

FCC Test Report

Product Name	WIRELESS GAMING KEYBOARD
Model No.	X807
FCC ID	XW3DKKBX807

Applicant	Dongguan Siliten Electronics CO.,LTD
Address	Sijia Yewu Industrial estate, Shijie Town, Dongguan, China

Date of Receipt	Nov. 13, 2021
Issued Date	Jan. 11, 2022
Report No.	21B0533R-RFUSOTHV06-A
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Report No.: 21B0533R-RFUSOTHV06-A

Test Report

Issued Date: Jan. 11, 2022

Report No.: 21B0533R-RFUSOTHV06-A

Product Name	WIRELESS GAMING KEYBOARD			
Applicant	Dongguan Siliten Electronics CO.,LTD			
Address	Sijia Yewu Industrial estate, Shijie Town, Dongguan, China			
Manufacturer	Dongguan Siliten Electronics CO.,LTD			
Model No.	X807			
FCC ID	XW3DKKBX807			
EUT Rated Voltage	DC 5V (Power by USB) or DC 3.85V (Power by Battery)			
EUT Test Voltage	DC 5V (Power by USB)			
Trade Name	ASUS			
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C			
	ANSI C63.4: 2014, ANSI C63.10: 2013			
Test Result	Complied			

Documented By	: 	April Chen
		(Senior Project Specialist / April Chen)
Tested By	:	Ivan Chuang
		(Senior Engineer / Ivan Chuang)
Approved By	:	Jack Hsu
		(Senior Engineer / Jack Hsu)

TABLE OF CONTENTS

De	Description		
1.	GENERAL INFORMATION	5	
1.1.	EUT Description	5	
1.2.	Tested System Datails		
1.3.	Configuration of Test System		
1.4.	EUT Exercise Software		
1.5.	Test Facility		
1.6.	List of Test Equipment		
1.7.	Uncertainty		
2.	Conducted Emission	11	
2.1.	Test Setup	11	
2.2.	Limits	11	
2.3.	Test Procedure	12	
2.4.	Test Result of Conducted Emission	13	
3.	Radiated Emission	14	
3.1.	Test Setup	14	
3.2.	Limits		
3.3.	Test Procedure	16	
3.4.	Test Result of Radiated Emission	17	
4.	Band Edge	21	
4.1.	Test Setup	21	
4.2.	Limits	21	
4.3.	Test Procedure	22	
4.4.	Test Result of Band Edge	23	
5.	Duty Cycle	27	
5.1.	Test Setup		
5.2.	Test Result of Duty Cycle	28	
6.	EMI Reduction Method During Compliance Testing	29	

Appendix 1: EUT Test Photographs

Appendix 2: Product Photos-Please refer to the file: 21B0533R-Product Photos

Revision History

Report No.	Version	Description	Issued Date
21B0533R-RFUSOTHV06-A	V1.0	Initial issue of report.	Jan. 11, 2022

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	WIRELESS GAMING KEYBOARD
Trade Name	ASUS
Model No.	X807
FCC ID	XW3DKKBX807
Frequency Range	2403-2480MHz
Channel Number	78CH
Type of Modulation	Pi/4 DQPSK
Antenna Type	FPC Antenna
Antenna Gain	Refer to the table "Antenna List"
Channel Control	Auto
USB to Type C	MFR: ASUS, M/N: X807, Shielded, 1.8m
Type C to USB Extender	MFR: ASUS, M/N: X807
Battery	MFR: ASUS, M/N: C11P1707

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	Baishun	BS1C55F3D40A	FPC Antenna	4.51dBi for 2.4GHz

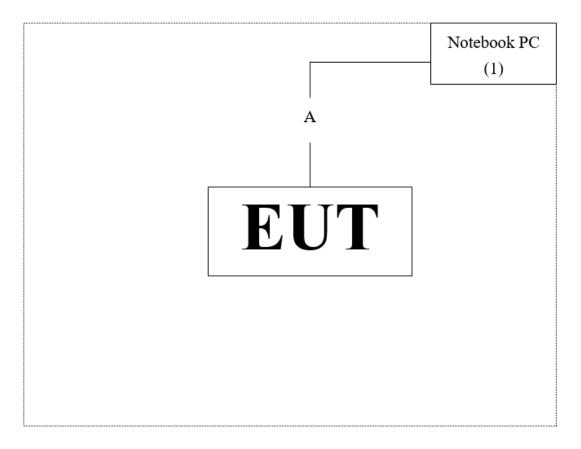
Note: The antenna of EUT is conform to FCC 15.203

Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2403 MHz	Channel 21:	2423 MHz	Channel 41:	2443 MHz	Channel 61:	2463 MHz
Channel 02:	2404 MHz	Channel 22:	2424 MHz	Channel 42:	2444 MHz	Channel 62:	2464 MHz
Channel 03:	2405 MHz	Channel 23:	2425 MHz	Channel 43:	2445 MHz	Channel 63:	2465 MHz
Channel 04:	2406 MHz	Channel 24:	2426 MHz	Channel 44:	2446 MHz	Channel 64:	2466 MHz
Channel 05:	2407 MHz	Channel 25:	2427 MHz	Channel 45:	2447 MHz	Channel 65:	2467 MHz
Channel 06:	2408 MHz	Channel 26:	2428 MHz	Channel 46:	2448 MHz	Channel 66:	2468 MHz
Channel 07:	2409 MHz	Channel 27:	2429 MHz	Channel 47:	2449 MHz	Channel 67:	2469 MHz
Channel 08:	2410 MHz	Channel 28:	2430 MHz	Channel 48:	2450 MHz	Channel 68:	2470 MHz
Channel 09:	2411 MHz	Channel 29:	2431 MHz	Channel 49:	2451 MHz	Channel 69:	2471 MHz
Channel 10:	2412 MHz	Channel 30:	2432 MHz	Channel 50:	2452 MHz	Channel 70:	2472 MHz
Channel 11:	2413 MHz	Channel 31:	2433 MHz	Channel 51:	2453 MHz	Channel 71:	2473 MHz
Channel 12:	2414 MHz	Channel 32:	2434 MHz	Channel 52:	2454 MHz	Channel 72:	2474 MHz
Channel 13:	2415 MHz	Channel 33:	2435 MHz	Channel 53:	2455 MHz	Channel 73:	2475 MHz
Channel 14:	2416 MHz	Channel 34:	2436 MHz	Channel 54:	2456 MHz	Channel 74:	2476 MHz
Channel 15:	2417 MHz	Channel 35:	2437 MHz	Channel 55:	2457 MHz	Channel 75:	2477 MHz
Channel 16:	2418 MHz	Channel 36:	2438 MHz	Channel 56:	2458 MHz	Channel 76:	2478 MHz
Channel 17:	2419 MHz	Channel 37:	2439 MHz	Channel 57:	2459 MHz	Channel 77:	2479 MHz
Channel 18:	2420 MHz	Channel 38:	2440 MHz	Channel 58:	2460 MHz	Channel 78:	2480 MHz
Channel 19:	2421 MHz	Channel 39:	2441 MHz	Channel 59:	2461 MHz		
Channel 20:	2422 MHz	Channel 40:	2442 MHz	Channel 60:	2462 MHz		

- 1. The EUT is a WIRELESS GAMING KEYBOARD with built-in Bluetooth V5.0 and 2.4G wireless transceiver, this report for 2.4G wireless.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. These tests are conducted on a sample of the equipment for the purpose of demonstrating compliance of transmitter with Part 15 Subpart C Paragraph 15.249 for spread spectrum devices.
- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode	Mode 1: Transmit
	Mode 2: Normal mode


1.2. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Prod	uct	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	DELL	Latitude E5440	B6TYTZ1	N/A

Sign	al Cable Type	Signal cable Description		
A	USB Cable	Shielded, 1.8m		

1.3. Configuration of Test System

1.4. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.3.
- (2) Execute "FCC Test V1.1.2" program on the Notebook PC.
- (3) Configure the test mode and the test channel
- (4) Start the continuous transmit.
- (5) Verify that the EUT works properly.

