Test of Zebra Technologies Corporation WhereTag IV Module

To: FCC 47 CFR Part 15, SubPart 15.247 and RSS-210 Annex 8

Test Report Serial No.: GBCC04-U1 Rev A

Test of: Zebra Technologies Corporation WhereTag IV Module

To: FCC 47 CFR Part 15, SubPart 15.247 and RSS-210 Annex 8

Test Report Serial No.: GCBB04-U1 Rev A

This report supersedes: NONE

Applicant: Zebra Technologies Corporation 2940 N. First Street San Jose, CA 95134 USA

Product Function: Remote Telemetry Module

Copy No: pdf Issue Date: 7th July 2012

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306

TESTING CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 3 of 197

TABLE OF CONTENTS

1	ACCREDITATION, LISTINGS & RECOGNITION	6
	1.1 ACCREDITATION	6
	1.2 LISTINGS	7
	1.3 PRODUCT CERTIFICATION	8
2	DOCUMENT HISTORY	9
3	TEST RESULT CERTIFICATE	. 10
4	REFERENCES AND MEASUREMENT UNCERTAINTY	11
•	4.1 Normative References	11
	4.2 Test and Uncertainty Procedures	12
5		12
5		. 13
6	PRODUCT DETAILS AND TEST CONFIGURATIONS	. 14
	6.1 Test Program Scope	14
	6.2 EUT Details	16
	6.3 External A.C/D.C Power Adaptor	17
	6.4 Operational Power Range	17
	6.5 Types of Modulation Supported	. 17
	6.7 Cabling and VO Porta	/ 10
	6.9 ELIT Configurations	10
	6.9 Equipment Details	. 10
	6.10 Test Configurations	. 19
	6 11 Equipment Modifications	. 13
	6 12 Deviations from the Test Standard	19
7		20
'	7.1 6 dB and 90% Bandwidth	20
	7.1 0 0D and 3570 Danowidth	20
	7.1.1 002.110	
	7.1.2 DSSS	20
	7.1.0 DOOD	20
	7.1.5 Client Mode – b Mode	
	7.1.6 Client Mode – a Mode	
	7.2 Peak Output Power	41
	7.2.1 802.11 b	43
	7.2.2 802.11 g	44
	7.2.3 DSSS	45
	7.2.4 OOK	45
	7.2.5 Client Mode – b Mode	46
	7.2.6 Client Mode – g Mode	49
	7.3 Peak Power Spectral Density	52
	7.3.1 802.11 b	53
	7.3.2 802.11 g	57
	7.3.3 DSSS	<u>61</u>
	This test report may be reproduced in full only. The document may only be updated by MiCOM	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 4 of 197

	7.3.4	00K	. 62			
-	7.3.5	Client Mode 802.11 b	.63			
-	7.3.6	Client Mode 802.11 g	.67			
7.4 (Conducte	ed Spurious Emissions	.71			
-	7.4.1	802.11 b	.73			
-	7.4.2	802.11 g	.79			
	7.4.3	DSSS	.85			
-	7.4.4	00K	.88			
	7.4.5	Client Mode 802.11b	.91			
-	7.4.6	Client Mode 802.11g	.97			
7.5 I	Radiated	Spurious Emissions Above 1 GHz - Antenna ZES	103			
	7.5.1	802.11b Radiated Spurious Emissions	108			
	7.5.2	802.11g Radiated Spurious Emissions	111			
-	7.5.3	DSSS Radiated Spurious Emissions	114			
	7.5.4	OOK Radiated Spurious Emissions	115			
	7.5.5	802.11b Radiated Band Edge Emissions	116			
-	7.5.6	802.11g Radiated Band Edge Emissions	119			
-	7.5.7	DSSS Radiated Band Edge Emissions	122			
-	7.5.8	OOK Radiated Band Edge Emissions	125			
-	7.5.9	802.11b RSS-210 Radiated Peak Emissions	127			
-	7.5.10	802.11g RSS-210 Radiated Peak Emissions	130			
-	7.5.11	DSSS RSS-210 Radiated Peak Emissions	133			
-	7.5.12	OOK RSS-210 Radiated Peak Emissions	134			
-	7.5.13	RSS-210 Receiver Radiated Emissions	135			
7.6	Radiated	Spurious Emissions above 1 GHz - Antenna Taoglas	136			
	7.6.1	802.11b Radiated Spurious Emissions	141			
	7.6.2	802.11g Radiated Spurious Emissions	144			
-	7.6.3	DSSS Radiated Spurious Emissions	147			
-	7.6.4	OOK Radiated Spurious Emissions	148			
-	7.6.5	802.11b Radiated Band Edge Emissions	149			
-	7.6.6	802.11g Radiated Band Edge Emissions	151			
-	7.6.7	DSSS Radiated Band Edge Emissions	154			
-	7.6.8	OOK Radiated Band Edge Emissions	157			
-	7.6.9	802.11b Radiated Peak Emissions	159			
-	7.6.10	802.11g Radiated Peak Emissions	162			
-	7.6.11	DSSS Radiated Peak Emissions	165			
-	7.6.12	OOK Radiated Peak Emissions	166			
	7.6.13	Receiver Radiated Emissions	167			
7.7 (Client Mo	de - Radiated Spurious Emissions above 1 GHz	168			
	7.7.1	Dome Antenna - Client Mode: 802.11b	168			
-	7.7.2	Dome Antenna - Client Mode: 802.11g.	171			
	7.7.3	Whip Antenna - Client Mode: 802.11b	174			
-	7.7.4	Whip Antenna - Client Mode: 802.11g	177			
7.8	Radiated	Spurious Emissions – Below 1 GHz	180			
	7.8.1	Measurement Results for Radiated Spurious Emissions Below 1 GHz -				
	Antenna	a ZES.	185			
-	7.8.2	Measurement Results for Radiated Spurious Emissions Below 1 GHz -				
Antenna Taoglas						
7.9	AC Mains	Power Input/Output Port Emissions	187			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:	Zebra Technologies Corporation WhereTag IV Module			
To:	FCC 47 CFR Part 15, SubPart 15.247			
Serial #:	GBCC04-U1 Rev A			
Issue Date:	7th July 2012			
Page:	Page 5 of 197			

8	PHOTOGRAPHS	
-	8.1 Conducted RF Measurement Set Up	
	8.2 Radiated Spurious Emissions Above 1 GHz - ZES Antenna	
	8.3 Radiated Spurious Emissions Above 1 GHz - Taoglas Flexible Antenna	
	8.4 Radiated Spurious Emissions Above 1 GHz – Dome Antenna	192
	8.5 Radiated Spurious Emissions Above 1 GHz – Whip Antenna	193
	8.6 Radiated Spurious Emissions Below 1 GHz	195
9	TEST EQUIPMENT DETAILS	196

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

1 ACCREDITATION, LISTINGS & RECOGNITION

1.1 ACCREDITATION

MiCOM Labs, Inc. an accredited laboratory complies with the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

1.2 LISTINGS

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A
Japan	MIC	CAB	APEC MRA 2	210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	050159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification N/A - Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

1.3 PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

Industry Canada – Certification Body CAB Identifier – US0159

Europe – Notified Body Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB)

RCB Identifier - 210

2 DOCUMENT HISTORY

Document History						
Revision	Date	Comments				
Draft						
Rev A	7th July 2012	Initial release This report uses test results previously reported in MiCOM Labs report ETSD21-U1 Rev A published on 2 nd August 2010 with the addition of results for "Client mode" testing. Section 6.1 describes this new mode and how it functions				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TEST RESULT CERTIFICATE 3

Applicant:	Zebra Technologies Corporation 2940 N. First Street San Jose CA , 95134, USA	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton California, 94566, USA
Product:	WhereTag IV Module	Telephone:	+1 925 462 0304
Model No.:	TFF-2005	Fax:	+1 925 462 0306
S/No's:	0033555155		
Date(s) Tested:	29 th – 31 st May 2012	Website:	www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC 47 CFR Part 15, SubPart 15.247 & RSS-210 Annex 8

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graemé Grieve Quality Manager MiCOM Labs,

ACCREDITED

TESTING CERTIFICATE #2381.01

ordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4 REFERENCES AND MEASUREMENT UNCERTAINTY

REF.	PUBLICATION	YEAR	TITLE
i.	FCC 47 CFR Part 15, Subpart C	2012	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES Subpart C—Intentional Radiators
ii.	RSS-210 Annex 8	2010	Radio Standards Specification 210, Issue 8, Low- power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment
iii.	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
iv.	RSS-GEN	2010	Radio Standards Specification-Gen, Issue 3, General Requirements and Information for the Certification of Radiocommunication Equipment
v.	FCC 47 CFR Part 15, Subpart B	2012	47 CFR Part 15, SubPart B; Unintentional Radiators
vi.	ICES-003	2004	Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard Digital Apparatus; Issue 4
vii.	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
viii.	CISPR 22/ EN 55022	2008 2006+A1: 2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
ix.	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
х.	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
xi.	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
xii.	A2LA	July 2012	Rules for Making Reference to A2LA Accredited Status – A2LA Advertising Policy

4.1 Normative References

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.2 Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5 <u>TEST SUMMARY</u>

List of Measurements: The following table represents the list of measurements required under FCC 47 CFR Part 15, SubPart 15.247

Standard Section(s)	Test Description	Condition	Result	Test Report Section
(a)(2)	6 dB Occupied Bandwidth	Conducted	Compliant	7.1
(b)(3), (b)(4)	Peak Output Power	Conducted	Compliant	7.2
(e)	Peak Power Spectral Density	Conducted	Compliant	7.3
(i)	Maximum Permissible Exposure	Calculation	Compliant	7.4
(d)	Spurious Emissions	Conducted	Compliant	7.5
(d), 15.205, 15.209	Transmitter Radiated Spurious Emissions Above 1 GHz	Radiated	Compliant	7.6 / 7.7*
(d), 15.205, 15.209	Radiated Band-Edge	Radiated	Compliant	7.6 / 7.7*
4.10, 6	Receiver Emissions	Radiated	Compliant	7.6 / 7.7*
(d), 15.205, 15.209	Radiated Transmitter Spurious emissions below 1 GHz	Radiated	Compliant	7.8
15.207	AC Wireline Emissions 0.15 – 30 MHz	Conducted	N/A	7.9

* Section 7.6 results are for antenna ZES 10370

* Section 7.7 results are for antenna Taoglas FXP73.07.0100A

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 6.11 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6 **PRODUCT DETAILS AND TEST CONFIGURATIONS**

6.1 <u>Test Program Scope</u>

The scope of the test program was to test the Zebra Technologies Corporation WhereTag IV Module model TFF-2005 in Client Modes b and g for compliance against FCC 47 CFR Part 15, SubPart 15.247

This report uses test results previously reported in MiCOM Labs report ETSD21-U1 Rev A published on 2nd August 2010 with the addition of results for client mode testing.

Description of new 802.11b/g Client Mode:

• Client Mode uses both the transmitter and receiver of the 802.11 radio to communication with access points, while Beacon mode (Mode 1 and 2) only uses the transmitter and turns off the receiver. Beacon mode transmits short data packets at low duty cycle, while Client Mode can transmit and receive longer data packets at higher duty cycle. Another name for Beacon Mode is "CISCO CCX Mode".

Applicant: Zebra Technologies Corporation

Product: WhereTag IV Module Model TFF-2005

Applicant: Zebra Technologies Corporation

Product: WhereTag IV Module Model TFF-2005

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2 EUT Details

Detail	Description	
Purpose:	Test of the Zebra Technologies Corporation WhereTag IV Module Remote Telemetry Module for compliance against FCC 47 CFR Part 15, SubPart 15.247 and RSS-210 Annex 8	
Applicant:	Zebra Technologies Corporation	
	2940 N. First Street	
	San Jose CA, 95134, USA	
Manufacturer:	As Applicant	
Test Laboratory:	MiCOM Labs, Inc.	
	440 Boulder Court, Suite 200	
	Pleasanton, California 94566 USA	
Test report reference number:	GBCC04-U1	
Date EUT received:	29" May 2012	
Dates of test (from - to):	29" 31" May 2012	
No of Units Tested:	1	
Product Name:	Where Tag IV module	
Model No.:	TFF-2005	
Equipment Primary Function:	Remote Telemetry Module	
Equipment Secondary Function(s):	N/A	
Type of Technology:	802.11/ ISO24730	
Installation type:	Mobile	
Construction/Location for Use:	e: Indoor/Outdoor	
Software/Firmware Release:	e: Beta 4.0.0	
Hardware Release:		
I est Software Release:	CertGUI Version 8-26-11	
	Simplex	
Output Power Type:	Stepped 1 dB	
Automatic I ransmit Power Control	NO	
Available:	Na	
Remote Frequency Control Available.	NU Detter (eneration only	
Character and Current AC.		
Defauling Frequency.	2400 (0 2403 MITZ	
Rated input voltage and Current DC.	Nullindi. 5.5V, Max. 5.7V, Mill. 5.0V Current: $0.2(\Lambda)$	
Operating Temperature Pange °C:	Min: 30 Max: 70	
ITU Emission Designator(s):	802 11h: 17M7W7D	
	802 11g. 24M5D1D	
	ISO 24730 DSSS: 44M4W7D	
	ISO 24730 OOK: 10M1W7D	
Long Term Frequency Stability:	1 PPM/year (+/-25PPM / 7 years)	
Equipment Dimensions:	6.6x4.4x2.1cm	
Weight:	51 gram	

6.3 External A.C/D.C Power Adaptor

No External A.C./D.C. Power adaptor utilized during this test program

6.4 Operational Power Range

Declared O/P Power Range	Mode 1		Mode 1 Mode 2		Mode 3		Mode 4	
	Max	Min	Max	Min	Max	Min	Max	Min
EUT	10	0	10	0	15	0	2	-2

6.5 Types of Modulation Supported

Modes	Modulation / Mode	Туре
Mode 1	802.11b	BPSK,QPSK, CCK
Mode 2	802.11g	OFDM
Mode 3	ISO24730 DSSS	BPSK
Mode 4	ISO24730 OOK	ASK
Mode 5 - Client Mode	ISO24730 802.11 b	BPSK,QPSK, CCK
Mode 6 - Client Mode	ISO24730 802.11 g	OFDM

6.6 Antenna Details

The following is a description of the EUT antennas.

