ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

Test Report No.	: W163R-D057
AGR No.	: A163A-173
Applicant	: UNION COMMUNITY
Address	: Hyundai Topics Bldg. Bangi 2-dong, Songpa-gu, Seoul, South Korea
Manufacturer	: UNION COMMUNITY
Address	: Hyundai Topics Bldg. Bangi 2-dong, Songpa-gu, Seoul, South Korea
Type of Equipment	: Access controller
FCC ID	: XX2-AC-2200
Model Name	: AC-2200
Serial number	: N/A
Total page of Report	: 15 pages (including this page)
Date of Incoming	: March 16, 2016
Date of Issuing	: March 29, 2016

SUMMARY

The equipment complies with the requirements of *FCC CFR 47 PART 15 Subpart C Section* 15.207 and 15.209.

This test report only contains the result of a single test of the sample supplied for the examination. It is not a generally valid assessment of the features of the respective products of the mass-production.

Reviewed by: Ki-Hong, Nam / Asst, Chief Engineer ONETECH Corp.

Approved by:

Sung-Ik, Han/ Managing Director ONETECH Corp.

Page 2 of 15

CONTENTS

Page

1. VERIFICATION OF COMPLIANCE	4
2. GENERAL INFORMATION	5
2.1 PRODUCT DESCRIPTION	5
2.2 MODEL DIFFERENCES:	5
2.3 RELATED SUBMITTAL(S) / GRANT(S)	5
2.4 PURPOSE OF THE TEST	5
2.5 TEST METHODOLOGY	5
2.6 TEST FACILITY	6
3. SYSTEM TEST CONFIGURATION	7
3.1 JUSTIFICATION	7
3.2 PERIPHERAL EQUIPMENT	7
3.3 MODE OF OPERATION DURING THE TEST	7
3.4 EQUIPMENT MODIFICATIONS	7
3.5 CONFIGURATION OF TEST SYSTEM	8
3.6 ANTENNA REQUIREMENT	
4. PRELIMINARY TEST	
4.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	
4.2 RADIATED EMISSIONS TESTS	
5. FINAL RESULT OF 125 KHZ MEASUREMENT	9
5.1 Conducted Emission Test	9
5.2 RADIATED EMISSION TEST BELOW 30 MHz	
5.3 RADIATED EMISSION TEST ABOVE 30 MHz	
5.4 BANDWIDTH OF THE OPERATING FREQUENCY	
6. FIELD STRENGTH CALCULATION	14
7. LIST OF TEST EQUIPMENT	

Revision History

Issue Report No.	Issued Date	Revisions	Effect Section
W163R-D057	March 29, 2016	Initial Release	All

It should not be reproduced except in full, without the written approval of ONETECH Corp.

1. VERIFICATION OF COMPLIANCE

- -. ADDRESS : Hyundai Topics Bldg. Bangi 2-dong, Songpa-gu, Seoul, South Korea
- -. CONTACT PERSON : KyungWook, Han / Manager
- -. TELEPHONE NO : +82-2-6488-3027
- -. FCC ID : XX2-AC-2200
- -. MODEL NO/NAME : AC-2200
- -. SERIAL NUMBER : N/A
- -. DATE : March 29, 2016

DEVICE TYPE	DCD – Part 15, Low Power Transmitter below 1 705 kHz			
E.U.T. DESCRIPTION	Access controller			
THIS REPORT CONCERNS	Original Grant			
MEASUREMENT PROCEDURES	ANSI C63.10: 2013			
TYPE OF EQUIPMENT TESTED	Pre-Production			
KIND OF EQUIPMENT	Certification			
AUTHORIZATION REQUESTED				
EQUIPMENT WILL BE OPERATED				
UNDER FCC RULES PART(S)	FCC CFR47 Part 15 Subpart C Section 15.207 and 15.209			
MODIFICATIONS ON THE EQUIPMENT	Nama			
TO ACHIEVE COMPLIANCE	None			
FINAL TEST WAS CONDUCTED ON	10 m, Semi Anechoic Chamber			

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. GENERAL INFORMATION

2.1 Product Description

The UNION COMMUNITY, Model AC-2200 (referred to as the EUT in this report) is an Access controller, Product specification information described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	Fixed Device				
MODULATION	ASK				
TRANSMITTING FREQUENCY	128.4 kHz				
LIST OF EACH OSC. OR					
CRY. FREQ.(FREQ.>=1 MHz)	2 480 MHz, 400 MHz, 12 MHz, 25 MHz, 32.768 kHz				
ANTENNA TYPE	Copper Coil Antenna				
	Output: DC 12 V, 3.5 A				
USED AC/DC ADAPTER	Model No: DSA-42D-12 1 120350				
	Manufacturer: Dee Van Electronics(Longchuan)Co., Ltd.				
EXTERNAL CONNECTOR	DC IN, LAN Port, Wiegand(1), Wiegand(2)				

2.2 Model Differences:

-. None

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC PART 15 SUBPART C Section 15.207and 15.209.

