Company: Zebra Technologies Corporation

Test of: WhereTag IV GT

To: FCC CFR 47 Part 15 Subpart C (--) 15.247 (DTS)

Test Report Serial No.: ZEBA05-U2 Rev A

Test of: Zebra Technologies Corporation, WhereTag IV GT

to

To: FCC CFR 47 Part 15 Subpart C15.247 (DTS), IC RSS-210

Test Report Serial No.: ZEBA05-U2 Rev A

This report supersedes: None

Applicant:	Zebra Technologies Corporation 333 Corporate Woods Parkway Vernon Hills Illinois 60061, United States
Product Function:	Remote Telemetry Module
Issue Date:	19th Jun 2014

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton, California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:3 of 110

Table of Contents

1.	ACCREDITATION, LISTINGS & RECOGNITION	5
	1.1. TESTING ACCREDITATION	5
	1.2. RECOGNITION	6
	1.3. PRODUCT CERTIFICATION	7
2.	DOCUMENT HISTORY	8
3.	TEST RESULT CERTIFICATE	9
4		10
4.	4.1 Normative Deferences	10
	4.1. Normalive References	10
_		12
5.	PRODUCT DETAILS AND TEST CONFIGURATIONS	. 13
	5.1. Technical Details	13
	5.2. Scope Of Test Program	14
	5.3. Device Photos	15
	5.4. Equipment Model(s) and Senai Number(s)	
	5.5. Antenna Details	17
	5.0. Cabinity and NO Poils	
	5.8 Equipment Modifications	17 10
	5.9 Deviations from the Test Standard	18
6		10
0. 7		- 13
1.		. 24
8.	TEST RESULTS	. 26
	8.1. 6 dB & 99% Bandwidth	26
	8.2. Conducted Output Power	30
	8.3. Emissions	34
	8.3.1. Conducted Emissions	34
	8.3.1.1. Conducted Spurious Emissions	34
	8.3.2 Radiated Emissions	30 46
	8.3.2.1 Restricted Band Emissions	
	8.3.3. Digital Emissions (0.03 - 1 GHz)	60
	8.3.4. AC Wireline Emissions	61
	8.4. Power Spectral Density	62
9	PHOTOGRAPHS	66
. .	9.1. Conducted Test Set-up	66
	9.2. Radiated Emissions below 1 GHz	67
	9.3 Radiated Emissions above 1 GHz	68

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:4 of 110

10.	TEST E	QUIPMENT	69
11.	APPEN	DIX	70
	11.1.	6 dB & 99% Bandwidth	70
	11.2.	Conducted Output Power	78
	11.3.	Emissions	86
	11.	.3.1. Conducted Emissions	86
	11.3.1.1	1. Conducted Spurious Emissions	. 86
	11.3.1.2	2. Conducted Band-Edge Emissions	. 94
	11.4.	Power Spectral Density1	02

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:5 of 110

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:6 of 110

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	US0159
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing Phase II – recognition for both product testing and certification

N/A - Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB - Notified Body

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:7 of 110

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

United States of America - Telecommunication Certification Body (TCB)-TCB Identifier US0159

Industry Canada - Certification Body - CAB Identifier - US0159

Europe – Notified Body - Notified Body Identifier – 2280

Japan - Recognized Certification Body (RCB) - RCB Identifier - 210

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:8 of 110

2. DOCUMENT HISTORY

Document History								
Revision	Date	Comments						
Draft	19th Jun 2014							
Rev A 27 th June 2014		Initial Release						

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:9 of 110

3. TEST RESULT CERTIFICATE

Manufacturer: Zebra Technologies Corporation 333 Corporate Woods Parkway Vernon Hills Illinois 60061, United States EUT: WhereTag IV GT Model: TFF-3110 S/N's: 044047034 Test Date(s): From 19th to 20th May 2014 Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California, 94566, USA Telephone: +1 925 462 0304 Fax: +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)TEST RESULTSFCC CFR 47 Part 15 Subpart C (--) 15.247
(DTS)EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

Gordon Hurst President & CEO MiCOM Labs, Inc.

4. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
i.	FCC 47 CFR Part 15, Subpart C	2010	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES Subpart C—Intentional Radiators
ii.	RSS-210 Annex 8	2010	Radio Standards Specification 210, Issue 8, Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment
iii.	FCC OET KDB 662911	4th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
iv.	DA 00-705	2000	FCC DA 00-705 "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" released March 30, 2000
V.	RSS-GEN	2010	Radio Standards Specification- Gen, Issue 3, General Requirements and Information for the Certification of Radiocommunication Equipment
vi.	FCC 47 CFR Part 15, Subpart B	2010	47 CFR Part 15, SubPart B; Unintentional Radiators
vii.	ICES-003	2004	Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard Digital Apparatus; Issue 4
viii.	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:11 of 110

ix.	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
x.	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
xi.	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
xii.	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
xiii.	A2LA	July 2012	Reference to A2LA Accreditation Status – A2LA Advertising Policy

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:12 of 110

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:13 of 110

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description			
Purpose:	Test of the WhereTag IV GT to FCC CFR 47 Part 15			
	Subpart C () 15.247 (DTS) and IC RSS-210			
Applicant:	Zebra Technologies Corporation			
	333 Corporate Woods Parkway			
	Vernon Hills Illinois 60061, USA			
Manufacturer:	As Applicant			
Laboratory performing the tests:	MiCOM Labs, Inc.			
	575 Boulder Court,			
	Pleasanton, California 94566 USA			
Test report reference number:	ZEBA05 - 2.4GHz Vehicular FCC IC EU			
Date EUT received:	19th May 2014			
Standard(s) applied:	FCC CFR 47 Part 15 Subpart C () 15.247 (DTS)			
Dates of test (from - to):	19th to 23rd May 2014			
No of Units Tested:	1			
Type of Equipment:	Remote Telemetry Module			
Manufacturers Trade Name:	WhereTag IV GT			
Model(s):	TFF-3110			
Location for use:	Outdoor			
Declared Frequency Range(s):	2400 - 2483.5 MHz;			
Hardware Rev:	02			
Software Rev:	TEST V1.1.0 (1)			
EUT Modes of Operation:	802.11b; 802.11g; DSSS, OOK			
Type of Modulation:	CCK, OFDM, DSSS, OOK			
Declared Nominal OP Power	802.11b; +21 dBm			
(Peak):	802.11g; +21 dBm			
	DSSS; +21 dBm			
Transmit/Passive Operation:	UOK, +4.0 UBIII			
System Boom Forming:	This device has no been forming conchility			
Batad Input Valtage and Current:	DC only (Pottory operated/external supply) 2 61/ hottory/			
Rated input voltage and Current.	Ext $12-28$ /DC @ 40mA typical			
Operating Temperature Pange:	Declared Pange -40C to +70C			
ITIL Emission Designator:	802 11b 27M8G1D			
	802.11g 27M5D1D			
	ISO 24730 DSSS: 43M5W7D			
	ISO 24730 OOK: 10M7W7D			
Equipment Dimensions:	16 cm x 10 cm x 4.5 cm			
Weight:	< 0.5 kg			
Primary function of equipment:	Remote Telemetry Module			
Secondary function of equipment:	: No secondary function provided			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