Antenna Type:	Manufacturer	Model	Gain (dBi)	Frequency Range (MHz)
Inverted-F	ZES	10370	2 max	2400-2483.5
Flexible	Taoglas	FXP73.07.0100A	2.5	2400-2483.5
Mono-pole	WhereNet	22810	4 (center)	2400-2483.5
plate antenna			7 (outer)	
assembly (1				
center/ 3 outer)				
Whip, 69	Valco	22944	0 (with	2400-2483.5
inches,			cable)	
Colinear				

Description of Dome antenna assembly; Inside the Dome, there is a Mono-Pole Plate Antenna Assembly. Dome and Mono-pole plate are the same antenna.

6.7 Cabling and I/O Ports

The following is a description of the cable and input, output ports available on the EUT.

Type of I/O Ports	Description	Screened (y/n)	Description	Qty	Tested
Serial Programming	20-pin header	N/A	< 1m	1	N/A

6.8 EUT Configurations

Band (GHz)	Mode	Freq Band (MHz)	Freq Range (MHz)	Low ch	Mid ch	High ch	# Ch	Channel Spacing (MHz)	Channel BW (MHz)
2.4	802.11 b	2400 - 2483.5	2412 - 2462	2412	2437	2462	11	5	20
2.4	802.11 g	2400 - 2483.5	2412 - 2462	2412	2437	2462	11	5	20
2.4	ISO24730 DSSS	2400 - 2483.5	2412 - 2462		2441.75		1		67
2.4	ISO24730 OOK	2400 - 2483.5	2412 - 2462		2446.519		1		10
2.4	Client Mode 802.11 b	2400 - 2483.5	2412 - 2462	2412	2437	2462	11	5	20
2.4	Client Mode 802.11 g	2400 - 2483.5	2412 - 2462	2412	2437	2462	11	5	20

6.9 Equipment Details

The following is a description of EUT and supporting equipment used during the test program.

Type (EUT/Support)	Equipment Description	Manufacturer	Model No.	Part No (s).
EUT	Remote Telemetry Module (w/ Antenna ZES10370) s/n 33560876	Zebra Technologies Corporation	TFF-2015	TFF-2005- 00AA
EUT	Remote Telemetry Module (w/ Antenna FXP73.07.0100A) s/n 33560868	Zebra Technologies Corporation	TFF-2005	TFF-2005- 00AA
Support	Laptop PC	Dell	PPX	72MUF A02
Support	Laptop PC	Dell	PPL	9172P
Support	Location Sensor	Zebra Technologies Corporation.	LOS-4100	01AC

6.10 Test Configurations

Operational Mode(s)	Data Rate Tested	Duty Cycle
b	1 MBit/s	100
g	6 MBit/s	100
ISO24730 DSSS	59.7 kbps	100
ISO24730 OOK	19.833 kbps	100
ISO24730 Client Mode b	1 MBit/s	100
ISO24730 Client Mode g	6 MBit/s	100

6.11 Equipment Modifications

The following modifications were required to bring the equipment into compliance:

• No modifications required.

6.12 Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

• No deviations required.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7 TEST RESULTS

7.1 6 dB and 99% Bandwidth

Test Procedure

The test methodology and conditions utilized for each measurement is referenced in the following test results matrix. 6 dB and 99% bandwidth were measured per the Test Configuration identified below.

Test Configuration

Test configuration for 6 dB & 99% Bandwidth

Specification

Limits

§15.247 (a)(2) The minimum 6 dB bandwidth shall be at least 500 kHz.

Traceability

Method	Test Equipment Used				
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0158, 0252, 0313, 0314, 0116, 0117, 0287, 0363				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.1 <u>802.11 b</u>

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11 b	Ambient Temp. (ºC):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2	dBi	
Applied Voltage:	3.6V Vdc				
Notes 1:					
Notes 2:					

6 dB Bandwidth

Test	6 dB Bandwidth				Minimum	6dB	Margin	
Frequency		MHz			Bandwidth	n Limit	wargin	
MHz	а	b	С	d	kHz MHz		MHz	
2412	10.100000						-9.600000	
2437	10.100000				500	0.5	-9.600000	
2462	10.180000						-9.680000	

99% Bandwidth

Test		ndwidth				
Frequency	MHz					
MHz	а	b	С	d		
2412	17.876000					
2437	16.513000					
2462	17.715000					

Measurement uncertainty:	±2.81 dB

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 22 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 23 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 24 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.2 <u>802.11 g</u>

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11 g	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2	dBi	
Applied Voltage:	3.6V Vdc				
Notes 1:					
Notes 2:					

6 dB Bandwidth

Test	6 dB Bandwidth				Minimum 6dB		Margin
Frequency		MHZ			Bandwidth	n Limit	9
MHz	а	b	C	d	kHz MHz		MHz
2412	16.192000						-15.692000
2437	16.112000				500	0.5	-15.612000
2462	16.353000						-15.853000

99% Bandwidth

Test	99 % Bandwidth					
Frequency	MHz					
MHz	а	b	С	d		
2412	22.285000					
2437	24.529000					
2462	22.926000					

Measurement uncertainty:	±2.81 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 26 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 27 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 28 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.3 <u>DSSS</u>

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	DSSS	Ambient Temp. (°C):	19	to	22
TPC:	NA	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2	dBi	
Applied Voltage:	3.6V Vdc				
Notes 1:					
Notes 2:					

6 dB Bandwidth

Test	6 dB Bandwidth				6 dB Bandwidth Minimum 6		
Frequency		MHz Bandwidth Limit			Wici gir i		
MHz	а	b	С	d	kHz	MHz	MHz
2441.75	22.557114	-			500	0.5	-22.057114

99% Bandwidth

Test	99 % Bandwidth					
Frequency		M	Hz			
MHz	а	b	С	d		
2441.75	44.040000	_		_		

	Measurement uncertainty:	±2.81 dB
--	--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.4 <u>OOK</u>

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	ООК	Ambient Temp. (°C):	19	to	22
TPC:	N/A	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2	dBi	
Applied Voltage:	3.6V Vdc				
Notes 1:					
Notes 2:					

6 dB Bandwidth

Test Frequency		6 dB Ba M	ndwidth Hz	Minimum 6dB Bandwidth Limit		Margin	
MHz	а	b	С	d	kHz	MHz	MHz
2446.519	1.202405				500	0.5	-0.702405

99% Bandwidth

3370 Danuwiu						
Test	99 % Bandwidth					
Frequency		M	Hz			
MHz	а	b	С	d		
2446.519	10.020040					

Measurement uncertainty:	±2.81 dB

18

10

-10

-20

-30

-50

-60

-70

-8 Center 2.446519 GHz 2 MHz/ Span 20 MHz 29.JUN.2010 11:10:03 Date:

F1

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.5 Client Mode – b Mode

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35 to	42
Variant:	802.11b	Ambient Temp. (°C):	19 to	22
TPC:	HIGH	Pressure (mBars):	998 to	1003
Modulation:	ON	Duty Cycle (%):	100	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2 dB	
Applied Voltage:	3.60 Vdc			
Notes 1:				
Notes 2:				

6 dB Bandwidth

T		6 dB Ba	Indwidth	Minimu	um 6dB	Manaia			
Test Frequency		м	Hz		Bandwid	dth Limit	Margin		
MHz	а	b	с	d	kHz	MHz	MHz		
2412.000	10.100000						-9.600000		
2437.000	10.100000				500	500 0.5	-9.600000		
2462.000	10.100000						-9.600000		

99% Bandwidth

	99 % Bandwidth						
Test Frequency	MHz						
MHz	а	b	С	d			
2412.000	16.112000						
2437.000	16.192000						
2462.000	16.192000						

Measurement uncertainty:	±2.81 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 34 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 35 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 36 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.6 Client Mode - g Mode

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11g	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2 (βBi	
Applied Voltage:	3.60 Vdc				
Notes 1:					
Notes 2:					

6 dB Bandwidth

		6 dB Ba	Indwidth	Minimu	ım 6dB		
Test Frequency		М	Hz		Bandwid	dth Limit	Margin
MHz	а	b	с	d	kHz MHz		MHz
2412.000	15.872000						-15.372000
2437.000	15.872000				500	0.5	-15.372000
2462.000	16.353000				1		-15.853000

99% Bandwidth

		99 % Ba	andwidth			
Test Frequency		М	Hz			
MHz	а	b	с	d		
2412.000	23.727000					
2437.000	23.808000					
2462.000	24.289000					

Measurement uncertainty:	±2.81 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 38 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 39 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 40 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.2 <u>Peak Output Power</u>

Test Procedure

The test methodology and conditions utilized for each measurement is referenced in the test results matrix. The average output power was measured per the test configuration identified below.

Per the standard measurements were taken at ambient conditions, nominal voltage.

Test Configuration

Measurement set-up for Peak Output Power

Total Power = $A + G + Y + 10 \log (1/x) dBm$ A = Total Power [10 Log10 (10a/10 + 10b/10 +10c/10 + 10d/10)], G = Antenna Gain, Y = Beam Forming Gain, x = Duty Cycle

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt.

15.247 (b) (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

15.247 (c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, pointto-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, pointto-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

§15.31 (e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0252, 0313, 0314, 0223, 0116, 0117, 0287, 0363

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.2.1 <u>802.11 b</u>

Test Conditions:	15.247 (b)	Rel. Humidity (%):	35	to	42
Variant:	802.11 b	Ambient Temp. (ºC):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain	N/A dB	Antenna Gain:	2	dBi	
Applied Voltage:	3.6V Vdc				
Notes 1:					
Notes 2:					

Test Frequency	Measured Peak Power RF Port (dBm)				Total Pow	ver (dBm)	Limit	Margin
MHz	а	b	С	d	Combined	Calculated	dBm	dB
2412	14.00					14.00	30.00	-16.00
2437	16.21					16.21	30.00	-13.79
2462	16.00					16.00	30.00	-14.00

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.2.2 <u>802.11 g</u>

Test Conditions:	15.247 (b)	Rel. Humidity (%):	35	to	42
Variant:	802.11 g	Ambient Temp. (ºC):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain	N/A dB	Antenna Gain:	2	dBi	
Applied Voltage:	3.6V Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				Total Pow	ver (dBm)	Limit	Margin
Frequency	RF Port (dBm)			. eta i eta			ina. gin	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
2412	15.19				15.19	15.19	30.00	-14.81
2437	15.99				16.00	15.99	30.00	-14.00
2462	15.13				15.13	15.13	30.00	-14.87
Measurement uncertainty:						±1.33 dB		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.2.3 <u>DSSS</u>

SO 24730 IGH	DSSS		Ambien	$+ T_{omm} (0C)$	40	1	
IGH				t Temp. (°C):	19	to	22
			Press	ure (mBars):	998	to	1003
N			Du	ty Cycle (%):	100		
/A	dB		Aı	ntenna Gain:	2	dBi	
6V	Vdc						
asured F	Peak Pow	er	Total Pow	vor (dBm)	Limit	M	argin
RF Por	t (dBm)		TOTALFOW		Linin		argin
b	С	d	Combined	Calculated	dBm		dB
				14.91	30.00	-1	5.09
ncertaint	y:		±1.33 dB				
	asured F RF Port b 	A dB A dB A Vdc A Vdc A Vdc A Vdc A Vdc A A A A A A A A A A A A A A A A A A A	A dB A dB	A dB A dB 6V Vdc asured Peak Power Total Power RF Port (dBm) Total Power b C d c d Combined	A B A dB 6V Vdc asured Peak Power Total Power (dBm) RF Port (dBm) C d b c d Calculated 14.91	A A B Antenna Gain: 2 6V Vdc 0 0 0 0 asured Peak Power Total Power (dBm) Limit B C d Combined Calculated dBm 14.91 30.00 30.00	A B B A A Antenna Gain: 2 dBi 6V Vdc Vdc Vdc Vdc Vdc asured Peak Power Total Power (dBm) Limit Ma B C d Combined Calculated dBm b C d Combined Calculated dBm 100 14.91 30.00 -1 ncertainty: ±1.33 dB ±1.33 dB ±1.33 dB