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 301-14, Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do, 464-862 Korea.

-. Site Filing:

VCCI (Voluntary Control Council for Interference) – Registration No. R-4112/ C-4617/ G-666/ T-1842 IC (Industry Canada) – Registration No. Site# 3736-3

-. Site Accreditation:

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) – Designation No. KR0013

3. SYSTEM TEST CONFIGURATION

3.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
MAIN BOARD	N/A	PF2200MA01 V11	N/A
FINGERPRINT BOARD	N/A	OPP06 Rev 1.33	N/A
RFID MODULE BOARD	N/A	PF2200RF01 V10	N/A
TOUCH BOARD	N/A	PF2200TC01 V10	N/A
DISPLAY	N/A	TXDT180NA-207V2	N/A
USB BOARD	N/A	PF2200UDL01 V10	N/A
CAMERA	N/A	BJ-PT-100B01-V1.0	N/A
ANTENNA	N/A	N/A	N/A
		DDL 1/21022	2AEEY-
Bluetooth LE Module	PROCHILD INC.	PBLN51822m	PBLN51822m
ADAPTER	Dee Van Electronics(Longchuan)Co., Ltd.	DSA-42D-12 1 120350	N/A

following components were installed inside of the EUT.

3.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	Description	Connected to	
AC-2200	UNION COMMUNITY	Access controller (EUT)	-	
DSA-42D-12 1 120350	DSA-42D-12 1 120350 Dee Van Electronics(Longchuan)Co., Ltd. AC			
N/A	N/A	Door Open Switch	-	
N/A	N/A	Door lock	-	
Pavilion dv3	НР	Notebook PC	EUT	
LA65NS2-01	LITE-ON TECHNOLOGY CORPORATION	AC ADAPTER	-	

3.3 Mode of operation during the test

-. The EUT has 128.4 kHz RF boards for reading Card and program was used for making continuous transmission mode during the test.

3.4 Equipment Modifications

-. None

3.5 Configuration of Test System

Line Conducted Test : The EUT was connected to adaptor and the power of adaptor was connected to LISN. All supporting equipments were connected to another LISN. Preliminary Power line Conducted Emission test was performed by using the procedure in ANSI C63.10: 2013 to determine the worse operating conditions.

Radiated Emission Test :Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:
2013 to determine the worse operating conditions. The radiated emissions measurements
were performed on the 10 m Semi Anechoic Chamber.
For frequencies from 150 kHz to 30 MHz measurements were made of the magnetic H field.
The measuring antenna is an electrically screened loop antenna.

The frequency spectrum from 30 MHz to 1 000 MHz was scanned and maximum emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

3.6 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The transmitter antenna of the EUT is a Copper Coil Antenna so there is no consideration of replacement by the user.

4. PRELIMINARY TEST

4.1 AC Power line Conducted Emissions Tests

During Preliminary Tests, the following operating mode was investigated

Operation Mode	The Worse operating condition (Please check one only)				
Tx Mode	Х				

4.2 Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

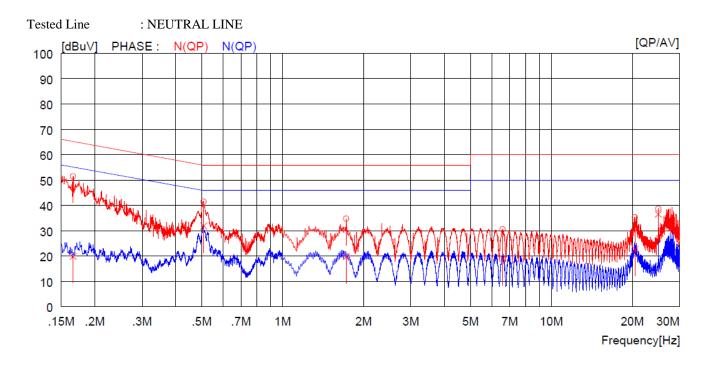
Operation Mode	The Worse operating condition (Please check one only)
Tx Mode	Х

5. FINAL RESULT OF 125 kHz MEASUREMENT

Preliminary test was done in normal operation mode. And the final measurement was selected for the maximized emission level.