5.2. Scope Of Test Program

Zebra Technologies Corporation WhereTag IV GT

The scope of the test program was to test the WhereTag IV GT, TFF-3110 configurations in the frequency ranges 2400 - 2483.5 MHz; for compliance against FCC CFR 47 Part 15 Subpart C 15.247 (DTS) and IC RSS-210 specifications.

FCC OET KDB Implementation

This test program implements the following FCC KDB – 662911 4/4/2011; *Emissions Testing of Transmitters with Multiple Outputs in the Same Band*

The KDB document provides guidance for measurements of conducted output emissions of devices that employ a single transmitter with multiple outputs in the same band, with the outputs occupying the same or overlapping frequency ranges. It applies to EMC compliance measurements on devices that transmit on multiple antennas simultaneously in the same or overlapping frequency ranges through a coordinated process. Examples include, but are not limited to, devices employing beam forming or multiple-input and multiple-output (MIMO.) This guidance applies to both licensed and unlicensed devices wherever the FCC rules call for conducted output measurements. Guidance is provided for in-band, out-of-band and spurious emission measurements.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:15 of 110

5.3. Device Photos

EUT Front

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:16 of 110

EUT Rear

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

5.4. Equipment Model(s) and Serial Number(s)

Model / Description	Serial no.	Hardware ver.	Software Version
TFF-3110	044047034	Unknown	TEST V1.1.0 (1)

Model No /	Power	AC VOLTAGE				DC VOLTAGE				
Description	Source	Nom	Min	Мах	Amp	Freq	Nom	Min	Max	Amp
	DC only						15	12	25	1

5.5. Antenna Details

Test Candidate	Туре	Manufacturer	Model	Family	Gain (dBi)	Beamforming Gain	Dir BeamWidth	Frequency Band (MHz)
Y		Zebra	Inverted F	PCB	-1.0	-	360	2400 - 2483.5

5.6. Cabling and I/O Ports

Number and type of I/O ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
Ethernet	>3m	1	N	RJ-45	Packet

5.7. Test Configurations

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

2400 - 2483.5 MHz

Operational Data Rate with Mode(s) Highest Power		Frequencies (MHz)					
(802.11a/b/g/n/ac)	MBit/s	Low	Mid	High			
802.11b	1	2,412.00	2,437.00	2,462.00			
802.11g	6	2,412.00	2,437.00	2,462.00			
DSSS	N/A		2441.75				
ООК	N/A		2446.519				

Results for the above configurations are provided in this report

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:18 of 110

5.8. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. None

5.9. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. None

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:19 of 110

6. TEST EQUIPMENT CONFIGURATION(S)

6.1. Conducted RF Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

Conducted Test Set-Up Pictorial Representation

- 1. Section 6.1.1.1. 6 dB and 99% Bandwidth
- 2. Section 6.1.1.2. Peak Output Power
- 3. Section 6.1.1.3. Power Spectral Density
- 4. Section 6.1.1.4. Conducted Spurious Emissions

Conducted Test Measurement Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:20 of 110

Measurement and Presentation of Test Data

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "*MiTest*" Automated Test System" (Patent Pending)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

6.2. Radiated Spurious Emission Test Set-up > 1 GHz

The following tests were performed using the conducted test set-up shown in the diagram below.

Radiated Emission Measurement Setup – Above 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:22 of 110

6.3. Digital Emissions Test Set-up (0.03 – 1 GHz)

The following tests were performed using the conducted test set-up shown in the diagram below.

Digital Emission Measurement Setup – Below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

6.4. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. ac Wireline Conducted Emissions

Conducted Test Set-Up Pictorial Representation

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:24 of 110

7. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2)	6 dB and 99 % Bandwidths	≥500 kHz	Conducted	Complies	5.1.1.1
15.247(b)(3) 15.31(e)	Peak Output Power	Shall not exceed 1W	Conducted	Complies	5.1.1.2
15.247(e)	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies	5.1.1.3
15.247(d) 15.205 / 15.209	Spurious Emissions (30MHz -26 GHz b/g and 30 MHz – 40 GHz a)	The radiated emission in any 100 kHz of out- band shall be at least 20 dB below the highest in- band spectral density	Conducted	Complies	5.1.1.4
15.247(d) 15.205 / 15.209	Radiated Emissions	Restricted Bands	Radiated	Complies	5.1.2
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	
	Radiated Band Edge	Band-edge results Peak Emissions		Complies	
15.205 / 15.209	Radiated Spurious Emissions	Emissions <1 GHz (30M-1 GHz)	Radiated	Complies	5.1.2.4
15.207	AC Wireline Conducted Emissions 150 kHz–30 MHz	Conducted Emissions	Conducted	N/A EUT is dc powered	5.1.3

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:25 of 110

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 5.8 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

Г

Title: Zebra Technologies Corporation, WhereTag IV GT To: FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210 Serial #: ZEBA05-U2 Rev A Issue Date: 27th June 2014 Page: 26 of 110

8. TEST RESULTS

8.1.6 dB & 99% Bandwidth

Equipment Configuration for 6 dB & 99% Bandwidth							
Variant:	802.11b	Duty Cycle (%):	99				
Data Rate:	1 MBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	ССК	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	CC				
Engineering Test Notes:							

Test Measurement Results

Test Frequency	Measured 6 dB Bandwidth (MHz) Port(s)		6 dB Bandwidth (MHz)		Limit	Lowest Margin		
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2412.0	<u>11.142</u>				11.142	11.142	≥500.0	-10.64
2437.0	<u>10.261</u>				10.261	10.261	≥500.0	-9.76
2462.0	<u>12.265</u>				12.265	12.265	≥500.0	-11.77