7.2.4 <u>OOK</u>

Test Conditio	ns:	15.247 (b)			Rel. H	lumidity (%):	35	to	42
Variant:		ISO 24730) OOK		Ambien	t Temp. (ºC):	19	to	22
TPC:		HIGH			Press	ure (mBars):	998	to	1003
Modulation:		ON			Du	ty Cycle (%):	100		
Beam Formin	g Gain	N/A	dB		A	ntenna Gain:	2	dBi	
Applied Volta	ge:	3.6V	Vdc						
Notes 1:									
Notes 2:									
Test	ľ	Measured I	Peak Pow	er	Total Box	vor (dBm)	Limit	M	argin
Frequency		RF Por	t (dBm)		TOLATFOW		Liiiiit	IVI	argin
MHz	а	b	С	d	Combined	Calculated	dBm		dB
2442	1.27					1.27	30.00	-2	.8.73
Measu	rement	uncertaint	ty:	±1.33 dB					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.2.5 <u>Client Mode – b Mode</u>

Average Power

V					
Test Conditions:	15.247 (b)	Rel. Humidity (%):	35	to	42
Variant:	802.11b	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	00	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2	.5 dBi	
Applied Voltage:	3.48 Vdc				
Notes 1:					
Notes 2:					

Test	N	leasured P	eak Power		Total Power (dBm)		Limit	Margin
Frequency	RF Port (dBm)						inc. giri	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
2412	9.77				N/A	9.77	30.00	-20.23
2437	9.81				N/A	9.81	30.00	-20.19
2462	9.90				N/A	9.90	30.00	-20.10

Measurement uncertainty:	±1.33 dB
--------------------------	----------

Peak Power

Test Conditions:	15.247 (b)	Rel. Humidity (%):	35	to	42
Variant:	802.11b	Ambient Temp. (ºC):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	0	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2.	5 dBi	
Applied Voltage:	3.60 Vdc				
Notes 1:					
Notes 2:					

Test	Μ	leasured P	eak Power		Total Power (dBm)		Limit	Margin
Frequency	RF Port (dBm)						inc. giri	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
2412	11.23				N/A	11.23	30.00	-18.77
2437	11.74				N/A	11.74	30.00	-18.26
2462	11.56				N/A	11.56	30.00	-18.44

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 47 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 48 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.2.6 Client Mode – g Mode

Average Power

Test Conditions:	15.247 (b)	Rel. Humidity (%):	35	to	42
Variant:	802.11g	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	00	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2	.5 dBi	
Applied Voltage:	3.48 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				• Total Power (dBm)		Limit	Margin
Frequency	RF Port (dBm)						Ū	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
2412	10.50				N/A	10.50	30.00	-19.50
2437	11.00				N/A	11.00	30.00	-19.00
2462	11.03				N/A	11.03	30.00	-18.97

Measurement uncertainty:	±1.33 dB
--------------------------	----------

Peak Power

Test Conditions:	15.247 (b)	Rel. Humidity (%):	35	to	42
Variant:	802.11g	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	0	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2.	5 dBi	
Applied Voltage:	3.60 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				Total Pow	ver (dBm)	Limit	Margin
Frequency		RF Port (dBm)						
MHz	а	b	С	d	Combined	Calculated	dBm	dB
2412	17.09				N/A	17.09	30.00	-12.91
2437	17.09				N/A	17.09	30.00	-12.91
2462	17.27				N/A	17.27	30.00	-12.73

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 50 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 51 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.3 Peak Power Spectral Density

Test Procedure

The test methodology and conditions utilized for each measurement is referenced in the following test results matrix. RF output power, transmit power control and power density were measured per the Test Configuration identified below.

Testing was performed on the highest and lowest power settings of the equipment.

Per the standard measurements were taken at ambient and extreme temperature conditions at nominal and extreme voltage levels.

Test Configuration

Measurement set-up for Peak Power Spectral Density

Specification

Peak Power Spectral Density Limits

§15.247 (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0252, 0313, 0314, 0223, 0116, 0117, 0287,
Instruction WI-01 Measuring RF	0363

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.3.1 <u>802.11 b</u>

Test Conditions:	15.247 (e)		Rel. Humidity (%):	35	to	42
Variant:	802.11 b		Ambient Temp. (ºC):	19	to	22
TPC:	HIGH		Pressure (mBars):	998	to	1003
Modulation:	ON		Duty Cycle (%):	100		
Beam Forming Gain	N/A	dB	Antenna Gain:	2	dBi	
Applied Voltage:	3.6V	Vdc				
Notes 1:						
Notes 2:						

Test Frequency	Μ	easured Po RF Por	ower Densi t (dBm)	ty	Total Pe Spectral De	ak Power ensity (dBm)	Limit	Margin
MHz	а	b	C	d	Combined	Calculated	dBm	dB
2412	-9.87					-9.87	8.00	-17.87
2437	-7.95					-7.95	8.00	-15.95
2462	-10.12					-10.12	8.00	-18.12

	Measurement uncertainty:	± 1.33 dB
--	--------------------------	-----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 54 of 197

Span = 1.00MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 55 of 197

Span = 1.00MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 56 of 197

Span = 1.00MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.3.2 <u>802.11 g</u>

Test Conditions:	15.247 (e)	Rel. Humidity (%):	35	to	42
Variant:	802.11 g	Ambient Temp. (ºC):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming	N/A dB	Antenna Gain:	2	dBi	
Applied Voltage:	3.6V Vdc				
Notes 1:					
Notes 2:					

Test Frequency	Measured Power Density RF Port (dBm)			Total Pea Spectral De	ak Power nsity (dBm)	Limit	Margin	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
2412	-10.36					-10.36	8.00	-18.36
2437	-9.32					-9.32	8.00	-17.32
2462	-9.98					-9.98	8.00	-17.98

Measurement uncertainty:	± 1.33 dB
--------------------------	-----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 58 of 197

Span = 1.00MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 59 of 197

Span = 1.00MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 60 of 197

Span = 1.00MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 61 of 197

7.3.3 DSSS

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 62 of 197

7.3.4 <u>OOK</u>

Date:

29.JUN.2010 11:18:02

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.3.5 Client Mode 802.11 b

Test Conditions:	15.247 (e)	Rel. Humidity (%):	35	to	42
Variant:	802.11b	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2 dBi		
Applied Voltage:	3.60 Vdc	Antenna Ports (N):	1		
Notes 1:					
Notes 2:					

Test	Measured Power Density RF Port (dBm)				Correction	Peak Power	Limit	Morgin
Frequency					factor Density		Limit	Margin
MHz	а	b	с	d	10Log(N)	dBm	dBm	dB
2412.000	-9.58					-9.58	8.00	-17.58
2437.000	-9.59					-9.59	8.00	-17.59
2462.000	-9.69					-9.69	8.00	-17.69

Measurement uncertainty:	± 1.33 dB
--------------------------	-----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 65 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.3.6 Client Mode 802.11 g

Test Conditions:	15.247 (e)	Rel. Humidity (%):	35	to	42
Variant:	802.11g	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	2 dBi		
Applied Voltage:	3.60 Vdc	Antenna Ports (N):	1		
Notes 1:					
Notes 2:					

Test	Measured Power Density				Correction	Peak Power	Lincit	Margin	
Frequency		RF Port	t (dBm)		factor	Spectral Density	Limit	Margin	
MHz	а	b	с	d	10Log(N)	dBm	dBm	dB	
2412.000	-9.70				0.00	-9.70	8.00	-17.70	
2437.000	-9.57				0.00	-9.57	8.00	-17.57	
2462.000	-9.32				0.00	-9.32	8.00	-17.32	

Measurement uncertainty:	± 1.33 dB
--------------------------	-----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 68 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 69 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 70 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.4 Conducted Spurious Emissions

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Measurements were made using a combiner with the transmitter tuned to the channel closest to the band-edge being measured. All emissions were maximized during measurement. Limits which were derived from the peak emission.

Test Measurement Set Up

Conducted Spurious Emission measurement test configuration

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits Band-Edge

Upper Limit	Limit below highest level of desired	
Band-edge	power	
2,483.5 MHz	2 0 d P	
5850 MHz	2 20 UD	
	Upper Limit Band-edge 2,483.5 MHz 5850 MHz	

§15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

§15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0252, 0313, 0314, 0223, 0116, 0117, 0287,
instruction WI-05 'Measurement of	0363.
Spurious Emissions'	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.4.1 <u>802.11 b</u>

Test	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11 b	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming	N/A dB	Antenna Gain:	N/A	dBi	
Applied	3.6V Vdc				
Notes 1:					
Notes 2:					

Conducted Spurious Measurment

Test Frequency	Start Frequency	Stop Frequency	Maximum Observed Emission	Limit (20 dB below
MHz	MHz	MHz	dBm	dBm
2412	30.00	26000.00	-24.98	-15.27
2437	30.00	26000.00	-30.17	-14.56
2462	30.00	26000.00	-26.39	-15.23

Band-edge Measurment

Test Frequency	Band-edge Frequency	Emission Amplitude @ Band-edge	Limit (20 dB below peak of	Margin
MHz	MHz	dBm	dBm	dB
2412	2400.00	-27.76	-13.79	-13.98
2462	2483.50	-46.68	-14.31	-32.37

Measurement uncertainty: ±2.81 dB		
	Measurement uncertainty:	±2.81 dB

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 74 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 75 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

RF Atten (dB) = 10 Span = 25.97GHz

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 76 of 197

Analyser Setup	Marker : Frequency : Amplitude	Test Results
RBW = 100.00KHz	M1:2424.028056MHz:4.775dBm	Center frequency = $2462MHz$
VBW = 300.00KHz	M2: 4922.144289MHz: -26.387dBm	
Sweep time(s) = 60		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 77 of 197

Span = 72.00MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 78 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.4.2 <u>802.11 g</u>

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11 g	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	3.6V Vdc				
Notes 1:					
Notes 2:					

Conducted Spurious Measurment

Test Frequency	Start Frequency	Stop Frequency	Maximum Observed Emission	Limit (20 dB below peak of fundamental)
MHz	MHz	MHz	dBm	dBm
2412	30.00	26000.00	-33.42	-16.80
2437	30.00	26000.00	-26.87	-18.70
2462	30.00	26000.00	-34.13	-18.80

Band-edge Measurment

Test Frequency	Band-edge Frequency	Emission Amplitude @ Band-edge	Limit (20 dB below peak of	Margin
MHz	MHz	dBm	dBm	dB
2412	2400.00	-18.64	-16.17	-2.47
2462	2483.50	-26.97	-16.16	-10.82

Measurement uncertainty: ±2.81 dB

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 80 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Span = 25.97GHz

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 81 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 82 of 197

Analyser Setup
RBW = 100.00KHz
VBW = 300.00KHz
Sweep time(s) = 60
RF Atten (dB) = 10
Span = 25.97GHz

Marker : Frequency : Amplitude M1 : 2424.028056MHz : 1.197dBm M2 : 7368.216433MHz : -34.133dBm

Center frequency = 2462MHz

Test Results

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012Page:Page 83 of 197

· ·		
RBW = 100.00KHz	M1 : 2400.000000MHz : -18.640dBm	Center frequency = 2412MHz
VBW = 300.00KHz	M2 : 2401.943888MHz : -16.338dBm	
Sweep time(s) = 20	M3 : 2416.949900MHz : 3.831dBm	
RF Atten (dB) = 10		
Span = 72.00MHz		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 84 of 197

Span - 72.0000112

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Zebra Technologies Corporation Where Tag IV Module To: FCC 47 CFR Part 15, SubPart 15.247 Serial #: GBCC04-U1 Rev A Issue Date: 7th July 2012 Page: Page 85 of 197

7.4.3 DSSS

Date:

29.JUN.2010 11:01:10

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Band Edge Ambient 2442MHz 3.60V 14.91dBm 100% Duty Cycle

Date:

30.JUN.2010 09:05:54

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Band Edge Ambient 2442MHz 3.60V 14.90dBm 100% Duty Cycle

Date:

30.JUN.2010 09:11:02

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 88 of 197

7.4.4 <u>OOK</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

RBW Marker 1 [T1] 100 kHz RF Att 10 dB 300 kHz Ref Lvl -48.18 dBm VBW 18 dBm 2.4000000 GHz 20 s dBm SWT Unit 18 18.3 dB Offset **v**1 [T1] -48.18 dBn А 40000000 GH: 1.0 **∇**2 [T1] -23 .83 dBn 473 GHz 2.44438 ▼3 [T1] dBr -D1 -1.959 dBn 894 GHz 2.44648 -10 TN1 **1VIEW 1MA** -20 -D2 -21.959 dBm--30 -4 -50 Muhamp -60 -70 F -82 Start 2.311519 GHz 15 MHz/ Stop 2.461519 GHz 30.JUN.2010 09:21:00 Date:

Band Edge Ambient 2447MHz 3.60V 1.23dBm 100% Duty Cycle

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Band Edge Ambient 2447MHz 3.60V 1.27dBm 100% Duty Cycle

Date:

30.JUN.2010 09:24:47

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.4.5 Client Mode 802.11b

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11b	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	3.60 Vdc	Antenna Ports (N):			
Notes 1:					
Notes 2:					

Conducted Spurious Measurement

Test Freq.	Start Freq.	Stop Freq.	Por	t A	Ροι	rt B	Por	t C	Ροι	rt D
MHz	MHz	MHz	SE dBm	Limit dBm	SE dBm	Limit dBm	SE dBm	Limit dBm	SE dBm	Limit dBm
2412.000	30.00	26000.00	-34.58	-15.35						
2437.000	30.00	26000.00	-34.26	-15.57						
2462.000	30.00	26000.00	-35.14	-16.04						

SE: Maximum spurious emission found

Band-edge Measurement

Test Freq.	Band-edge freq.	Port A		Port B		Port C		Port D	
MHz	MHz	BE dBm	Limit dBm	BE dBm	Limit dBm	BE dBm	Limit dBm	BE dBm	Limit dBm
2412.000	2400.00	-28.65	-14.63						
2462.000	2483.50	-45.67	-14.00						

BE: Maximum Band edge emission found

Measurement uncertainty:	±2.81 dB

Note: Limit is based on 20dB down from fundamental emission

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 92 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 93 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 94 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 95 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.4.6 Client Mode 802.11g

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11g	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	3.60 Vdc	Antenna Ports (N):			
Notes 1:					
Notes 2:					

Conducted Spurious Measurement

Test Freq.	Start Freq.	Stop Freq.	Por	t A	Ροι	rt B	Por	t C	Por	't D
MHz	MHz	MHz	SE dBm	Limit dBm	SE dBm	Limit dBm	SE dBm	Limit dBm	SE dBm	Limit dBm
2412.000	30.00	26000.00	-23.09	-16.43						
2437.000	30.00	26000.00	-22.67	-16.16						
2462.000	30.00	26000.00	-22.11	-16.64						

SE: Maximum spurious emission found

Band-edge Measurement

Test Freq.	Band-edge freq.	Port A		Port B		Port C		Port D	
MHz	MHz	BE dBm	Limit dBm	BE dBm	Limit dBm	BE dBm	Limit dBm	BE dBm	Limit dBm
2412.000	2400.00	-15.83	-14.42						
2462.000	2483.50	-25.24	-14.38						

BE: Maximum Band edge emission found

Measurement uncertainty:	±2.81 dB
--------------------------	----------

Note: Limit is based on 20dB down from fundamental emission

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 98 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 99 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 100 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 101 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 102 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.5 Radiated Spurious Emissions Above 1 GHz - Antenna ZES

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

	Title: Zebra Technologies Corporation			
		WhereTag IV Module		
NAIC MALabo	То:	FCC 47 CFR Part 15, SubPart 15.247		
IVIIC SIVILADS	Serial #:	GBCC04-U1 Rev A		
	Issue Date:	7th July 2012		
	Page:	Page 104 of 197		

Test Measurement Set Up

Radiated Emission Measurement Setup – Above 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

Specification

FCC §15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Table 1: FCC 15.209 Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty +5.6/ -4.5 dB

Traceability:

Trabbability				
Method	Test Equipment Used			
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312			

7.5.1 802.11b Radiated Spurious Emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test	Freq.	2437 N	/Hz					E	ingineer	GMH		
V	ariant	802.11	b; 1 Mb	s				Те	emp (°C)	27.5		
Freq. F	Range	1000 N	/Hz - 18	8000 MHz				Rel. I	Hum.(%)	32		
Power S	etting	10 in te	est utility	/			P	ress.	(mBars)	1003		
An	tenna	ANT=Z	ES1037	70				Duty (Cycle (%)	3.6 %		
Test No	otes 1	Fundai	mental a	ittenuated	by band-stop fil	ter						
Test No	otes 2	EU⊺te	sted at	100% duty	/ cycle							
MiC@ML	abs	dBu∨ 900 700 700 800 800 800 800 800 800 800 8	o D diated Er aname: k	nissions tprogramte	Vasona by E	MiSo	ft	1000 FCC RE ha - fce	۵۵ 15.247 & io	30 Jun Pk beas Spec Au Frequen 18000.0	10 13:13 1 Horizor 2 Vertica eak Limit werage L lebug offsaβm Dist 3m Dist 3m cy: MHz were 8 we	 11 1 1
Formally	y mea	sured	emis	sion pea	aks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2438.0	67.0	3.0	-11.1	59.0	Peak [Scan]	V	100				NA	FUND
7309.379	55.0	5.4	-4.9	55.5	Peak Max	Н	103	193	74.0	-18.5	Pass	RB
7309.379	48.5	5.4	-4.9	49.0	Average Max	Н	103	193	54.0	-5.0	Pass	RB
4873.988	53.1	4.5	-9.3 48.3 Peak[Scan] V 100 0 54 -5.8 Pass RB									
Legend:	TX=1 RB=F	Transmi Restricte	iter Emis ed Banc	sions; DK I (15.209 L	G = Digital Emissi Limits); NRB = N	ons; F bn Re	UND= stricted	Funda d Band	mental; W , Limit is 2	/B = Wide OdB belov	band Er w funda	nission amental peak

Test	Freq.	2462 N	/Hz					E	ingineer	GMH		
Va	ariant	802.11	b; 1 Mb	s				Те	emp (°C)	27.5		
Freq. R	Range	1000 N	/Hz - 18	8000 MHz				Rel. I	Hum.(%)	32		
Power Se	etting	10 in te	est utility	/			P	ress.	(mBars)	1003		
Ant	tenna	ANT=Z	ES1037	70				Duty (Sycle (%)	3.6 %		
Test No	otes 1	Fundar	mental a	attenuated	by band-stop fil	ter						
Test No	otes 2	BJTte	sted at	100% duty	/ cycle							
Micem	abs	dBu∨ 900 700 700 800 800 800 800 800 800 800 8	D diated Er ename: k	nissions Oprogram ve	Vasona by E	MiSo	ft	1000 FCC RE Fa - fce	00 1-18GHz 15.247 & io	30 Jun Pk Weas Spec Au Frequen 180000	10 14:09 1) Horizor 1) Vertica leak Limit werage L Lebug Limit am Dist 3m Dist 3m Dist 3m	 1t 1
Formally	mea	sured	emis	sion pea	aks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2464.930	69.8	2.980	-11.1	61.720	Peak [Scan]	Н	100				NA	FUND
7384.890	54.5	5.5	-4.8	55.1	Peak Max	Н	99	250	74.0	-18.9	Pass	RB
4923.942	57.5	4.6	-9.1	52.9	Peak Max	V	138	205	74.0	-21.1	Pass	RB
7384.890	47.8	5.5	-4.8	48.4	Average Max	Н	99	250	54	-5.6	Pass	RB
4923.942	54.2	4.6	-9.1	49.7	Average Max	V	138	205	54	-4.3	Pass	RB
Legend:	TX=T RB=F	Transmit Restricte	ter Emis ed Banc	sions; DK 1 (15.209 L	G = Digital Emissi Limits); NRB = N	ons; F bn Re	UND= stricted	Funda d Band	mental; W , Limit is 2	/B = Wide 0dB belov	band En w funda	nission amental peak

7.5.2 802.11g Radiated Spurious Emissions

Test F	-req.	2412 N	1Hz					E	ngineer	CSB			
Var	riant	802.11	g; 6 Mb	s				Те	emp (℃)	27.5			
Freq. Ra	ange	1000 N	/Hz - 18	000 MHz				Rel. I	-lum.(%)	32			
Power Set	tting	10 in te	est utility	,			P	ress. ((mBars)	1003			
Ante	enna	ANT=Z	ES1037	0				Duty C	Sycle (%)	0.72%			
Test Note	es 1	Fundar	mental a	ttenuated	by band-stop fil	ter							
Test Note	es 2	BJTte	sted at '	100% duty	/ cycle								
MiCOMLa	bs	dBu√ 900 700 700 500 400 200 200 800 800 800 800 800 800 800 8	1907 Vasona by EMiSoft 30 Jun 10 14:28 30 Jun 10 14:28 10 Jun 10 Jun										
Formally	mea	asure	d em	ission	peaks								
Frequency I MHz d	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments	
2396.794	70.9	3.0	-11.2	62.7	Peak [Scan]	V	100				NA	FUND	
7237.610	60.8	5.4	-5.1	61.1	Peak Max	Н	139	39	74.0	-12.9	Pass	RB	
7237.61	46.4	5.4	-5.1	46.7	Average Max	Н	139	39	54.0	-7.3	Pass	RB	
Legend:	TX=T	ransmit	ter Emis	sions; DK	G = Digital Emissi	ons; F	UND=	Funda	mental; W	B=Wide	band Er	rission	
F	RB=F	Restricte	ed Band	(15.209 L	_imits); NRB=N	bn Re	stricted	d Band	, Limit is 2	0dB belov	w funda	amental peak	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Fi	req.	2437 N	/Hz					E	ngineer	CSB		
Var	iant	802.11	g; 6 Mb	s				Те	emp (°C)	27.5		
Freq. Ra	nge	1000 N	/Hz - 18	8000 MHz				Rel. I	-lum.(%)	32		
Power Set	ting	10 in te	est utility	/			P	ress. ((mBars)	1003		
Ante	enna	ANT=Z	ES1037	70				Duty C	Sycle (%)	0.72%		
Test Note	es 1	Fundar	mental a	ittenuated	by band-stop fil	ter						
Test Note	es 2	EUTtes	sted at	100% duty	/ cycle							
MiCOMLab	DS	dBu∨ 900 700 600 600 300 200 Rat File	BuV Vasona by EMiSoft 30 Jun 10 14:36 20 Vasona by EMiSoft Peak Limit 20 Vertical 20 Verti									
Formally r	mea	sured	emis	sion pea	iks							
Frequency F MHz di	Raw BuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2430.862 6	69.9	3.0	-11.1	61.7	Peak [Scan]	Н	100				N/A	FUND
7307.976	63.2	5.4	-4.9	63.7	Peak Max	208	74.0	-10.3	Pass	RB		
7307.976 4	49.4	5.4	-4.9 49.9 Average Max H 115 208 54.0 -4.1 Pass RB									
Legend: T	TX=T	īransmit	ter Emis	sions; DK	G = Digital Emissi	ons; F	UND=	Funda	mental; V	/B=Wide	band En	rission
F	7 B = F	Restricte	ed Band	I (15.209 L	limits); NRB=N	bn Re	stricted	d Band	, Limit is 2	0dB belov	w funda	imental peak

Test Fr	req.	2462 N	ΛHz					E	ingineer	CSB		
Var	iant	802.11	g; 6 Mb	S				Те	emp (°C)	27.5		
Freq. Ra	nge	1000 N	/Hz - 18	000 MHz				Rel. I	Hum.(%)	32		
Power Set	ting	10 in te	est utility	,			P	ress.	(mBars)	1003		
Ante	enna	ANT=Z	ES1037	0				Duty (Cycle (%)	0.72%		
Test Note	es 1	Fundar	mental a	ttenuated	by band-stop fil	ter						
Test Note	es 2	BJTte	sted at '	100% duty	/ cycle							
MiCOMLab	DS	dBu∨ 900 700 600 800 800 800 800 800 800 800 800 8	o diated En name: k	nissions program le	Vasona by E	MiSo	ft + 	1000 FCC RE Na - fcc	200 E 1-18GHz 15.247 & io	30 Jun Pk Deas Spec Au Frequen 18000.0 Frequen	10 14:59 1) Horizor 2) Vertica eak Limit werage L lebug driss 3m Dist 3m Dist 3m wery: MHz were 8 wh	 11 1 1
Formally r	mea	sured	emiss	ion pea	aks							
Frequency F MHz d	Raw IBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2430.862 7	73.0	3.0	-11.1	64.9	Peak [Scan]	Н	100				NA	FUND
7386.433 6	62.8	5.5	-4.8	63.4	Peak Max	Н	101	83	74.0	-10.6	Pass	RB
4923.873 5	57.0	4.6	-9.1	52.4	Peak Max	Н	181	88	74.0	-21.6	Pass	RB
7386.433 4	48.1	5.5	-4.8	48.8	Average Max	н	101	83	54	-5.2	Pass	RB
4923.873 4	44.6	4.6	-9.1	40.1	Average Max	н	181	88	54	-14.0	Pass	RB
Legend: T	TX=T RB=F	īransmit Restricte	ter Emis ed Band	sions; DK 1 (15.209 L	G = Digital Emissi Limits); NRB = N	ons; F bn Re:	UND= stricted	Funda d Band	amental; W I, Limit is 2	/B = Wide 0dB belov	band En w funda	rission Imental peak