5.1 Conducted Emission Test

Humidi	ity Lev	vel	: <u>46.7 9</u>	% R.I	<u>H.</u>											Т	emperature: 2	2.7 ℃
Limits a	apply	to	: <u>FCC (</u>	CFR	47, 1	PAR	<u>T 1</u>	5, 9	SUBPART	В, 5	SECTIC	N 15.2	<u>07(a)</u>					
Result			: <u>PASS</u>	ED														
EUT		: Access controller Date: March 21, 2									, 2016							
Detecto	or		: CISPI	R Qu	asi-I	Peak	(6	dB	Bandwidth	:91	kHz)							
Tested	Line		HOT	LINE	Ξ													
100	[dBu∖	/] PHA	SE :	H(Q	P)	H(C	CAV	')	[1				T T		1	[QP/AV]
90																		
80																		
70							+							_		_		
60																		_
50	Autor.																	
40	1 ~ 104		hala i	. A	R.		+							_	$\left \right $			 ₽₽1
30		• • •		₩,	K YM	1		Miph	Walk and the state	"\[/	*****		inni	MM	MN	MM		
20	MW W	whynym,	him	MN	444	WIN	<u>,</u>	4		₩ `	MAY		MAIN			MA	NANNAAN WANNAAN	
10			*** **				/		× •	V	VV	<u> </u>	VVV	<u> </u>		1.11	ALA CARACTALINA CONTRACTOR	
0	5M .2		3M	5	M	.71		1	M	2	M	3M	5M		M	10	DM :	20M 30M
.15	. ויוכ	.1V1		.5	IVI	. / 1	VI	1	IVI	2	IVI	5101	510	1	IVI	n.		uency[Hz]


NO FREQ [MHz]	READING C. QP AV [dBuV][dBuV]	FACTOR	RESULT QP AV [dBuV][dBuV]	LIMIT QP AV [dBuV][dBuV]	MARGIN QP AV [dBuV][dBuV]	PHASE
1 0.15600 2 0.50900 3 1.63600 4 5.44000 5 12.91000 6 25.00000 7 0.15600 8 0.50900 9 1.63600 10 5.44000 11 12.91000 12 25.00000	41.3 33.5 31.8 30.2 38.0 23.0 32.0 21.9 22.5 19.7	$\begin{array}{c} 0.0\\ 0.1\\ 0.1\\ 0.3\\ 0.6\\ 0.6\\ 0.0\\ 0.1\\ 0.1\\ 0.3\\ 0.6\\ 0.6\\ 0.6 \end{array}$	53.3 41.4 33.6 32.1 30.8 38.6 23.0 22.0 22.8 20.3 36.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.4 14.6 22.4 27.9 29.2 21.4 13.9 24.0 29.7 13.5	H (QP) H (QP) H (QP) H (QP) H (QP) H (CAV) H (CAV) H (CAV) H (CAV) H (CAV) H (CAV) H (CAV)

It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-003 (Rev.3)

Page 10 of 15

NC	FREQ	READ QP [dBuV]	AV	C.FACTOR [dB]	RES QP [dBuV]	AV	LIM QP [dBuV]	IIT AV [dBuV]	QP	RGIN AV [dBuV]	PHASE	
1	0.16600			0.0	51.4		65.2		13.8		N(QP)	
2	0.50800			0.1	41.4 34.7		56.0 56.0		14.6 21.3		N (QP) N (OP)	
4	6.59000			0.3	30.5		60.0		29.5		N(QP)	
	20.49000 25.00000			0.5	35.2 38.6		60.0 60.0		24.8 21.4		N (QP) N (OP)	
7	0.16600		19.9	0.0		19.9		55.2		35.3	N (ĈAV)	
8 9	0.50800		31.8 19.5	0.1		31.9 19.7		46.0 46.0		14.1 26.3	N (CAV) N (CAV)	
10	6.59000		18.7	0.3		19.0		50.0		31.0	N (CAV)	
11 12	20.49000 25.00000		22.2 35.9	0.5 0.6		22.7 36.5		50.0 50.0		27.3 13.5	N (CAV) N (CAV)	