Test		Measured 99% E	Bandwidth (MHz	Maximum 99% Bandwidth			
Frequency		Por	rt(s)				
MHz	а	b	С	d	(MHz)		
2412.0	<u>22.204</u>				22.204		
2437.0	<u>25.090</u>				25.090		
2462.0	<u>27.816</u>				27.816		

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:27 of 110

Equipment Configuration for 6 dB & 99% Bandwidth							
Variant:	802.11g	Duty Cycle (%):	99				
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	CC				
Engineering Test Notes:							

Test Measurement Results

Test	M	easured 6 dB E	Bandwidth (MH	łz)	6 dB Bandy	width (MUz)	Limit	Lowest
Frequency		Por	t(s)		6 dB Bandwidth (MHZ)		Linin	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2412.0	<u>16.433</u>				16.433	16.433	≥500.0	-15.93
2437.0	<u>15.952</u>				15.952	15.952	≥500.0	-15.45
2462.0	<u>15.952</u>				15.952	15.952	≥500.0	-15.45

Test		Measured 99% E	Bandwidth (MHz)	Maximum		
Frequency		Por	rt(s)	99% Bandwidth		
MHz	а	b	С	d	(MHz)	
2412.0	<u>27.495</u>				27.495	
2437.0	<u>17.475</u>				17.475	
2462.0	<u>17.876</u>				17.876	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:28 of 110

Equipment Configuration for 6 dB & 99% Bandwidth							
Variant:	DSSS	Duty Cycle (%):	99				
Data Rate:	59.7 kbps	Antenna Gain (dBi):	Not Applicable				
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	CC				
Engineering Test Notes:							

Test Measurement Results

Test	M	easured 6 dB I	Bandwidth (MH	łz)	6 dB Bandwidth (MHz)		Limit	Lowest
Frequency		Por	rt(s)				Linin	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2441.75	<u>22.846</u>				22.846	22.846	≥500.0	-22.35

Test	Measured 99% Bandwidth (MHz)				Maximum	
Frequency		Por	rt(s)	99% Bandwidth		
MHz	а	b	С	d	(MHz)	
2441.75	43.527				43.527	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:29 of 110

Equipment Configuration for 6 dB & 99% Bandwidth						
Variant:	OOK	Duty Cycle (%):	99			
Data Rate:	19.83 KBit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	OOK	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	CC			
Engineering Test Notes:						

Test Measurement Results

Test	Measured 6 dB Bandwidth (MHz)				6 dB Bandy	width (MHz)	Limit	Lowest
Frequency	Port(s)						Linin	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2446.519	<u>1.242</u>				1.242	1.242	≥500.0	-0.74

Test		Measured 99% E	Bandwidth (MHz)	Maximum		
Frequency		Por	rt(s)	99% Bandwidth		
MHz	а	b	С	d	(MHz)	
2446.519	<u>10.701</u>				10.701	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:30 of 110

8.2. Conducted Output Power

Equipment Configuration for Peak Output Power

Variant:	802.11b	Duty Cycle (%):	99
Data Rate:	1 MBit/s	Antenna Gain (dBi):	-1.00
Modulation:	ССК	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm) Port(s)				Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dBm	
2412.0	<u>20.28</u>				20.28	30.00	-9.72	15.00
2437.0	<u>20.32</u>				20.32	30.00	-9.68	15.00
2462.0	<u>20.91</u>				20.91	30.00	-9.09	15.00

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:31 of 110

Equipment Configuration for Peak Output Power						
Variant:	802.11g	Duty Cycle (%):	99			
Data Rate:	6 MBit/s	Antenna Gain (dBi):	-1.00			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	CC			
Engineering Test Notes:						

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated	1 : :+	Manain	
Frequency		Por	t(s)		Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dBm	Ū
2412.0	<u>21.06</u>				21.06	30.00	-8.94	11.00
2437.0	<u>21.21</u>				21.21	30.00	-8.79	11.00
2462.0	<u>21.77</u>				21.77	30.00	-8.23	11.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:32 of 110

Equipment Configuration for Peak Output Power						
Variant:	DSSS	Duty Cycle (%):	99			
Data Rate:	59.7 kbps	Antenna Gain (dBi):	-1.00			
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	CC			
Engineering Test Notes:						

Test Measurement Results

Test	Measured Output Power (dBm)				Calculated	Limit	Morgin	
Frequency	Port(s)				Σ Port(s)	Linint	wargin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dBm	
2441.75	<u>21.23</u>				21.23	30.00	-8.77	15.00

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:33 of 110

Equipment Configuration for Peak Output Power							
Variant:	OOK	Duty Cycle (%):	99				
Data Rate:	19.83 KBit/s	Antenna Gain (dBi):	-1.00				
Modulation:	OOK	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	СС				
Engineering Test Notes:							

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated			
Frequency	Port(s)				Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dBm	U
2446.519	<u>3.54</u>				3.54	30.00	-26.46	1.00

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:34 of 110

8.3. Spurious Emissions

8.3.1. Conducted Emissions

8.3.1.1. Conducted Spurious Emissions

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	802.11b	Duty Cycle (%):	99
Data Rate:	1 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	ССК	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	СС
Engineering Test Notes:			

Test Measurement Results

Test	Frequency			Fransmitter Conducted Spurious Emissions (dBm)					
Frequency	Range	Po	rt a	Po	rt b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2412.0	30 - 26000	<u>-33.497</u>	-13.29						
2437.0	30 - 26000	<u>-33.603</u>	-13.06						
2462.0	30 - 26000	<u>-33.551</u>	-12.74						

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:35 of 110

Equipment Configuration for Transmitter Conducted Spurious Emissions							
Variant:	802.11g	Duty Cycle (%):	99				
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	CC				
Engineering Test Notes:							

Test Measurement Results

Test	Frequency			Fransmitter Conducted Spurious Emissions (dBm)					
Frequency	Range	Po	rt a	Po	rt b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2412.0	30 - 26000	<u>-45.329</u>	-18.25						
2437.0	30 - 26000	<u>-44.994</u>	-16.69						
2462.0	30 - 26000	-45.156	-19.09						