7.5.3 DSSS Radiated Spurious Emissions

Test	Freq.	2441.7	5 MHz					E	ngineer	CSB		
v	ariant	DSSS						Те	emp (°C)	27.5		
Freq. I	Range	1000 N	/Hz - 18	8000 MHz				Rel.	Hum.(%)	32		
Power S	etting	15 in te	est utility	/			P	ress.	(mBars)	1003		
An	tenna	ANT=Z	ES1037	70				Duty (Cycle (%)	2.55 %		
Test N	otes 1	ВЛW	as teste	ed at 100%	6 duty cycle.							
Test No	otes 2	Fundar	mental a	attenuated	by band-stop fil	ter						
MiCOM	abs	dBu∨ 90.0 70.0 80.0 80.0 80.0 80.0 80.0 80.0 8	D diated Er name: k	nissions Oprogram\e	Vasona by E	MiSo	ft	1000 FCC RF a - fcc	200 E 1-18 GHz 15.247 & io	30 Jun 1 PK Deas Spec Au Frequen 180000	10 15:32 1) Vertica eak Limit werage L lebug Jihkarm Dist 3m icy: MHz icy: MHz	 11 1 1
Formally	/ mea	asure	d em	ission	peaks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2430.862	73.3	3.0	-11.1	65.2	Peak [Scan]	Н	100				NA	FUND
7325.109	61.2	5.5	-5.1	61.6	Peak Max	н	101	218	74.0	-12.4	Pass	RB
4883.404	60.7	4.5	-9.3	55.9	Peak Max	V	120	184	74.0	-18.1	Pass	RB
7325.109	49.0	5.5	-5.1	49.3	Average Max	Н	101	218	54	-4.7	Pass	RB
4883.404	58.5	4.5	4.5 -9.3 53.7 Average Max V 120 184 54 -0.3 N/A RB									
4883.404	Cor	rected \	ted Value = 21.8 dBuV 54.0 -32.2 Pass RB									
Legend:	TX=1	Fransmit	ter Emis	sions; DK	G=Digital Emissi	ons; F	UND=	Funda	amental; W	B=Wide	band Er	rission
	RB=F	estricte	ed Banc	i (15.209 L	⊥imits); NRB=N	bn Re	stricted	d Band	l, Limit is 2	0dB belov	<i>iv</i> funda	amental peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.5.4 OOK Radiated Spurious Emissions

Test	Freq.	2446.5	19 MHz					E	ngineer	CSB		
Va	ariant	ООК						Те	mp (°C)	27.5		
Freq. F	Range	1000 N	/Hz-18	000 MHz				Rel. I	-u m.(%)	32		
Power Se	etting	15 in te	est utility	/			Р	ress. ((mBars)	1003		
An	tenna	ANT=Z	'ES1037	0				Duty C	Sycle (%)	13 %		
Test No	otes 1	பாw	as teste	ed at 100%	6 duty cycle.							
Test No	otes 2	Fundar	mental a	ttenuated	by band-stop fil	ter						
MiCOML	abs	dBu√ 90.0 70.0 60.0 50.0 30.0 20.0 80.0 70.0 80.0 80.0 80.0 80.0 80.0 8	D diated En ename: k	nissions Program ve	Vasona by E	MiSo MiSo Ten	nplate: I	1000 FCC RE FCC RE a - fcc	DD 1-186Hz 15.247 & io	30 Jun 1 Pk Meas Spec Au Frequen 180000	10 15:41) Horizor eak Limit werage L lebug Dist 3m Dist 3m cy: MHz nex 8'wh	 nt I I I
Formally	/ mea	asure	d em	ission	peaks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2430.862	68.0	3.0	-11.1	59.9	Peak [Scan]	Н	100				NA	FUND
Legend:	TX=1	ransmit	ter Emis	sions; DK	G = Digital Emissi	ons; F	UND=	Funda	mental; W	B=Wide	band Er	rission
	RB=F	Restricte	ed Band	I (15.209 I	limits); NRB=N	bn Re	stricted	Band	, Limit is 2	OdB belov	w funda	amental peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.5.5 802.11b Radiated Band Edge Emissions

Duty cycle correction factor was applied to spurious emissions in the restricted bands closest to the fundamental transmission.

EUT Operational Duty Cycle: 3.6% Correction Factor = 20 * LOG (3.6 / 100) Correction Factor = -28.87dB Corrected Value = Measured Value (dB) - 28.87 (dB)

Frequency (MHz)	Measured Value (dBuV/m)	Measurement Type	Corrected Value	Margin (dB)	Pass / Fail
2327.93587	59.75	Peak	30.88	-43.12	Pass
2328.31663	51.95	Average	23.08	-30.92	Pass
2487.93086	73.06	Peak	44.19	-29.81	Pass
2487.69940	69.69	Average	40.82	-13.18	Pass

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 118 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.5.6 802.11g Radiated Band Edge Emissions

Duty cycle correction factor was applied to spurious emissions in the restricted bands closest to the fundamental transmission.

EUT Operational Duty Cycle: 0.72% Correction Factor = 20 * LOG (0.72 / 100) Correction Factor = -42.85dB Corrected Value = Measured Value (dB) - 42.85 (dB)

Frequency (MHz)	Measured Value (dBuV/m)	Measurement Type	Corrected Value	Margin (dB)	Pass / Fail
2390.00000	83.00	Peak	40.15	-33.85	Pass
2390.00000	66.66	Average	23.81	-30.19	Pass
2483.63226	82.55	Peak	39.70	-34.30	Pass
2483.50000	64.49	Average	21.64	-32.36	Pass

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 121 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.5.7 DSSS Radiated Band Edge Emissions

Duty cycle correction factor was applied to spurious emissions in the restricted bands closest to the fundamental transmission.

EUT Operational Duty Cycle: 2.55% Correction Factor = 20 * LOG (2.55 / 100) Correction Factor = -31.87 dB Corrected Value = Measured Value (dB) - 31.87 (dB)

Frequency (MHz)	Measured Value (dBuV/m)	Measurement Type	Corrected Value	Margin (dB)	Pass / Fail
2389.23848	68.86	Peak	36.99	-37.01	Pass
2390.00000	62.01	Average	30.14	-23.86	Pass
2483.50000	75.12	Peak	43.25	-30.75	Pass
2483.50000	66.89	Average	35.02	-18.98	Pass

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page:Page 124 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.5.8 OOK Radiated Band Edge Emissions

All emissions below FCC limits when tested at 100% duty cycle. No duty cycle correction factor required to comply with FCC limits.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 126 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.5.9 802.11b RSS-210 Radiated Peak Emissions

Test	Freq.	2412 M	Hz						Engineer	SB		
V	ariant	802.11b	o; 1 Mbs					Т	emp (⁰C)	28		
Freq. F	Range	2400 - 2	2483.5 N	/Hz				Rel.	Hum.(%)	36		
Power S	etting	10 in te	st utility	software				Press.	(mBars)	1001		
An	tenna	ANT=ZI	ES1037	0				Duty	Cycle (%)	100		
Test No	otes 1					-				-		
Test No	otes 2											
MICCM	abs	dBu\//m 1150 1100 1051 1000 950 900 200 200 200 200 File	D Jiated En name: C	nissions W	Vasona by E	MiSot	t esults\E	TSD21	Where Tag	01 Jul 10	Dist 3m Dist 3m Dist 3m Dist 3m Oy: MHz 802.11b	- it: cl
Formally r	meas	ured e	emissi	on peal	ks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2413.221	66.5	7.1	30.4	104.1	Peak [Scan]							
Legend:	TX = T	ransmitt	er Emis	sions; DIG	= Digital Emissio	ons; FL	JND = F	undan	nental; WB	s = Wideba	and Emi	ssion
-	PK = P	eak emi	issions o	of Fundame	ental							

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Tes	t Freq.	2462 M	Hz						Engineer	SB			
١	/ariant	802.11	o; 1 Mbs					т	emp (⁰C)	28			
Freq.	Range	2400 - 2	2483.5 N	/Hz				Rel.	Hum.(%)	36			
Power S	Setting	10 in te	st utility	software				Press.	. (mBars)	1001			
Ar	ntenna	ANT=Z	ES1037	0				Duty	Cycle (%)	100			
Test N	lotes 1												
Test N	lotes 2												
MiC@ML	abs	dBu\//m 1150 1001 1001 960 960 2400 2400	Meas Dist 3m Spec Dist 3m Spec Dist 3m Spec Dist 3m Spec Dist 3m Frequency: MHz 2000 Batimbed Encisions										
Formally	meas	ured e	missic	on peaks	;								
Frequency MHz	Raw dBuV	Cable Loss	able cossAF dBLevel dBuV/mMeasurement TypePolHgt cmAztLimit DegMargin dBuV/mPass dBComments										
2463.738	66.9	7.2	30.6	104.6	Peak [Scan]	V							
Legend:	TX = T	ransmitt	er Emis	sions; DIG	= Digital Emissio	ons; FL	JND = F	undan	nental; WB	= Wideba	and Emis	ssion	
÷	PK = F	eak emi	issions o	of Fundame	ental								

7.5.10 802.11g RSS-210 Radiated Peak Emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.5.11 DSSS RSS-210 Radiated Peak Emissions

Test	Freq.	2441.75	5 MHz						Engineer	SB			
۷	ariant	DSSS						Т	emp (⁰C)	28			
Freq. F	Range	2400 - 2	2483.5 N	/Hz				Rel.	Hum.(%)	36			
Power S	etting	14 in test utility software Press. (mBars) 1								1001	1001		
An	tenna	ANT=ZES10370 Duty Cycle (%)									100		
Test No	otes 1												
Test No	otes 2												
MiCOM	abs	dBu\//m 1150 1001 1001 950 950 950 950 950 950 950 950 950 950	p Jahatt sz name: C	A signal for the second	Vasona by E	MiSof	t hut plate: f		Where Tag	01 Jul 10 Pi + Di Spec I Frequent 2483.5 MPk Emil	D 14:00 -] Horizon k Lmt ebug Dist 3m Dist 3m cy: MHz dsss pwi	- (t)	
Formally r	meas	ured e	emissi	on peal	KS								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
2442.168	70.7	7.2	30.5	108.4	Peak [Scan]	V						PK	
Legend:	TX = T	ransmitt	er Emis	sions; DIG	= Digital Emissio	ons; FL	IND = F	undan	nental; WB	s = Wideba	and Emi	ssion	
-	PK = P	eak emi	ak emissions of Fundamental										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.5.12 OOK RSS-210 Radiated Peak Emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.5.13 RSS-210 Receiver Radiated Emissions

Test	Freq.	2446.5 ⁻	19 MHz			Engineer				CSB			
Va	ariant	OOK						Т	emp (⁰C)	27.5			
Freq. R	lange	1000 M	IHz - 180	00 MHz		Rel. Hum.(%)				32			
Power Se	etting	Not Ap	plicable i	n Receive	Mode	Press. (mBars)				1003			
Ant	tenna	ANT=Z	ES1037	C									
Test No	otes 1	EUT wa	as testec	l at 100% d	luty cycle.								
Test No	otes 2												
MiC@MLa	abs	dBu∨ 900 100 500 300 200 Ra File	D diated En ename: k	hissions Programier	Vasona by E	MiSo Terr bra whe	nplate: f	1000 FCC RE	DD 11.18GHz 15.247 & ic	30 Jun 1 Pk D Pk Meas Spec Au Frequen 180000	10 15:05] Horizor J Vertica eak Limit werage L ebug Dist 3m Dist 3m Dist 3m cy: MHz nex 8'wh	 I I I I	
Frequency	Raw	Cable			Measurement		Hat	Δ zt	Limit	Margin	Pass		
MHz	dBuV	Loss	AF dB	dBuV/m	Туре	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments	
No Receiver Em	nission	s within	6dB of li	mit.									
16841.683	40.2	8.6	1.8	50.5	Peak [Scan]	V	100	0	54.0	-3.5	Pass	Noise	
Legend: T	RANS	= Trans	sient Em	ission; RB	= Restricted Bar	nd; NRI	B = No	n-Restr	icted Banc	l;			
E	BE = Ei	mission	in Restr	cted Band	Nearest Transm	ission	Band E	dge; F	UND = Fur	ndamental	Freq.		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.6 Radiated Spurious Emissions above 1 GHz - Antenna Taoglas

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

	Title:	Zebra Technologies Corporation
		WhereTag IV Module
NJiC MALaha	То:	FCC 47 CFR Part 15, SubPart 15.247
IVIC IVILADS	Serial #:	GBCC04-U1 Rev A
	Issue Date:	7th July 2012
	Page:	Page 137 of 197

Radiated Emission Measurement Setup – Above 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

Specification

FCC §15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Table 1: FCC 15.209 Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty +5.6/ -4.5 dB

Traceability:

The oblight of the second se										
Method	Test Equipment Used									
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312									