Remark: Margin (dB) = Limit – Level (Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

Tested by: Seok-Jun, Lee / Engineer

EMC-003 (Rev.3)

5.2 Radiated Emission Test below 30 MHz

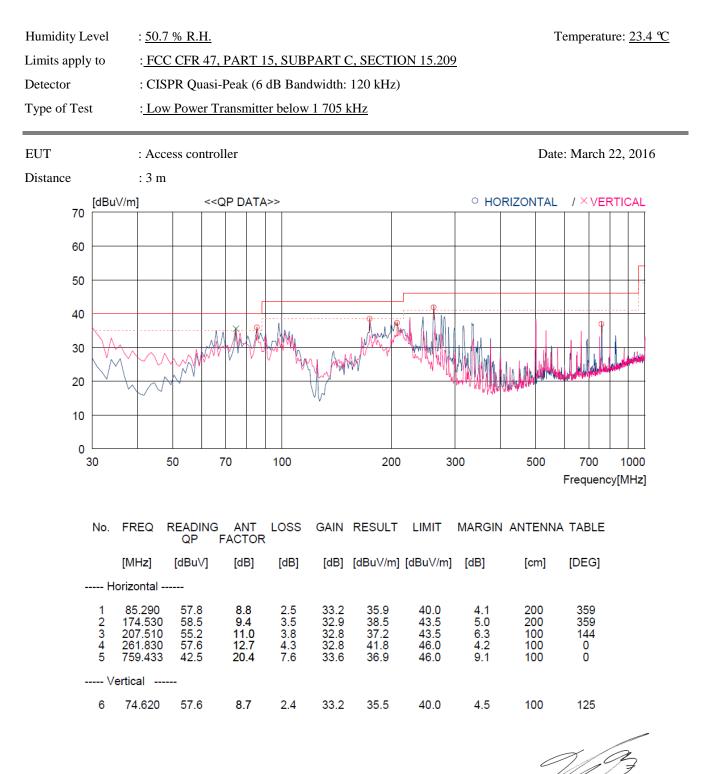
The following table shows the highest levels of radiated emission on both polarizations of horizontal and vertical.

Humidity Level		: <u>49.1 % R.H</u> .						mperature :	<u>23.2 °C</u>	
Limits apply to		: FCC CFR 47, PART 15, SUBPART C, SECTION 15.209								
Type of Test		: Low Power Transmitter below 1 705 kHz								
Result		: <u>PASSED</u>								
EUT		: Access c	: Access controller Date: March 22, 2016							
Distance		: 3 m								
Frequency (MHz)	Reading (dBµV)	Ant. Pol. (H/V)	Ant. Height (m)	Angle (°)	Ant. Factor (dB/m)	Cable Loss	Emission Level(dBµV/m)	Limits (dBµV/m)	Margin (dB)	
0.013	45.32	Н	1	180	21.54	0.12	66.98	125.3	57.72	
0.031	43.74	Н	1	360	19.43	0.12	63.29	117.7	55.61	
0.044	42.17	Н	1	360	18.95	0.14	61.26	114.7	53.64	
0.128 4	80.47	Н	1	360	19.03	0.19	99.69	105.4	5.81	
0.251	51.25	Н	1	180	19.01	0.21	70.47	99.6	29.43	
0.428	50.14	Н	1	180	18.94	0.23	69.31	94.9	25.79	

Radiated Emission Tabulated Data below 30 MHz

Note: According to the distance of measurements was reduced to 3 m, the limit was extrapolated by using the square of an inverse linear distance extrapolation factor (40 dB/decade) as follows.