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:36 of 110

Equipment Configuration for Transmitter Conducted Spurious Emissions							
Variant:	DSSS	Duty Cycle (%):	99				
Data Rate:	59.7 kbps	Antenna Gain (dBi):	Not Applicable				
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	CC				
Engineering Test Notes:							

Test Measurement Results

Test	Frequency	Transmitter Conducted Spurious Emissions (dBm)							
Frequency	Range	Port a		Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2441.75	30.0 - 260000.0	<u>-51.591</u>	-18.03						

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:37 of 110

Equipment Configuration for Transmitter Conducted Spurious Emissions						
Variant:	OOK	Duty Cycle (%):	99			
Data Rate:	19.83 KBit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	OOK	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	CC			
Engineering Test Notes:						

Test Measurement Results

Test	Frequency		Transmitter Conducted Spurious Emissions (dBm)						
Frequency	Range	P	ort a	Poi	rt b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2446.519	30.0 - 26000.0	<u>-46.139</u>	-23.35						

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:38 of 110

8.3.1.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak

Variant:	802.11b	Duty Cycle (%):	99
Data Rate:	1 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	ССК	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2412.0 MHz					
Band-Edge Frequency:	2400.0 MHz	400.0 MHz				
Test Frequency Range:	2350.0 - 2422.0	MHz				
	Band-E	Band-Edge Markers and Limit Amended Limit Margin				Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-21.92</u>	-11.62	2402.80			-2.800

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:39 of 110

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak					
Variant:	802.11g	Duty Cycle (%):	99		
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	CC		
Engineering Test Notes:					

Test Measurement Results

Channel Frequency:	2412.0 MHz						
Band-Edge Frequency:	2400.0 MHz						
Test Frequency Range:	2350.0 - 2422.0 N	ИНz					
	Band-E	Band-Edge Markers and Limit			Amended Limit		
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-20.75</u>	-16.66	2401.90			-1.900	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:40 of 110

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak						
Variant:	DSSS	Duty Cycle (%):	99			
Data Rate:	59.7 kbps	Antenna Gain (dBi):	Not Applicable			
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	CC			
Engineering Test Notes:						

Test Measurement Results

Channel Frequency:	2441.75 MHz					
Band-Edge Frequency:	2400.0 MHz					
Test Frequency Range:	2350.0 - 2442.0 MHz					
	Band-Edg	ge Markers and	Limit	Amei	nded Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-31.99</u>	-17.99	2419.10			-19.100

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:41 of 110

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak						
Variant:	OOK	Duty Cycle (%):	99			
Data Rate:	19.83 KBit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	OOK	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	CC			
Engineering Test Notes:						

Test Measurement Results

Channel Frequency:	2446.519 MHz					
Band-Edge Frequency:	2400.0 MHz					
Test Frequency Range:	2350.0 - 2446.0 N	/Hz				
	Band-Edge Markers and Limit Amended Limit			Margin		
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-48.94</u>	-26.88	2443.30			-43.300

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:42 of 110

Equipment Configuration for Conducted High Band-Edge Emissions - Peak

Variant:	802.11b	Duty Cycle (%):	99
Data Rate:	1 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	ССК	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2462.0 MHz					
Band-Edge Frequency:	2483.5 MHz	483.5 MHz				
Test Frequency Range:	2452.0 - 2524.0 N	ИНz				
	Band-E	Band-Edge Markers and Limit Amended Limit Marg			Margin	
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-39.91</u>	-12.12	2477.70			-5.800

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:43 of 110

Equipment Configuration for Conducted High Band-Edge Emissions - Peak						
Variant:	802.11g	Duty Cycle (%):	99			
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	CC			
Engineering Test Notes:						

Test Measurement Results

Channel Frequency:	2462.0 MHz					
Band-Edge Frequency:	2483.5 MHz					
Test Frequency Range:	2452.0 - 2524.0 N	/Hz				
	Band-	Band-Edge Markers and Limit Amended Limit			ded Limit	Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-29.93</u>	-15.37	2471.20			-12.300

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:44 of 110

Equipment Configuration for Conducted High Band-Edge Emissions - Peak						
Variant:	DSSS	Duty Cycle (%):	99			
Data Rate:	59.7 kbps	Antenna Gain (dBi):	Not Applicable			
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	CC			
Engineering Test Notes:						

Test Measurement Results

Channel Frequency:	2441.75 MHz					
Band-Edge Frequency:	2483.5 MHz					
Test Frequency Range:	2452.0 - 2524.0 MI	Ηz				
	Band-Edge Markers and Limit Amended Limit			ded Limit	Margin	
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-33.66</u>	-22.96	2466.00			-17.500

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:45 of 110

Equip	Equipment Configuration for Conducted High Band-Edge Emissions - Peak											
Variant:	802.11g	Duty Cycle (%):	99									
Data Rate:	19.83 KBit/s	Antenna Gain (dBi):	Not Applicable									
Modulation:	OOK	Beam Forming Gain (Y):	Not Applicable									
TPC:	Not Applicable	Tested By:	СС									
Engineering Test Notes:												

Test Measurement Results

Channel Frequency:	2446.519 MHz	2446.519 MHz									
Band-Edge Frequency:	2483.5 MHz	483.5 MHz									
Test Frequency Range:	2446.0 - 2524.0 N	446.0 - 2524.0 MHz									
	Band-l	Edge Markers an	d Limit	Amen	Margin						
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)					
а	<u>-46.31</u>	-23.22	2448.80			-34.700					

Traceability to Industry Recognized Test Methodologies							
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS						
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB						

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:46 of 110

8.3.2. Radiated Emissions

Transmitter Radiated Spurious Emissions (above 1 GHz); Peak Field Strength Measurements; and Radiated Band Edge Measurements – Restricted Bands

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Operational Modes

Operational mode(s) tested for spurious emissions were limited to the modes that delivered maximum spectral density.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:47 of 110

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FOwhere: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

NOTE: KDB 662911 was implemented for Out-of-Band measurements. Where necessary Option (2) Measure and add 10 log (N) dB was implemented

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:48 of 110

Test Freq.	2412 MHz CH 1	Engineer	JMH
Variant	802.11b; 1 Mbit/s	Temp (ºC)	26
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	36%
Power Setting	10	Press. (mBars)	993
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1	DC Power 13V		
Test Notes 2			
MiceMLabs	dBuV/m Vasona by EMiSoft	10 Jun 14 1 PK 21 V PK 21 V	11:52 Horizont: ertical mt .mt ug st 3m t 3m t 3m t 3m t MHz