7.6.1 802.11b Radiated Spurious Emissions

Test	Freq.	2412 N	Ήz			Engineer				GMH			
V	ariant	802.11	b; 1 Mb;	S				Те	mp (⁰C)	27.5			
Freq. F	Range	1000 N	/Hz - 18	000 MHz		Rel. Hum.(%)				32			
Power S	etting	10 in te	est utility	,			Press. (mBars)			1003			
An	tenna	ANT=T	aoglas			Duty Cycle (%)				3.6 %			
Test No	otes 1	Fundar	mental a	ttenuated	by band-stop fil	ter							
Test No	otes 2	BJTte	EUT tested at 100% duty cycle										
MiCOM	abs	dBu√ 90.0 70.0 60.0 50.0 30.0 20.0 80.0 70000, Rate File	o Jiated En name: k	nissions Vprogram ve	Vasona by E	MiSo	nplate: eretagiv	1000 FCC RE Ta - fcc	1-18GHz 15.247 & io	30 Jun P P P Au Frequen 180000 rss210 an	10 15:48) Horizor) Vertica eak Limit werage L lebug Dist 3m Dist 3m Dist 3m cy: MHz nex 8'wh	nt I I I	
Formally	/ mea	asure	d em	ission	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments	
2396.794	65.0	3.0	-11.2	56.8	Peak [Scan]	Н	100				NA	FUND	
Legend:	TX=1	ransmit	ter Emis	sions; DI	G = Digital Emissi	ons; F	UND=	Funda	mental; W	B=Wide	band Er	rission	
	RB=F	Restricte	ed Band	(15.209 L	limits); NRB=N	bn Re	stricted	d Band	, Limit is 2	0dB belov	w funda	amental peak	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 142 of 197

Test Free	1. 2437 M	ΛHz			Engineer				GMH		
Variar	t 802.11	b; 1 Mb	S				Те	emp (°C)	27.5		
Freq. Rang	e 1000 N	/Hz - 18	000 MHz		Rel. Hum.(%)			32			
Power Settin	g 10 in te	est utility	,			Press. (mBars)			1003		
Antenn	a ANT=1	aoglas			Duty Cycle (%) 3.6 %						
Test Notes	1 Funda	mental a	ttenuated	by band-stop fil	ter						
Test Notes	2 EUT te	JT tested at 100% duty cycle									
MiCOMLabs	dBu∨ 900 700 700 800 800 800 800 800 800 800 8	D diated Er ename: k	nissions torogramte	Vasona by E	MiSo MiSo	ft	1000 FCC RE Na - fcc	۵۵ 1-18GHz 15.247 & io	30 Jun Pk Meas Spec Au Frequen 18000.0	10 15:56 1) Horizor 2) Vertica eak Limit werage L lebug Dist 3m Dist 3m Dist 3m wery: MHz were 8'wh	nt. I I I
Formally me	asured	emise	ion pea	aks							
Frequency Ray MHz dBu	v Cable V Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2430.862 64.	1 3.0	-11.1	55.9	Peak [Scan]	Н	100				NA	FUND
Legend: TX =	= Transmi = Restricto	tter Emis ed Banc	sions; DK 1 (15.209 L	G=Digital Emissi Limits); NRB=N	ons; F bn Re	UND =	Funda d Band	mental; W , Limit is 2	B = Wide OdB belov	band Er w funda	nission amental peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq	2462 N	/Hz					E	ingineer	GMH			
Variant	802.11	b; 1 Mb	s				Те	emp (°C)	27.5			
Freq. Range	1000 N	/Hz - 18	8000 MHz			Rel. Hum.(%)			32			
Power Setting	10 in te	est utility	/			Press. (mBars)			1003			
Antenna	ANT=T	aoglas			Duty Cycle (%) 3.6 %							
Test Notes 1	Fundar	mental a	ittenuated	by band-stop fil	ter							
Test Notes 2	EU⊺te	JT tested at 100% duty cycle										
MiCOMLabs	dBuV 900 700 700 800 800 900 900 800 800 800 800 800 8	D diated Er ename: k	nissions :program/e	Vasona by E	MiSo	nplate:	fcc Re a - fcc	200 E 1-18GHz 15.247 & ic	30 Jun Pk Meas Spec Au Frequer 180000	10 16:00 1) Horizor 2) Vertica eak Limit werage L lebug Dist 3m Dist 3m Dist 3m bist 3m	 1 1 1	
Formally mea	asured	emis	sion pea	aks								
Frequency MHz dBuy	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments	
2430.862 63.4	3.0	-11.1	55.3	Peak [Scan]	V	100				NA	Fund	
Legend: TX =	Transmit	ter Emis	sions; DK	G = Digital Errissi	ons; F	UND=	Funda	mental; V	/B=Wide	band Er	rission	
RB=	Restricte	ed Banc	I (15.209 I	limits); NRB=N	bn Re	stricted	d Band	l, Limit is 2	0dB belo	w funda	amental peak	

7.6.2 802.11g Radiated Spurious Emissions

Test	Freq.	2412 N	ΛHz			Engineer				GMH		
V	ariant	802.11	g; 6 Mb	s		Temp (ºC)				27.5		
Freq. F	Range	1000 N	/Hz - 18	000 MHz				Rel. I	Hum.(%)	32		
Power S	etting	10 in te	est utility	,		Press. (mBars) 1003						
An	tenna	ANT=T	aoglas					Duty (Cycle (%)	0.72		
Test No	otes 1	Fundar	mental a	ttenuated	by band-stop fil	ter						
Test No	otes 2	2 EUT tested at 100% duty cycle										
MiCOM	abs	dBuV Vasona by EMiSoft 30 Jun 10 16:20 21 Vertical Peak Limit Peak Limi										nt il t t
Formally	/ mea	asure	d em	ission	peaks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2396.794	66.4	3.0	-11.2	58.2	Peak [Scan]	н	100				NA	FUND
4823.983	61.9	4.5	-9.4	57.0	Peak Max	V	137	222	74.0	-17.1	Pass	RB
7235.07	53.9	5.4	-5.2	54.2	Peak Max	V	98	300	74.0	-19.9	Pass	RB
4823.983	56.4	4.5	-9.4	51.5	Average Max	V	137	222	54	-2.5	Pass	RB
7235.070	41.0	5.4	-5.2	41.2	Average Max	V	98	300	54	-12.8	Pass	RB
Legend:	TX=1 RB=F	Transmit Restricte	ter Emis ed Banc	sions; DK 1 (15.209 L	G=Digital Emissi Limits); NRB=N	ons; F bn Re	UND=	Funda d Band	mental; W , Limit is 2	/B = Wide OdB belov	band Er w funda	mission amental peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test F	req.	2437 N	/Hz					E	ingineer	GMH		
Var	riant	802.11	g; 6 Mb	s				Те	emp (°C)	27.5		
Freq. Ra	ange	1000 N	/Hz - 18	6000 MHz				Rel. I	Hum.(%)	32		
Power Set	tting	10 in te	est utility	/			P	ress.	(mBars)	1003		
Ante	enna	ANT=T	aoglas					Duty (Cycle (%)	0.72		
Test Note	es 1	Fundar	ndamental attenuated by band-stop filter									
Test Note	es 2	BJTte	Ttested at 100% duty cycle									
MiCOMLak	bs	dBu√ 900 700 700 500 500 300 ~ 200 Rat File	BuV Vasona by EMiSoft 30 Jun 1 BuV Vasona by EMiSoft 30 Jun 1 Bu Pk Wear Spec Au Frequent Bu Vasona by EMiSoft 30 Jun 1 Frequent Bu Vasona by EMiSoft 30 Jun 1 Frequent								10 16:42 1) Horizor 2) Vertica eak Limit werage L ebug chese Sm Dist 3m bist 3m bist 3m	 It I I
Formally r	mea	sured	emise	sion pea	aks							
Frequency F MHz d	Raw /BuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2430.862	67.1	3.0	-11.1	59.0	Peak [Scan]	Н	100				NA	FUND
4873.952	62.8	4.5	-9.3	57.9	Peak Max	V	148	326	74.0	-16.1	Pass	RB
7310.371	51.0	5.4	-4.9	51.5	Peak Max	V	99	282	74.0	-22.5	Pass	RB
4873.952	57.2	4.5	-9.3	52.4	Average Max	V	148	326	54	-1.7	Pass	RB
7310.371	37.0	5.4	-4.9	37.6	Average Max	V	99	282	54	-16.4	Pass	RB
Legend: T	TX=T RB=F	īransmit Restricte	ansmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission stricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak									

Test Fre	1. 2462 M	ЛНz					E	ingineer	GMH		
Varia	nt 802.11	lg; 6 Mb	s				Те	emp (°C)	27.5		
Freq. Rang	e 1000 l	∕IHz - 18	8000 MHz				Rel. I	Hum.(%)	32		
Power Settir	g 10 in t	est utility	/			Р	ress.	(mBars)	1003		
Antenr	a ANT=	Faoglas			Duty Cycle (%) 0.72						
Test Notes	1 Funda	mental a	attenuated	by band-stop fil	lter						
Test Notes	2 EUT te	sted at	100% duty	y cycle							
MiCOMLabs	dBu∨ 900 700 700 800 800 800 800 800 800 800 8	V Vasona by EMiSoft 30 Jun 10 16:55 Vertical Vertical Peak Limit Peak								 nit 1 1	
Formally m	easured	emis	sion pea	aks							
Frequency Ra MHz dBu	v Cable V Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2464.930 67	1 3.0	-11.1	59.0	Peak [Scan]	V	100				NA	FUND
4923.925 61	0 4.6	-9.1	56.4	Peak Max	V	101	132	74.0	-17.6	Pass	RB
4923.925 55	0 4.6	4.6 -9.1 50.5 Average Max V 101 132 54.0 -3.5 Pass RB									
Legend: TX	= Transmi	tter Emis	sions; DK	G = Digital Emissi	ions; F	UND=	Funda	mental; V	/B=Wide	band Er	rission
RB	= Restrict	tricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak									

7.6.3 DSSS Radiated Spurious Emissions

Test	Freq.	2412 N	/Hz			Engineer			ngineer	CSB		
V	ariant	802.11	n; HT-2); 6.5 MC	6			Те	emp (°C)	27.5		
Freq. F	Range	1000 N	/Hz - 18	000 MHz				Rel.	Hum.(%)	32		
Power S	etting	15 in te	est utility	,			P	ress.	(mBars)	1003		
An	tenna	ANT=T	aoglas			Duty Cycle (%) 2.55 %						
Test No	otes 1	ЮТw	as teste	ed at 100%	% duty cycle. Co	prrectio	on fact	or add	ed to peal	< measure	ements.	
Test No	otes 2	Fundar	mental a	ttenuated	by band-stop fil	ter						
Formally	abs	dBu∨ 900 700 600 900 900 900 900 900 900 800 800 800 8	up Vasona by EMISoft								nt li it	
Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass	Comments
	dBuv	LOSS	aB				cm	Deg	aBuv	aB		
2441.733	69.6	3.0	-11.0	61.5	Heak [Scan]		100					
4883.437	65.1	4.5	-9.3	60.3	Heak [Scan]	V	100	υ	54	6.3		RB RB
4883.437	Cor		value =	28.4	dBuV		165	6	54.0	-25.6	Pass	RB
/325.130	51.0	5.5	-5.1	51.4	Heak [Scan]	V	100	0	54	-2.6	Pass	RB
7325.130	Cor		√alue =	19.5	dBuV				54.0	-34.5	Pass	RB
Legend:	TX=1	ransmit	ter Emis	sions; DK	G = Digital Emissi	ons; F	UND=	Funda	mental; W	/B=Wide	band Er	rrission
	RB=F	Restricte	stricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak									

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.6.4 OOK Radiated Spurious Emissions

Test	Freq.	2446.5	519 MHz					В	ngineer	CSB			
V	ariant	ΩОК						Те	mp (℃)	27.5			
Freq. F	Range	1000 N	/Hz - 18	000 MHz				Rel. I	-lum.(%)	32			
Power S	etting	15 in te	est utility	/			Р	ress. ((mBars)	1003			
An	tenna	ANT=T	aoglas					Duty C	Sycle (%)	13 %			
Test No	otes 1	ВЛW	as teste	ed at 100%	% duty cycle. Co	correction factor added to peak measurements.							
Test No	otes 2	Fundar	mental a	ttenuated	by band-stop fil	ter	ſ						
MiC@ML	abs	d8u∨ 300 700 500 500 300 200 Ra File	Jointed En diated En ename: k	+	Vasona by E	MiSo J.J.	nplate: I	1000 FCC RE a - fcc	00 1-18GHz 15.247 & io	30 Jun 1	10 11:45] Horizor J Vertica eak Limit werage L lebug Jins 3m Dist 3m hory: MHz nex 8'wh	 ii t t	
Formally	/ mea	asure	ured emission peaks										
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments	
2446.373	63.4	3.0	-11.0	55.4	Peak [Scan]	Н	100				NA	FUND	
Legend:	TX=1	Transmit	ter Emis	sions; DK	G = Digital Emissi	ons; F	UND=	Funda	mental; W	/B=Wide	band Er	rission	
	RB=F	Restricte	estricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.6.5 802.11b Radiated Band Edge Emissions

All emissions below FCC limits when tested at 100% duty cycle. No duty cycle correction factor required to comply with FCC limits.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 150 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.6.6 802.11g Radiated Band Edge Emissions

Duty cycle correction factor was applied to spurious emissions in the restricted bands closest to the fundamental transmission.

