

RADIO PERFORMANCE TEST REPORT

Test Report No.	: OT-23O-RWD-012
Reception No.	: 2309003002
Applicant	: UNION COMMUNITY
Address	: 12F, Munjeong Daemyeong Valeon bldg, 127 Beobwon-ro Songpa-gu, Seoul, South Korea
Manufacturer	: UNION COMMUNITY
Address	: 12F, Munjeong Daemyeong Valeon bldg, 127 Beobwon-ro Songpa-gu, Seoul, South Korea
Type of Equipment	: Access controller
FCC ID	: XX2-AC1100SC
Model Name	: AC1100 SC
Multiple Model Name	: N/A
Serial number	: N/A
Total page of Report	: 7 pages (including this page)
Date of Incoming	: September 14, 2023
Date of Issuing	: October 05, 2023

SUMMARY

The equipment complies with the regulation; FCC CFR 47 § 1.1307

This test report contains only the result of a single test of the sample supplied for the examination.

It is not a general valid assessment of the features of the respective products of the mass-production.

This report is not correlated with the "KS Q ISO/IEC 17025 and KOLAS accreditation" of Korean Laboratory Accreditation Scheme.

Tested by Soon-Ki, Choi / Prj. Engineer ONETECH Corp.

Reviewed by Tae-Ho, Kim / Chief Engineer ONETECH Corp.

ner

Approved by Jae-Ho, Lee / Chief Engineer ONETECH Corp.

It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

Page 2 of 7

CONTENTS

Page

1. VERIFICATION OF COMPLIANCE	4
2. GENERAL INFORMATION	5
2.1 PRODUCT DESCRIPTION	5
2.2 MODEL DIFFERENCES	5
3. EUT MODIFICATIONS	5
4. RADIO FREQUENCY EXPOSURE	6
4.1 RF EXPOSURE CALCULATION	6
4.2 EUT DESCRIPTION	
4.3 CALCULATED MPE SAFE DISTANCE	

Revision History

Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
0	OT-23O-RWD-012	October 05, 2023	Initial Release	All

1. VERIFICATION OF COMPLIANCE

APPLICANT	: UNION COMMUNITY
-----------	-------------------

-. ADDRESS : 12F, Munjeong Daemyeong Valeon bldg, 127 Beobwon-ro Songpa-gu, Seoul, South Korea

- -. CONTACT PERSON : Dong Ho, Lee
- -. TELEPHONE NO : +82-2-6488-3054
- -. FCC ID : XX2-AC1100SC
- -. MODEL NO/NAME : AC1100 SC
- -. SERIAL NUMBER : N/A
- -. DATE : October 05, 2023

DEVICE TYPE	DXX – Low Power Communication Device Transmitter			
E.U.T. DESCRIPTION	Access controller			
THIS REPORT CONCERNS	Original Grant			
MEASUREMENT PROCEDURES	KDB 447498 D01 Interim General RF Exposure Guidance v06			
TYPE OF EQUIPMENT TESTED	Pre-Production			
KIND OF EQUIPMENT				
AUTHORIZATION REQUESTED	Certification			
MODIFICATIONS ON THE EQUIPMENT	N.			
TO ACHIEVE COMPLIANCE	None			

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. GENERAL INFORMATION

2.1 Product Description

The UNION COMMUNITY, Model AC1100 SC (referred to as the EUT in this report) is an Access controller, Product

DEVICE TYPE	Access controller		
TRANSMITTING FREQUENCY	13.559 1 MHz, 2 402 MHz ~ 2 480 MHz		
MODULATION	ASK		
ANTENNA TYPE	Coil Antenna, Chip Antenna		
LIST OF EACH OSC. or CRY.	13.559 1 MHz		
$FREQ.(FREQ. \ge 1 MHz)$			
	Output: DC 12 V, 3.5 A		
USED AC/DC ADAPTER	Model No: DSA-42PFB-12		
	Manufacturer: Dee Van Electrionics(Longchuan) Co., Ltd		

specification information described herein was obtained from product data sheet or user's manual.