Formal	ly measured	l emission pea	ks
--------	-------------	----------------	----

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1000.150	69.5	2.5	-9.3	62.7	Peak Max	V	116	204	74	-11.32	Pass	RB
1000.15	40.3	2.5	-9.3	33.5	Average Max	V	116	204	54	-20.51	Pass	RB
1331.513	59.4	2.9	-7.7	54.6	Peak Max	Н	193	210	74	-19.44	Pass	RB
1331.513	35.5	2.9	-7.7	30.7	Average Max	Н	193	210	54	-23.29	Pass	RB
1665.281	38.8	3.2	-8.6	33.5	Average Max	V	167	262	54	-20.5	Pass	RB
1665.281	65.5	3.2	-8.6	60.2	Peak Max	V	167	262	74	-13.9	Pass	RB
1997.698	55.7	3.6	-6.2	53.1	Peak [Scan]							NRB
2996.317	48.3	4.4	-4.6	48.1	Peak [Scan]							NRB
17046.092	31.3	12.4	10.2	53.9	Peak [Scan]	Н	200	0	54	-0.2	Pass	Noise
Legend:	egend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	NRB =	Non-Restric	ed Ban	d. Limit = 68.2	3 dBuV/m; RB =	Restric	ted Ba	nd. Lin	nits per 15.2	05		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:49 of 110

Test Free	q. 24	37 MHz C	CH 6						Engineer	JMH			
Varia	nt 80	2.11b; 1 l	//bit/s						Temp (ºC)	26			
Freg. Rang	ie 10	00 MHz -	18000	MHz			Rel. Hum.(%) 36%			36%	36%		
Power Settin	a 9							Pres	s. (mBars)	993			
Antenn	na Int	egral						Dutv	Cvcle (%)	100			
Test Notes	1 DC	C Power 13V											
Test Notes	Test Notes 2												
Weas Dist 3m Spec Dist 3m Prequency: MHz Related Emissions Related													
Formally mean	sured	emissi	ion pe	aks									
Frequency Rav MHz dBu	w (iV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
1000.150 41.3	8	2.5	-9.3	35.0	Average Max	V	100	185	54	-18.97	Pass	RB	
1000.150 68.	9	2.5	-9.3	62.2	Peak Max	V	100	185	74	-11.84	Pass	RB	
1331.746 63.	0	2.9	-7.7	58.2	Peak Max	V	99	65	74	-15.77	Pass	RB	
1331.746 43.	0	2.9	-7.7	38.2	Average Max	V	99	65	54	-15.84	Pass	RB	
1664.560 38.3	2	3.2	-8.6	32.8	Average Max	V	156	345	54	-21.2	Pass	RB	
1664.560 62.	5	3.2	-8.6	57.1	Peak Max	V	156	345	74	-16.89	Pass	RB	
17829.659 30.	2	13.0	10.6	53.8	Peak [Scan]	V						Noise	
2973.293 42.	9	4.4	-4.7	42.7	Peak [Scan]	V						NRB	
Legend: TX NR	= Trans B = Nor	smitter Er n-Restrict	nissions ed Ban	; DIG = Digital d. Limit = 68.2	Emissions; FUN 3 dBuV/m; RB =	D = Fu Restric	ndame xted Ba	ntal; W nd. Lin	B = Widebar hits per 15.2	nd Emissio	on		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:50 of 110

Tes	t Frea.	2462 MHz (CH 11						Engineer	JMH			
	/ariant	802.11b [.] 1	Mbit/s						Temp (°C)	26			
Freq	Range	1000 MHz -	18000	MHz				Re	Hum (%)	36%			
Power S	Setting	a	10000			Press (mBars)			003				
1 00001 0	otonna	Intogral						Duty		100			
			21/					Duty	Cycle (%)	100			
	lotes 1	DC Power	3V										
With the second													
Formally r	neasu	red emiss	ion pe	aks			I				Γ		
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
1000.150	41.2	2.5	-9.3	34.4	Average Max	V	151	196	54	-19.6	Pass		
1000.150	68.8	2.5	-9.3	62.0	Peak Max	V	151	196	74	-11.96	Pass		
1331.587	42.3	2.9	-7.7	37.5	Average Max	V	102	62	54	-16.55	Pass		
1331.587	61.4	2.9	-7.7	56.6	Peak Max	V	102	62	74	-17.42	Pass		
1664.416	38.8	3.2	-8.6	33.4	Average Max	V	103	244	54	-20.59	Pass		
1664.416	63.7	3.2	-8.6	58.3	Peak Max	V	103	244	74	-15.69	Pass		
17829.659	29.9	13.0	10.6	53.4	Peak [Scan]	V						Noise	
2977.144	43.2	4.4	-4.7	42.9	Peak [Scan]	V						RB	
Legend:	TX = T NRB =	ransmitter Er	nissions ed Ban	s; DIG = Digital d. Limit = 68.2	Emissions; FUN 3 dBuV/m; RB =	D = Fu Restric	indame cted Ba	ntal; W nd. Lin	B = Widebar nits per 15.2	nd Emissio 05	on		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

8.3.2.1. Restricted Band Emissions

Band-Edge Antenna Integral

Peak Limit 74.0 dBµV/m, Average Limit 54.0 dBµV/m

2.4 GHz Frequency Band

	Restr	icted Banc	l 2390 MHz	Restricted Band 2483.5 MHz				
	dBµV/m		Dower Cotting	dBļ	ıV/m	Power		
Operational Mode	Peak	Average	Power Setting	Peak	Average	Setting		
b	61.02	52.88	10	58.72	50.19	9		
g	68.69	52.05	6	70.92	52.66	6		
DSSS	48.73	38.50	12	46.42	32.79	12		
ООК	46.36	33.78	Max	45.88	32.79	Max		

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:52 of 110

Radiated Band-Edge Plots

802.11b Lower Restricted Band-Edge Emissions

Date:

10.JUN.2014 13:56:59

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:53 of 110

802.11b Upper Restricted Band-Edge Emissions

Date:

10.JUN.2014 14:22:20

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:54 of 110

802.11g Lower Restricted Band-Edge Emissions

Date:

10.JUN.2014 14:12:46

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:55 of 110

802.11g Upper Restricted Band-Edge Emissions

10.JUN.2014 14:34:59

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:56 of 110

DSSS Lower Restricted Band-Edge Emissions

Date:

25.JUN.2014 11:29:43

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:57 of 110

DSSS Upper Restricted Band-Edge Emissions

Date:

25.JUN.2014 12:00:56

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:58 of 110

OOK Lower Restricted Band-Edge Emissions

Date:

25.JUN.2014 11:41:29

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:59 of 110

OOK Upper Restricted Band-Edge Emissions

Date:

25.JUN.2014 11:49:56

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:60 of 110

8.3.3. Digital Emissions (0.03 - 1 GHz)

Test F	Freq.	NA							Engineer	JMH	JMH	
Va	riant	Digital Er	nissions				Temp (ºC)			32		
Freq. Ra	ange	30 MHz -	1000 MH	z		Rel. Hum.(%)			24	24		
Power Set	etting	NA						Press	. (mBars)	989		
Ante	enna	NA										
Test Not	tes 1											
Test Not	tes 2											
With the second												
Formally me	easur	ed emis	ssion pe	eaks								Γ
Frequency I MHz d	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
48.035	53.8	3.7	-22.0	35.5	Quasi Max	V	99	99	40.5	-5.0	Pass	
95.999	52.0	4.1	-22.0	34.1	Quasi Max	Н	199	221	40.5	-6.4	Pass	
999.148	37.8	7.4	-5.8	39.4	Quasi Max	V	234	235	47.5	-8.1	Pass	
168.016	46.7	4.5	4.5 -18.9 32.3 Quasi Max H 238 189 40.5 -8.2 Pass									
215.949	46.3	4.7	-19.7	31.4	Quasi Max	Н	161	107	40.5	-9.1	Pass	
229.104	48.1	4.8	-19.2	33.7	Peak [Scan]	Н	99	99	40.5	-6.8	Pass	
Legend:	DIG =	Digital Dev	vice Emiss	ion; TX = T	ransmitter Emiss	ion; Fl	JND =	Fundar	nental Freq	luency		
	NRB =	Non-Rest	ricted Bar	nd, Limit is :	20 dB below Fun	damer	ntal; RB	s = Rest	tricted Band	t		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:61 of 110

8.3.4. AC Wireline Emissions

No requirement to test as the device is dc powered

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:62 of 110

8.4. Power Spectral Density

Equipment Configuration for Power Spectral Density - Peak

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1 MBit/s	Antenna Gain (dBi):	-1.00
Modulation:	ССК	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	СС
Engineering Test Notes:			

Test Measurement Results

1000 moded of												
Test Frequency	N	leasured Power Port(s) (d	Spectral Densit Bm/3KHz)	Amplitude Summation	Limit	Margin						
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB					
2412.0	<u>-9.132</u>				<u>-9.132</u>	8.0	-17.1					
2437.0	<u>-8.524</u>				<u>-8.524</u>	8.0	-16.5					
2462.0	<u>-8.959</u>				<u>-8.959</u>	8.0	-17.0					

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:63 of 110

Equipment Configuration for Power Spectral Density - Peak				
Variant:	802.11g	Duty Cycle (%):	99.0	
Data Rate:	6 MBit/s	Antenna Gain (dBi):	-1.00	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	CC	
Engineering Test Notes:				

Test Measurement Results								
Test	Test Measured Power Spectral Density			Amplitude	Limit	Margin		
Frequency		Port(s) (dBm/3KHz)			Summation	Linit	wargin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB	
2412.0	<u>-10.733</u>				<u>-10.733</u>	8.0	-18.7	
2437.0	<u>-10.538</u>				<u>-10.538</u>	8.0	-18.5	
2462.0	<u>-10.786</u>				<u>-10.786</u>	8.0	-18.8	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:64 of 110

Equipment Configuration for Power Spectral Density - Peak				
Variant:	DSSS	Duty Cycle (%):	99.0	
Data Rate:	59.7 kbps	Antenna Gain (dBi):	-1.00	
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	СС	
Engineering Test Notes:				

Test Measurem	nent Results						
Test	Test Measured Power Spectral Density					Limit	Morgin
Frequency	Port(s) (dBm/3KHz)			Summation	Linin	Wargin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2441.75	<u>-3.275</u>				<u>-3.275</u>	8.0	-11.3

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:65 of 110

Equipment Configuration for Power Spectral Density - Peak						
Variant:	Variant: OOK Duty Cycle (%): 99.0					
Data Rate:	19.83 KBit/s	Antenna Gain (dBi):	-1.00			
Modulation:	ООК	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	CC			
Engineering Test Notes:						

Test Measurement Results							
Test	Measured Power Spectral Density				Amplitude	Limit	Margin
Frequency	Port(s) (dBm/3KHz)			Summation	Linin	Wargin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2446.519	<u>-3.902</u>				<u>-3.902</u>	8.0	-11.9

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:66 of 110

9. PHOTOGRAPHS

9.1. Conducted Test Set-up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:67 of 110

9.2. Radiated Emissions below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:68 of 110

9.3. Radiated Emissions above 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:69 of 110

10. TEST EQUIPMENT

Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration
					Due Date
0070	Power Meter	Hewlett Packard	437B	3125U11552	28 th Nov 14
0117	Power Sensor	Hewlett Packard	8487D	3318A00371	15 th Nov 14
0223	Power Meter	Hewlett Packard	EPM-442A	US37480256	15 th Nov 14
0374	Power Sensor	Hewlett Packard	8485A	3318A19694	29 th Nov 14
0158	Barometer /Thermometer	Control Co.	4196	E2846	8 th Dec 14
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007	2 nd Dec 14
0287	EMI Receiver	Rhode & Schwartz	ESIB40	100201	16 th Nov 14
0338	30 - 3000 MHz Antenna	Sunol	JB3	A052907	8 th Nov 14
0335	1-18 GHz Horn Antenna	EMCO	3117	00066580	7 th Nov 14
0252	SMA Cable	Megaphase	Sucoflex 104	None	N/A
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001	N/A
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002	N/A
0310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787- 3G03G0	209089-001	N/A
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001	N/A
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623	N/A
	EMC Test Software	EMISoft	Vasona	5.0051	N/A
	RF Conducted Test Software	National Instruments	Labview	Version 8.2	N/A
	RF Conducted Test Software	MiCOM Labs ATS		Version 1.5	N/A

