | US39270295                | Sep. 05, 2017 | One Year |     |
| 17. | Chamber                  | ESPEC                | EBE-<br>5E30W6PT2L-<br>22 | 3015006449                | Mar. 22, 2017 | One Year | •   |
| 18. | DC Power Supply          | Protek               | PWS-3003D                 | 4020409                   | Sep. 01, 2017 | One Year |     |
| 19. | Slidacs                  | Dea Kwang Elec.      | DH-60                     | N/A                       | Sep. 01, 2017 | One Year |     |