EUT Operational Duty Cycle: 0.72% Correction Factor = 20 * LOG (0.72 / 100) Correction Factor = -42.85dB Corrected Value = Measured Value (dB) - 42.85 (dB)

Frequency (MHz)	Measured Value (dBuV/m)	Measurement Type	Corrected Value	Margin (dB)	Pass / Fail
2390	84.04	Peak	41.1866	-32.8134	Pass
2390	65.28	Average	22.4266	-31.5734	Pass
2483.632	83.51	Peak	40.6566	-33.3434	Pass
2483.5	63.98	Average	21.1266	-32.8734	Pass

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012Page:Page 153 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.6.7 DSSS Radiated Band Edge Emissions

Duty cycle correction factor was applied to spurious emissions in the restricted bands closest to the fundamental transmission.

EUT Operational Duty Cycle: 2.55% Correction Factor = 20 * LOG (2.55 / 100) Correction Factor = -31.87 dB Corrected Value = Measured Value (dB) - 31.87 (dB)

Frequency (MHz)	Measured Value (dBuV/m)	Measurement Type	Corrected Value	Margin (dB)	Pass / Fail
2389.238	74.11	Peak	42.24	-31.76	Pass
2390	67.41	Average	35.54	-18.46	Pass
2483.5	75.78	Peak	43.91	-30.09	Pass
2486.641	67.99	Average	36.12	-17.88	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 156 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.6.8 OOK Radiated Band Edge Emissions

All emissions below FCC limits when tested at 100% duty cycle. No duty cycle correction factor required to comply with FCC limits.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012
Page:Page 158 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.6.9 802.11b Radiated Peak Emissions

Test	t Freq.	2412 M	Hz						Engineer	CSB		
v	/ariant	802.11b	; 1 Mbs					Т	emp (⁰C)	28		
Freq. I	Range	2400 - 2	2483.5 N	/Hz				Rel.	Hum.(%)	36		
Power S	Setting	10 in te	st utility	software				Press.	(mBars)	1001		
Ar	ntenna	ANT=Ta	aoglas					Duty	Cycle (%)	100		
Test N	otes 1											
Test N	otes 2											
MiC@ML	abs	dBu\//m 1150 1101 1051 950 900 2000 2000 Pac	VVm Vasona by EMiSoft 01 Jul 10 12:33 (1) Horizont: + Debug Meas Dist 3m Spec Dist 3m Spec Dist 3m Frequency: MHz 24535 Fadiated Emissions Files/EMISoft - Vasona/Results/ETSD21/Where Fag With Emi/802.11b C									ft:
Formally	meas	ured e	red emission peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2413.360	67.4	7.1	30.4	104.9	Peak [Scan]	V						PK
Legend:	TX = T	ransmitt	er Emis	sions; DIG	= Digital Emissio	ons; FL	IND = F	undan	nental; WB	= Wideba	and Emi	ssion
-	PK = P	eak emi	eak emissions of Fundamental									

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test	Freq.	2462 M	Hz						Engineer	CSB			
۷	ariant	802.11	; 1 Mbs					Т	emp (⁰C)	28			
Freq. F	Range	2400 - 2	2483.5 N	ЛНz				Rel.	Hum.(%)	36			
Power S	etting	10 in te	st utility	software				Press	. (mBars)	1001			
An	tenna	ANT=T	aoglas					Duty	Cycle (%)	100			
Test No	otes 1												
Test No	otes 2												
Micein	abs	dBu\//m 1150 1100 1000 960 960 960 2400 2400	Wim Vasona by EMiSoft 01 Jul 10 12:46 (1) Horizont: + Debug Meas Dist 3m Spec Dist 3m Frequency: MHz 24000 Patiented Schwarz Ander Memplate: RSS-210 PH724004492.5 MHz Filename: C: Program Files/EMiSoft - Vasona/Results/ETSD21/Where Tag IVMPk Emi/802.11b cl									t.	
Formally I	measi	ured e	d emission peaks										
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
2463.878	65.5	7.2	30.6	103.3	Peak [Scan]	V						PK	
Legend:	TX = T	ransmitt	er Emis	sions; DIG	= Digital Emissio	ons; FL	IND = F	undan	nental; WB	= Wideba	and Emis	ssion	
Ť	PK = F	eak emi	issions o	of Fundame	ental								

7.6.10 802.11g Radiated Peak Emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.6.11 DSSS Radiated Peak Emissions

Test	t Freq.	2441.75	5 MHz						Engineer	CSB		
۷	/ariant	DSSS						Т	emp (⁰C)	28		
Freq. I	Range	2400 - 2	2483.5 N	/Hz				Rel.	Hum.(%)	36		
Power S	Setting	14 in te	st utility	software				Press.	(mBars)	1001		
An	ntenna	ANT=Ta	ANT=Taoglas Duty Cycle (%									
Test N	otes 1	•								-		
Test N	otes 2											
MiCOM	abs	dBu\//m 1150 1051 1051 950 950 200 200 850 200 File	BuV/m Vasona by EMiSoft 01 Jul 10 14:18 101 102 102 102 102 102 102 102									-
Formally	meas	ured e	red emission peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2442.446	69.2	7.2	30.5	106.9	Peak [Scan]	V						PK
Legend:	TX = T	ransmitt	er Emiss	sions; DIG	= Digital Emissio	ons; FL	IND = I	Fundam	nental; WB	s = Wideba	and Emi	ssion
Ű,	PK = P	eak emi	eak emissions of Fundamental									

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.6.12 OOK Radiated Peak Emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.6.13 Receiver Radiated Emissions

Test	Freq.	2446.5	19 MHz						Engineer	CSB		
۷	ariant	OOK						Т	emp (⁰C)	27.5		
Freq. I	Range	1000 M	Hz - 180	00 MHz				Rel.	Hum.(%)	32		
Power S	etting	Not Ap	olicable i	n Receive	Mode			Press	. (mBars)	1003		
An	tenna	ANT=Z	ES1037)								
Test N	otes 1	EUT wa	as tested	at 100% o	luty cycle.							
Test N	otes 2											
Formally	abs	48u∨ 900 800 800 800 800 300 200 Ra Ra Ra File	V Vasona by EMiSoft Vasona by E									
Frequency	Raw	Cable										
MHz	dBuV	Loss	AF dB	dBuV/m	Туре	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments
No Receiver Er	mission	s within	6dB of li	mit.								
16841.683	40.2	8.6	1.8	50.5	Peak [Scan]	V	100	0	54.0	-3.5	Pass	Noise
Legend:	TRANS	s = Trans	sient Em	ission; RB	= Restricted Bar	nd; NR	B = No	n-Restr	icted Band	;		
	BE = E	mission	nission in Restricted Band Nearest Transmission Band Edge; FUND = Fundamental Freq.									

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4823.988

53.3

4.5

-9.7

48.1

7.7 Client Mode - Radiated Spurious Emissions above 1 GHz

7.7.1 Dome Antenna - Client Mode: 802.11b

2412 MHz	Engineer	JH
802.11b; 1 Mbs	Temp (ºC)	26.5
1000 MHz - 18000 MHz	Rel. Hum.(%)	35
Reduced PWR to 10	Press. (mBars)	1001
7 dbi Dome	Duty Cycle (%)	100
DC Power @ 3.6V		
	24 12 Mil2 302.11b; 1 Mbs 1000 MHz - 18000 MHz Reduced PWR to 10 7 dbi Dome DC Power @ 3.6V	Zeriz Mitz Engineer 302.11b; 1 Mbs Temp (°C) 1000 MHz - 18000 MHz Rel. Hum.(%) Reduced PWR to 10 Press. (mBars) 7 dbi Dome Duty Cycle (%) DC Power @ 3.6V

Legend:	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission
	RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

٧

202

280

54

-5.9

Pass

PWR 10

Average Max

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq. 243	37 MHz	Engineer	JH
Variant 802	02.11b; 1 Mbs	Temp (⁰C)	26.5
Freq. Range 100	00 MHz - 18000 MHz	Rel. Hum.(%)	35
Power Setting Re	educed PWR to 10	Press. (mBars)	1001
Antenna 7 d	dbi Dome	Duty Cycle (%)	100
Test Notes 1 DC	C Power @ 3.6V		
Test Notes 2			

MicomLabs

Formally measured emission peaks												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
7309.599	56.2	5.4	-5.7	56.0	Peak Max	V	98	12	74.0	-18.0	Pass	
4873.908	56.6	4.5	-9.7	51.4	Peak Max	V	193	332	74.0	-22.6	Pass	
7309.599	50.4	5.4	-5.7	50.2	Average Max	V	98	12	54	-3.8	Pass	
4873.908	52.4	4.5	-9.7	47.2	Average Max	V	193	332	54	-6.8	Pass	
Legend:	TX = T	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission										
1	RB = F	Restricted I	Band (1	5.209 Limit	s); NRB = Non F	Restrict	ed Bar	ıd, Limi	t is 20dB be	elow funda	amental	peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	2462 MHz	Engineer	JH
Variant	802.11b; 1 Mbs	Temp (ºC)	26.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	35
Power Setting	Reduced PWR to 10	Press. (mBars)	1001
Antenna	7 dbi Dome	Duty Cycle (%)	100
Test Notes 1	DC Power @ 3.6V		
Test Notes 2			

MiC@MLabs

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
7386.777	56.8	5.5	-5.5	56.8	Peak Max	V	98	12	74.0	-17.3	Pass	
4923.97606	57.4	4.6	-9.8	52.2	Peak Max	V	136	53	74.0	-21.8	Pass	
7386.777	50.0	5.5	-5.5	50.0	Average Max	V	98	12	54	-4.0	Pass	
4923.976	53.6	4.6	-9.8	48.4	Average Max	V	136	53	54	-5.7	Pass	
Legend:	gend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	RB = F	Restricted I	Band (1	5.209 Limits	s); NRB = Non F	Restrict	ed Bar	nd, Limi	t is 20dB be	elow funda	mental	peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.7.2 Dome Antenna - Client Mode: 802.11g

Test Freq.	2412 MHz	Engineer	JH
Variant	802.11g; 6 Mbs	Temp (ºC)	26.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	35
Power Setting	PWR Reduced to 8	Press. (mBars)	1001
Antenna	7 dbi Dome	Duty Cycle (%)	100
Test Notes 1	DC Power @ 3.6V, Client Mode		
Test Notes 2			

Formally	bs	dBu√/m 80.0 70.0 60.0 50.0 40.0 30.0 30.0 20.0 10.0 1000.0 Radia Filena			/asona by EMi	Soft	e: FCC bccD4 -	10000.0 RE 1-18 whereta	29 PK 44 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	May 12 18: — [1] Honi: — Peak Lir — Peak Lir — Pebug Debug dea s (Hina βr peo Dist 3r quency: Mi o foc 15.247\	47 cal nt: Lt n n Hz datz	
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
7231.423	62.8	5.4	-5.8	62.4	Peak Max	V	98	12	74.0	-11.6	Pass	
4824.008	61.5	4.5	-9.7	56.3	Peak Max	V	157	53	74.0	-17.8	Pass	
7231.423	48.4	5.4	-5.8	48.0	Average Max	V	98	12	54	-6.1	Pass	
4824.008	56.2	4.5	-9.7	51.0	Average Max	V	157	53	54	-3.0	Pass	
Legend:	TX = T	X = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission										
l l	RB = F	Restricted I	Band (1	5.209 Limit	s); NRB = Non F	Restric	ed Bar	nd, Limi	t is 20dB b	elow funda	amental	peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	2437 MHz	Engineer	JH
Variant	802.11g; 6 Mbs	Temp (ºC)	26.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	35
Power Setting	PWR Reduced to 8	Press. (mBars)	1001
Antenna	7 dbi Dome	Duty Cycle (%)	100
Test Notes 1	DC Power @ 3.6V, Client Mode		
Test Notes 2			