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:70 of 110

11. APPENDIX

11.1. <u>6 dB & 99% Bandwidth</u>

6 dB & 99% BANDWIDTH

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2405.948 MHz : 0.158 dBm M2 : 2410.998 MHz : 8.297 dBm Delta1 : 11.142 MHz : 0.929 dB T1 : 2402.341 MHz : -16.177 dBm T2 : 2424.545 MHz : -15.927 dBm OBW : 22.204 MHz	Measured 6 dB Bandwidth: 11.142 MHz Limit: ≥500.0 kHz Margin: -10.64 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Date:71 of 110

Page: 71 of 110

6 dB & 99% BANDWIDTH

Variant: 802.11b, Channel: 2437.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2431.910 MHz : 0.758 dBm M2 : 2438.002 MHz : 8.421 dBm Delta1 : 10.261 MHz : -1.440 dB T1 : 2424.936 MHz : -21.498 dBm T2 : 2450.026 MHz : -13.647 dBm OBW : 25.090 MHz	Measured 6 dB Bandwidth: 10.261 MHz Limit: ≥500.0 kHz Margin: -9.76 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Zebra Technologies Corporation, WhereTag IV GT To: FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210 Serial #: ZEBA05-U2 Rev A Issue Date: 27th June 2014

Page: 72 of 110

6 dB & 99% BANDWIDTH

Variant: 802.11b, Channel: 2462.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2455.868 MHz : 0.091 dBm M2 : 2460.036 MHz : 8.146 dBm Delta1 : 12.265 MHz : 0.218 dB T1 : 2448.172 MHz : -14.544 dBm T2 : 2475.988 MHz : -10.312 dBm OBW : 27.816 MHz	Measured 6 dB Bandwidth: 12.265 MHz Limit: ≥500.0 kHz Margin: -11.77 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:73 of 110

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:74 of 110

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

OBW : 17.475 MHz

Title: Zebra Technologies Corporation, WhereTag IV GT To: FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210 Serial #: ZEBA05-U2 Rev A Issue Date: 27th June 2014

Page: 75 of 110

6 dB & 99% BANDWIDTH

Variant: 802.11g, Channel: 2462.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Back to the Matrix

Trace Mode = VIEW

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

T1: 2452.982 MHz: -14.821 dBm T2:2470.858 MHz:-14.711 dBm

OBW : 17.876 MHz

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:76 of 110

Analysel Setup	Marker . I requency . Amplitude	Test Nesults
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2430.327 MHz : -5.500 dBm M2 : 2441.630 MHz : 1.732 dBm Delta1 : 22.846 MHz : 0.338 dB T1 : 2419.746 MHz : -17.617 dBm T2 : 2463.273 MHz : -13.686 dBm OBW : 43.527 MHz	Measured 6 dB Bandwidth: 22.846 MHz Limit: ≥500.0 kHz Margin: -22.35 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:77 of 110

6 dB & 99% BANDWIDTH

Variant: OOK, Channel: 2446.52 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2445.898 MHz : -12.024 dBm M2 : 2446.539 MHz : -3.222 dBm Delta1 : 1.242 MHz : 1.851 dB T1 : 2441.248 MHz : -32.034 dBm T2 : 2451.950 MHz : -28.819 dBm OBW : 10.701 MHz	Measured 6 dB Bandwidth: 1.242 MHz Limit: ≥500.0 kHz Margin: -0.74 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:78 of 110

11.2. <u>Conducted Output Power</u>

PEAK OUTPUT POWER

Variant: 802.11b, Channel: 2412.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2402.180 MHz : -8.709 dBm M2 : 2413.002 MHz : 11.429 dBm Delta1 : 25.411 MHz : -0.175 dB	Channel Power: 20.28 dBm Limit: 30.00 dBm Margin: -9.72 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014

Page: 79 of 110

PEAK OUTPUT POWER

Variant: 802.11b, Channel: 2437.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2421.810 MHz : -8.541 dBm M2 : 2435.918 MHz : 11.482 dBm Delta1 : 30.541 MHz : -0.002 dB	Channel Power: 20.32 dBm Limit: 30.00 dBm Margin: -9.68 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:80 of 110

Mitest

PEAK OUTPUT POWER

Variant: 802.11b, Channel: 2462.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2446.489 MHz : -8.174 dBm M2 : 2460.998 MHz : 12.027 dBm Delta1 : 31.102 MHz : 0.102 dB	Channel Power: 20.91 dBm Limit: 30.00 dBm Margin: -9.09 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:81 of 110

PEAK OUTPUT POWER

Variant: 802.11g, Channel: 2412.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2397.611 MHz : -12.124 dBm M2 : 2405.387 MHz : 10.520 dBm Delta1 : 28.938 MHz : 0.236 dB	Channel Power: 21.06 dBm Limit: 30.00 dBm Margin: -8.94 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Zebra Technologies Corporation, WhereTag IV GT To: FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210 Serial #: ZEBA05-U2 Rev A Issue Date: 27th June 2014

Page: 82 of 110

PEAK OUTPUT POWER

Variant: 802.11g, Channel: 2437.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2424.214 MHz : -9.749 dBm M2 : 2443.132 MHz : 10.967 dBm Delta1 : 26.693 MHz : -1.952 dB	Channel Power: 21.21 dBm Limit: 30.00 dBm Margin: -8.79 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:83 of 110

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2450.257 MHz : -8.962 dBm M2 : 2457.792 MHz : 11.437 dBm Delta1 : 25.090 MHz : 0.010 dB	Channel Power: 21.77 dBm Limit: 30.00 dBm Margin: -8.23 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:84 of 110

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2419.025 MHz : -7.131 dBm M2 : 2441.870 MHz : 13.080 dBm Delta1 : 45.451 MHz : 0.169 dB	Channel Power: 21.23 dBm Limit: 30.00 dBm Margin: -8.77 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:85 of 110

Regulatory compliance in the cloud

PEAK OUTPUT POWER

Variant: OOK, Channel: 2446.52 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2444.134 MHz : -17.241 dBm M2 : 2446.539 MHz : 2.775 dBm Delta1 : 5.010 MHz : 0.008 dB	Channel Power: 3.54 dBm Limit: 30.00 dBm Margin: -26.46 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:86 of 110