2.2 Model Differences

-. None

3. EUT MODIFICATIONS

-. None

It should not be reproduced except in full, without the written approval of ONETECH Corp.

4. RADIO FREQUENCY EXPOSURE

4.1 RF Exposure Calculation

According to the FCC rule 1.1310 table 1B, the limit for the maximum permissible RF exposure for an uncontrolled environment are $180/f^2$ mW/cm² for the frequency range between 1.34 MHz and 30 MHz and 1.0 mW/cm² for the frequency range between 1 500 MHz and 100 000 MHz.

The electric field generated for a 1 mW/cm² exposure is calculated as follows:

 $E = \sqrt{(30 * P * G)} / d$, and $S = E^2 / Z = E^2 / 377$, because 1 mW/cm² = 10 W/m²

Where

S = Power density in mW/cm², Z = Impedance of free space, 377 Ω

E = Electric filed strength in V/m, G = Numeric antenna gain, and d = distance in meter

Combing equations and rearranging the terms to express the distance as a function of the remaining variable

 $d = \sqrt{(30 * P * G) / (377 * 10 S)}$

Changing to units of mW and cm, using P (mW) = P (W) / 1 000, d (cm) = 0.01 * d (m)

 $d = 0.282 * \sqrt{(P * G) / S}$

Where

d = distance in cm, P = Power in mW, G = Numeric antenna gain, and S = Power density in mW/cm²

4.2 EUT Description

Kind of EUT	Access controller			
MAX. RF OUTPUT POWER	63.73 dBµV/m			
	□ Portable (< 20 cm separation)			
Device Category	■ Mobile (> 20 cm separation)			
	□ Others			
_	■ MPE			
Exposure	□ SAR			
Evaluation Applied				

4.3 Calculated MPE Safe Distance

Frequency (MHz)	Operating Mode	Target Power W/tolerance	Max tune up power (dBm) (mW)		Max tune up power		Antenr	a Gain Safe Distance		Power Density (mW/cm ²) @ 20 cm	Limit (mW/ cm ²)
		(dBm)			Log	Linear	(cm)	Separation			
13.56	RFID	-31.47 ± 0.5	-30.97	0.0008	_	_	0.029	0.000 1	0.97		

Calculated MPE Safe Distance(13.56 MHz RFID)

E.I.R.P[dBm] = Field strength $(dB\mu V/m)-95.2 = 63.73 dB\mu V/m - 95.2 = -31.47 dBm$

Limit = $(180/f^2) = (180/13.56^2) = 0.97 \text{ (mW/cm}^2)$

According to above table, for 13.56 MHz, safe distance,

 $D = 0.282 * \sqrt{(0.0008 * 1)/1.00} = 0.029 \text{ cm}.$

For getting power density at 20 cm separation in above table, following formula was used.

 $S = P * G / (4\pi * R^2) = 0.0008 * 1 / (4 * \pi * 20^2) = 0.000 1$

Where:

S = Power Density,

P = Radiated Power (Field strength ($dB\mu V/m$)-95.2)

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna

Calculated MPE Safe Distance(Bluetooth LE)

Frequency (MHz)	Operating Mode	Max power		Antenna Gain		Safe Distance	Power Density (mW/cm²)	Limit (mW/cm²)
		(dBm)	(mW)	Log	Linear	(cm)	@ 20 cm Separation	
2 400 ~ 2 483.5	Bluetooth LE	-9.91	0.10	-3.81	0.416	0.06	0.000 1	1.00

DATA for Intermodulation Transmit

According to above equation, the following result was obtained.

Simultaneous Transmission	Operating Mode	Power Density (mW/cm ²)	Sum Ratios	Limit
Bluetooth LE	Bluetooth LE	0.000 1		
+ 13.56 MHz (RFID)	13.56 MHz (RFID)	0.000 1	0.0002	1.00