Limit calculation: Limit at specified distance + 40log (300/3) = Limit + 80 dB for up to 0.49 MHz


Limit at specified distance + $40\log(30/3) = \text{Limit} + 40 \text{ dB}$ for above 0.49 MHz

Tested by: Seok-Jun, Lee / Engineer

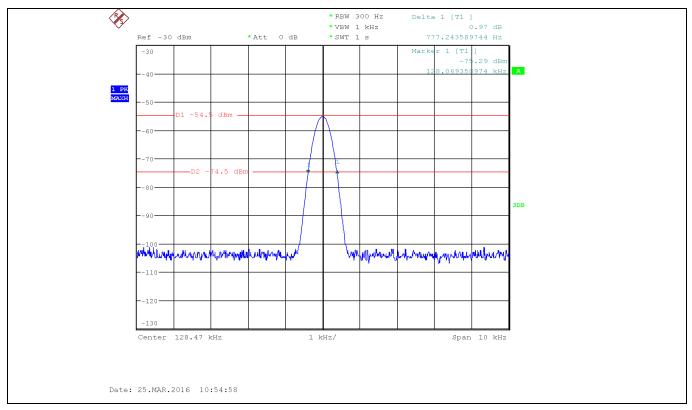
5.3 Radiated Emission Test above 30 MHz

The following table shows the highest levels of radiated emission on both polarizations of horizontal and vertical.

Tested by: Seok-Jun, Lee / Engineer

It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-003 (Rev.3)


Page 13 of 15

Humidity Level	: <u>47.6 % R.H</u> .	: <u>47.6 % R.H</u> .				
Limits apply to	: FCC CFR 47, PART 15,	: FCC CFR 47, PART 15, SUBPART C, SECTION 15.209				
Type of Test	: Low Power Transmitter b	: Low Power Transmitter below 1 705 kHz				
EUT	: Access controller	: Access controller				
Resolution Bandwidth	n : 0.3 kHz					
Video Bandwidth	: 1.0 kHz					
SPAN	: 10.00 kHz					
Carrier Freq. (kHz)	Bandwidth of the emission. (Hz)	Limit (kHz)	Remark			
128.4 777		None	The point 20 dB down from the modulated carrier			

5.4 Bandwidth of the operating frequency

Remark: Please refer to Photo Data for bandwidth for test data.

Tested by: Seok-Jun, Lee / Engineer

Photo Data for bandwidth

It should not be reproduced except in full, without the written approval of ONETECH Corp.

6. FIELD STRENGTH CALCULATION

Meter readings are compared to the specification limit correcting for antenna and cable losses.

+ Meter reading	(dBµV)
- Amplifier Gain	(dB)
+ Cable Loss	(dB)
- Antenna Factor	(dB/m)
= Corrected Result	(dBµV/m)
Margin (dB)	

	Specification Limit	(dBuV/m)
_	Corrected Result	(dBuV/m)

 $(\pm dB)$

= dB Relative to Spec

7. LIST OF TEST EQUIPMENT

No.	EQUIPMENTS	MFR.	MODEL	SER. NO.	LAST CAL	DUE CAL	USE
1.		R/S	ESCI	101012	Nov. 02, 2015	One Year	
2.	Test receiver	R/S	ESU	100261	Apr. 29, 2015	One Year	
3.		R/S	ESPI	101278	Nov. 02, 2015	One Year	
4.	Spectrum analyzer	R/S	FSU	200319	April 29, 2015	One Year	
5.	Amplifier	Sonoma Instrument	310N	312544	Apr. 29, 2015	One Year	
6.	Amplifier	Sonoma Instrument	310N	312545	Apr. 29, 2015	One Year	
7.	TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-255	May 02, 2014	Two Year	
8.	TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-421	Jul. 10, 2014	Two Year	
9.	Controller	Innco System	CO2000	619/27030611/L	N/A	N/A	
		ЕМСО	3825/2	9109-1867	Apr. 29, 2015	One Year	-
	LISN						
10.				9109-1869	Apr. 29, 2015	One Year	
		Schwarzbeck	NSLK8126	8126-404	Apr. 29, 2015	One Year	-
		Schwarzbeck	NSLK8128	8128-216	Apr. 06, 2015	One Year	
11.	Turn Table	Innco System	DT3000	930611	N/A	N/A	
12.	Antenna Master	Innco System	MA4000-EP	MA4000/332	N/A	N/A	
13.	Antenna Master	Innco System	MA4000-EP	MA4000/335	N/A	N/A	
14.	Loop Antenna	R/S	HFH2-Z2	879285/26	Dec. 09, 2014	Two Year	
15.	Frequency Counter	HP	53152A	US39270295	Oct. 07, 2015	One Year	
16.	Chamber	ESPEC	PSL-2KP	14009407	Feb. 04, 2016	One Year	
17.	DC Power Supply	Digital Electronics	DRP-305DN	4030195	Sep. 03, 2015	One Year	