11.3. Emissions

header_chart_796040b8-4283-4a69-86f9-5abc34d3a536

11.3.1. Conducted Emissions

header_chart_ebb67062-6343-425f-b0c8-dd21e66e27bf

11.3.1.1. Conducted Spurious Emissions

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: 802.11b, Channel: 2412.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2371.984 MHz : 6.714 dBm M2 : 1539.279 MHz : -33.497 dBm	Limit: -13.29 dBm Margin: -20.21 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:87 of 110

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: 802.11b, Channel: 2437.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1:2424.028 MHz:6.942 dBm M2:3256.733 MHz:-33.603 dBm	Limit: -13.06 dBm Margin: -20.54 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:88 of 110

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: 802.11b, Channel: 2462.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2424.028 MHz : 7.258 dBm M2 : 3308.778 MHz : -33.551 dBm	Limit: -12.74 dBm Margin: -20.81 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:89 of 110

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: 802.11g, Channel: 2412.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2371.984 MHz : 1.746 dBm M2 : 6743.687 MHz : -45.329 dBm	Limit: -18.25 dBm Margin: -27.08 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:90 of 110

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: 802.11g, Channel: 2437.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2424.028 MHz : 3.306 dBm M2 : 6951.864 MHz : -44.994 dBm	Limit: -16.69 dBm Margin: -28.30 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:91 of 110

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: 802.11g, Channel: 2462.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1:2424.028 MHz:0.915 dBm M2:6639.599 MHz:-45.156 dBm	Limit: -19.09 dBm Margin: -26.07 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:92 of 110

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: DSSS, Channel: 2441.75 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 2424.028 MHz : 1.974 dBm M2 : 4870.100 MHz : -51.591 dBm	Limit: -18.03 dBm Margin: -33.56 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:93 of 110

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: OOK, Channel: 2446.52 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 2424.028 MHz : -3.353 dBm M2 : 2371.984 MHz : -46.139 dBm	Limit: -23.35 dBm Margin: -22.79 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Milles

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:94 of 110

11.3.1.2. Conducted Band-Edge Emissions

CONDUCTED LOW BAND-EDGE EMISSION - PEAK

Variant: 802.11b, Channel: 2412.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2400.000 MHz : -21.923 dBm M2 : 2402.810 MHz : -12.649 dBm M3 : 2413.054 MHz : 8.378 dBm	Channel Frequency: 2412.00 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:95 of 110

CONDUCTED LOW BAND-EDGE EMISSION - PEAK

Variant: 802.11g, Channel: 2412.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2400.000 MHz : -20.745 dBm M2 : 2401.944 MHz : -18.982 dBm M3 : 2405.695 MHz : 3.343 dBm	Channel Frequency: 2412.00 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:96 of 110

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2400.000 MHz : -31.988 dBm M2 : 2419.138 MHz : -19.220 dBm M3 : 2441.816 MHz : 2.015 dBm	Channel Frequency: 2441.75 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:97 of 110

CONDUCTED LOW BAND-EDGE EMISSION - PEAK

Variant: 802.11g, Channel: 2446.52 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

		- 4	I	N / _	4
Bac	K I	$n \tau$	no	1/1-24	Triv
Dau	N 1			I VICI	uin

Trace Mode = VIEW

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:98 of 110

regulatory compliance in the cloud

CONDUCTED HIGH BAND-EDGE EMISSION - PEAK

Variant: 802.11b, Channel: 2462.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2458.926 MHz : 7.876 dBm M2 : 2477.683 MHz : -12.282 dBm M3 : 2483.500 MHz : -39.905 dBm	Channel Frequency: 2462.00 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:99 of 110

regulatory compliance in the cloud

CONDUCTED HIGH BAND-EDGE EMISSION - PEAK

Variant: 802.11g, Channel: 2462.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2455.607 MHz : 4.626 dBm M2 : 2471.190 MHz : -15.955 dBm M3 : 2483.500 MHz : -29.925 dBm	Channel Frequency: 2462.00 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:100 of 110

CONDUCTED HIGH BAND-EDGE EMISSION - PEAK

RF Atten (dB) = 20 Trace Mode = VIEW	M3 : 2483.500 MHz : -33.655 dBm

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:101 of 110

CONDUCTED HIGH BAND-EDGE EMISSION - PEAK

Variant: 802.11g, Channel: 2446.52 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

RF Atten (dB) = 20 Trace Mode = VIEW	M3 : 2483.5

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:102 of 110

11.4. Power Spectral Density

POWER SPECTRAL DENSITY - PEAK

Variant: 802.11b, Channel: 2412.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2413.713 MHz : -9.132 dBm	Limit: ≤ 8.000 dBm Margin: 17.13 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:103 of 110

POWER SPECTRAL DENSITY - PEAK

Variant: 802.11b, Channel: 2412.00 MHz, SUM, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2413.713 MHz : -9.132 dBm	Limit: ≤ 8.0 dBm Margin: -17.1 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:104 of 110

POWER SPECTRAL DENSITY - PEAK

Variant: 802.11b, Channel: 2437.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2436.429 MHz : -8.524 dBm	Limit: ≤ 8.000 dBm Margin: 16.52 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:105 of 110

POWER SPECTRAL DENSITY - PEAK

Variant: 802.11g, Channel: 2412.00 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2411.970 MHz : -10.733 dBm	Limit: ≤ 8.000 dBm Margin: 18.73 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:106 of 110

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2411.970 MHz : -10.733 dBm	Limit: ≤ 8.0 dBm Margin: -18.7 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:107 of 110

Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2436.970 MHz : -10.538 dBm	Limit: ≤ 8.000 dBm Margin: 18.54 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:108 of 110

POWER SPECTRAL DENSITY - PEAK

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2445.628 MHz : -3.275 dBm	Limit: ≤ 8.000 dBm Margin: 11.28 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation, WhereTag IV GTTo:FCC CFR 47 Part 15 Subpart C, 15.247 (DTS), IC RSS-210Serial #:ZEBA05-U2 Rev AIssue Date:27th June 2014Page:109 of 110

POWER SPECTRAL DENSITY - PEAK

Variant: OOK, Channel: 2446.52 MHz, Chain a, Temp: Ambient, Voltage: 12 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2446.534 MHz : -3.902 dBm	Limit: ≤ 8.000 dBm Margin: 11.90 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

575 Boulder Court Pleasanton, California 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com