MiC[®]MLabs

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
7310.541	56.7	5.4	-5.7	56.5	Peak Max	V	139	9	74.0	-17.5	Pass	
4873.988	60.4	4.5	-9.7	55.2	Peak Max	V	193	331	74.0	-18.8	Pass	
1686.653	50.2	2.5	-14.1	38.7	Peak Max	V	140	141	74	-35.3	Pass	
7310.541	42.2	5.4	-5.7	41.9	Average Max	V	139	9	54	-12.1	Pass	
4873.988	54.9	4.5	-9.7	49.7	Average Max	V	193	331	54	-4.3	Pass	
1686.653	36.8	2.5	-14.1	25.3	Average Max	V	140	141	54	-28.7	Pass	
Legend:	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	RB = F	Restricted	Band (1	5.209 Limits	s); NRB = Non F	estrict	ed Ban	id, Limi	t is 20dB be	elow funda	mental p	beak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	2462 MHz	Engineer	JH
Variant	802.11g; 6 Mbs	Temp (ºC)	26.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	35
Power Setting	PWR Reduced to 8	Press. (mBars)	1001
Antenna	7 dbi Dome	Duty Cycle (%)	100
Test Notes 1	DC Power @ 3.6V, Client Mode		
Test Notes 2			

MiCOMLabs

Formally measured emission peaks Frequency MHz Raw Cable AF Level Measurement Hgt Azt Limit Margin Pass Pol Comments dBuV/m dB dBuV dB Deg dBuV/m /Fail Loss Туре cm -14.2 7387.495 59.8 5.5 -5.5 59.8 Peak Max V 112 12 74.0 Pass 4924.048 60.7 4.6 -9.8 55.4 Peak Max ٧ 135 52 74.0 -18.6 Pass 7387.495 44 8 5.5 -5.5 44.8 V 112 12 54 -92 Pass Average Max 4924.048 53.8 4.6 -9.8 48.5 Average Max ٧ 135 52 54 -5.5 Pass TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission Legend: RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.7.3 Whip Antenna - Client Mode: 802.11b

Test Freq.	2412 MHz	Engineer	JH
Variant	802.11b; 1 Mbs	Temp (ºC)	36.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	PWR 11	Press. (mBars)	1005
Antenna	Whip Antenna 3 dBi	Duty Cycle (%)	100
Test Notes 1	DC Power @ 3.6V, Client		
Test Notes 2			

		dBu√/m 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 10.0 Rad Filer) liated Emis name: k:\p	sions rogram/globa	/asona by EMis	Femplat Ing yat	e: FCC bccD4 -	10000.0 RE 1-18 wheretag	30 I PK V V V V V V V V V V V V V V V V V V	vtay 12 14: – [1] Horiz – [2] Vertii – Peak Lin – Average Debug lear Utstaßr pec Dist 3n quency: MH 0 foc 15.247\	54 ontz sal nit Lt n n	
Formally m	neasur	ed emi	ission	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
4824.008	58.4	4.5	-9.7	53.2	Peak Max	V	133	81	74.0	-20.8	Pass	
4824.008	54.7	4.5	-9.7	49.5	Average Max	V	133	81	54.0	-4.5	Pass	
2396.794	58.7	3.0	-11.7	50.0	Peak [Scan]	V						Fundamental
		TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	2437 MHz	Engineer	JH
Variant	802.11b; 1 Mbs	Temp (⁰C)	36.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	PWR 11	Press. (mBars)	1005
Antenna	Whip Antenna 3 dBi	Duty Cycle (%)	100
Test Notes 1	DC Power @ 3.6V, Client		
Test Notes 2			

Test Freq.	2462 MHz	Engineer	JH
Variant	802.11b; 1 Mbs	Temp (ºC)	36.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	PWR 11	Press. (mBars)	1005
Antenna	Whip Antenna 3 dBi	Duty Cycle (%)	100
Test Notes 1	DC Power @ 3.6V, Client		
Test Notes 2			

MiCOMLabs

Formally measured emission peaks												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
4923.968	57.8	4.6	-9.8	52.6	Peak Max	V	100	214	74.0	-21.4	Pass	PWR=11
7387.23412	49.2	5.5	-5.5	49.2	Peak Max	V	98	110	74.0	-24.8	Pass	
4923.968	55.6	4.6	-9.8	50.4	Average Max	V	100	214	54	-3.6	Pass	
7387.234	40.1	5.5	-5.5	40.1	Average Max	V	98	110	54	-14.0	Pass	
Legend:	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.7.4 Whip Antenna - Client Mode: 802.11g

Test Freq.	2412 MHz	Engineer	JH
Variant	802.11g; 6 Mbs	Temp (ºC)	36.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	PWR 8	Press. (mBars)	1005
Antenna	Whip Antenna 3 dBi	Duty Cycle (%)	100
Test Notes 1	DC Power @ 3.6V, Client		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	2437 MHz	Engineer	JH
Variant	802.11g; 6 Mbs	Temp (ºC)	36.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	PWR 8	Press. (mBars)	1005
Antenna	Whip Antenna 3 dBi	Duty Cycle (%)	100
Test Notes 1	DC Power @ 3.6V, Client		
Test Notes 2			

MiC[®]MLabs

Formally measured emission peaks Frequency MHz Raw Cable AF Level Measurement Azt Limit Margin Pass Hgt Pol Comments dBuV dB dBuV/m Deg dBuV/m dB /Fail Loss Туре cm 4874.228 58.5 4.5 -9.7 53.3 Peak Max V 121 352 74.0 -20.7 Pass 7305.972 53.8 5.4 -5.7 53.5 Peak Max V 192 318 74.0 -20.5 Pass 4874.228 50.1 4.5 -9.7 44.9 V 121 352 -9 1 Pass Average Max 54 7305.972 39.4 5.4 -5.7 39.1 Average Max V 192 318 54 -14.9 Pass 62.6 V 2430.862 3.0 -11.6 54.1 Peak [Scan] Fundamental TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission Legend: RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	2462 MHz	Engineer	JH
Variant	802.11g; 6 Mbs	Temp (⁰C)	36.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	PWR 8	Press. (mBars)	1005
Antenna	Whip Antenna 3 dBi	Duty Cycle (%)	100
Test Notes 1	DC Power @ 3.6V, Client		
Test Notes 2			

MiC[®]MLabs

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
7389.178	52.3	5.5	-5.5	52.3	Peak Max	V	168	90	74.0	-21.7	Pass	
4923.968	59.7	4.6	-9.8	54.5	Peak Max	V	130	23	74.0	-19.5	Pass	
7389.178	38.0	5.5	-5.5	38.0	Average Max	V	168	90	54	-16.0	Pass	
4923.968	52.0	4.6	-9.8	46.8	Average Max	V	130	23	54	-7.2	Pass	
2464.930	63.9	3.0	-11.5	55.3	Peak [Scan]	V						Fundamental
Legend:	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.8 Radiated Spurious Emissions – Below 1 GHz

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Only the highest emissions relative to the limit are listed.

Measurement set up for Radiated Emission Test

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Radiated Spurious Emissions

FCC §15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Table 1: FCC 15.209 Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty +5.6/-4.5 dB

Traceability:

Method	Test Equipment Used
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

7.8.1 <u>Measurement Results for Radiated Spurious Emissions Below 1 GHz - Antenna</u> ZES

Test	Freq.	2441.75 MHz					Engineer			CSB		
V	ariant	Digital Emissions					Temp (ºC)			29		
Freq. f	Range	30 MHz	z - 1000	MHz		Rel. Hum .(%) 37			37	37		
Power S	etting	Max Po	w er DS	SSS Mode		Press. (m Bars) 997						
An	tenna	ANT=Z	ANT=ZES10370									
TestNo	otes 1	EUT w	EUT w as operated in DSSS mode at maximum pow er for w orst case operation									
TestNo	otes 2											
MiC@M	.abs	dBuVim Vasona by EMiSoft 28 Jun 10 14:04 29 Userical 20 40 40 40 40 40 40 40 40 40 40 40 40 40										
Formally	/ mea	asure	d em	ission	peaks							
Frequency M Hz	Raw dBuV	Cable Loss	A F dB	Level dBuV/m	M easurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	M argin dB	Pass /Fail	Comments
30.000	29.2	3.4	-9.2	23.4	Peak [Scan]	V	98	360	40	-16.6	Pass	DIG
98.377	39.1	4.1	-21.5	21.8	Peak [Scan]	V	98	360	43.5	-21.7	Pass	Amb
113.681	33.2	4.3	-17.9	19.6	Peak [Scan]	Н	98	360	43.5	-23.9	Pass	DIG
198.784	33.7	4.7	-18.0	20.5	Peak [Scan]	V	98	360	43.5	-23.0	Pass	DIG
228.223	34.5	4.9	-19.1	20.2	Peak [Scan]	V	98	360	46	-25.8	Pass	DIG
947.369	30.7	7.5	-6.7	31.5	Peak [Scan]	V	98	360	46	-14.5	Pass	DIG
Legend:	DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency											
	NRB =	Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.8.2 <u>Measurement Results for Radiated Spurious Emissions Below 1 GHz - Antenna</u> <u>Taoglas</u>

Test	Freq.	2441.75 MHz					Engineer			CSB		
V	ariant	Digital Emissions				Temp (ºC)			29.5			
Freq. f	Range	30 MHz - 1000 MHz					Rel. Hum .(%)			37		
Power S	etting	DSSS	Mode - I	Maximum F	Pow er	Press. (m Bars) 997						
An	tenna	Where	WhereTag IV 547 ANT=Taoglas									
TestNo	otes 1	EUT w	EUT w as operated in DSSS mode at maximum pow er for w orst case operation									
TestNo	otes 2											
MiC@M	ILabs dBuV/im Vasona by EMiSoft 28 Jun 10 14:18 29 Jun 10 14:18 11 Horizont: 00p + Debug Meas Dist 3m Spec Dist 3m Spec Dist 3m 10 10 10 10 10 10 10 10 10 10											
Formally	mea	sure	d em	ission	peaks							
Frequency M Hz	Raw dBuV	Cable Loss	A F dB	Level dBuV/m	M easurement Type	Pol	H gt c m	Azt Deg	Limit dBuV/m	M argin dB	Pass /Fail	Comments
30.000	29.9	3.4	-9.2	24.1	Peak [Scan]	Н	98	360	40	-15.9	Pass	DIG
97.985	40.0	4.1	-21.6	22.6	Peak [Scan]	V	98	360	43.5	-20.9	Pass	Amb
199.240	34.2	4.8	-17.9	21.1	Peak [Scan]	V	98	360	43.5	-22.4	Pass	DIG
372.013	32.5	5.6	-15.2	22.8	Peak [Scan]	V	98	360	46	-23.2	Pass	DIG
685.287	29.6	6.6	-10.0	26.2	Peak [Scan]	Н	98	360	46	-19.8	Pass	DIG
924.210	30.1	7.4	-7.2	30.3	Peak [Scan]	V	98	360	46	-15.7	Pass	DIG
Legend:	DIG = NRB =	IG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency IRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.9 AC Mains Power Input/Output Port Emissions

No testing performed. EUT does not connect to AC Mains.

Test Procedure

The measurement frequency range extends from 150 kHz to 30 MHz. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Setup

Measurement set up for Conducted Emissions Test

Specification

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μΩ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Limits

Frequency of Emission (MHz)	Conducted Limit (dBµV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

* Decreases with the logarithm of the frequency

Traceability

All conducted emission measurements are traceable to national standards. The uncertainty of measurement at a confidence level of not less than 95 %, with a coverage factor of k=2, in the range 9 kHz – 30 MHz (Average & Quasi-peak) is ± 2.64 dB.

Laboratory Measurement Uncertainty	
Measurement uncertainty	±2.64 dB
Method	Test Equipment Used
Measurements were made per work	0158, 0184, 0193, 0190, 0293, 0307, 156,
instruction WI-EMC-01 'Measurement of	193, 190
Conducted Emissions'	

8 PHOTOGRAPHS

8.1 Conducted RF Measurement Set Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

8.2 Radiated Spurious Emissions Above 1 GHz - ZES Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

8.3 Radiated Spurious Emissions Above 1 GHz - Taoglas Flexible Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

8.4 Radiated Spurious Emissions Above 1 GHz – Dome Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

8.5 Radiated Spurious Emissions Above 1 GHz – Whip Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Zebra Technologies Corporation
WhereTag IV ModuleTo:FCC 47 CFR Part 15, SubPart 15.247Serial #:GBCC04-U1 Rev AIssue Date:7th July 2012Page:Page 194 of 197

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

8.6 Radiated Spurious Emissions Below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

9 TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration Due Date
0070	Power Meter	Hewlett Packard	437B	3125U11552	28 th Nov 12
0117	Power Sensor	Hewlett Packard	8487D	3318A00371	15 th Nov 12
0223	Power Meter	Hewlett Packard	EPM-442A	US37480256	15 th Nov 12
0374	Power Sensor	Hewlett Packard	8485A	3318A19694	29 th Nov 12
0158	Barometer /Thermometer	Control Co.	4196	E2846	8 th Dec 12
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007	2 nd Dec 12
0287	EMI Receiver	Rhode & Schwartz	ESIB40	100201	16 th Nov 12
0338	30 - 3000 MHz Antenna	Sunol	JB3	A052907	8 th Nov 12
0335	1-18 GHz Horn Antenna	EMCO	3117	00066580	7 th Nov 12
0252	SMA Cable	Megaphase	Sucoflex 104	None	N/A
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001	N/A
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002	N/A
0310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	N/A
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001	N/A
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623	N/A

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com