1.5. Test Facility

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual
Conducted Franciscient	Temperature (°C)	10~40 °C	21.3 °C
Conducted Emission	Humidity (%RH)	10~90 %	67.7 %
D 11 / 1E 11	Temperature (°C)	10~40 °C	24.8 °C
Radiated Emission	Humidity (%RH)	10~90 %	63.0 %
	Temperature (°C)	10~40 °C	22 °C
Conductive	Humidity (%RH)	10~90 %	55 %

USA : FCC Registration Number: TW0033

Canada : IC Registration Number: 26930

Site Description : Accredited by TAF

Accredited Number: 3023

Test Laboratory : DEKRA Testing and Certification Co., Ltd

Address : No. 5-22, Ruishukeng Linkou District, New Taipei City,

24451, Taiwan

Performed Location : No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City

333411, Taiwan, R.O.C.

Phone number : +886-3-275-7255

Fax number : +866-3-327-8031

Email address : info.tw@dekra.com

Website : http://www.dekra.com.tw

1.6. List of Test Equipment

For Conduction measurements /SH1

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
X	EMI Test Receiver	R&S	ESR7	101601	2021.06.19	2022.06.18
X	Two-Line V-Network	R&S	ENV216	101306	2021.04.08	2022.04.07
X	Two-Line V-Network	R&S	ENV216	101307	2021.05.04	2022.05.03
X	Coaxial Cable	DEKRA	RG400 BNC	RF001	2021.05.24	2022.05.23

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: AUDIX e3 V9

For Conducted measurements /SH2

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
X	Spectrum Analyzer	R&S	FSV30	103466	2020.12.28	2021.12.27
X	Peak Power Analyzer	KEYSIGHT	8900B	MY51000539	2021.06.07	2022.06.06
X	Power Sensor	KEYSIGHT	N1923A	MY59240002	2021.05.17	2022.05.16
X	Power Sensor	KEYSIGHT	N1923A	MY59240003	2021.05.17	2022.05.16

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version : DEKRA Conduction Test System V9.0.5.

For Radiated measurements /966-1

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
X	Loop Antenna	AMETEK	HLA6121	56736	2021.04.14	2022.04.13
X	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-675	2021.08.11	2022.08.10
X	Horn Antenna	ETS-Lindgren	3117	00201259	2021.11.09	2022.11.08
X	Horn Antenna	Com-Power	AH-840	101087	2021.06.18	2022.06.17
X	Pre-Amplifier	EMCI	EMC001330	980254	2021.01.20	2022.01.19
X	Pre-Amplifier	EMCI	EMC051835SE	980312	2021.02.24	2022.02.23
X	Pre-Amplifier	EMCI	EMC05820SE	980362	2021.08.24	2022.08.23
X	Pre-Amplifier	EMCI	EMC184045SE	980369	2021.04.27	2022.04.26
X	Filter	MICRO TRONICS	BRM50702	G251	2021.09.16	2022.09.15
	Filter	MICRO TRONICS	BRM50716	G188	2021.09.16	2022.09.15
X	EMI Test Receiver	R&S	ESR	102792	2020.12.15	2021.12.14
X	Spectrum Analyzer	R&S	FSV3044	101113	2021.02.04	2022.02.03
X	Mircoflex Cable	HUBER SUHNER	SUCOFLEX 102	MY3380/2	2021.08.30	2022.08.29
X	Coaxial Cable	SGH, EMCI, SUHNER	HA800, SGH18, SUCOFLEX 106,	HY2108-003C	2021.03.03	2022.03.02
			EMC106			

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version : AUDIX e3 V9.

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document, and is described in each test chapter of this report.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test item	Uncertainty		
Conducted Emission	±3.42 dB		
Radiated Emission	Under 1GHz	Above 1GHz	
Radiated Emission	±4.06 dB	±3.73 dB	
Band Edge	Under 1GHz	Above 1GHz	
Band Edge	±4.06 dB	±3.73 dB	
Duty Cycle	±2.31 ms		

Page: 10 of 29

2. Conducted Emission

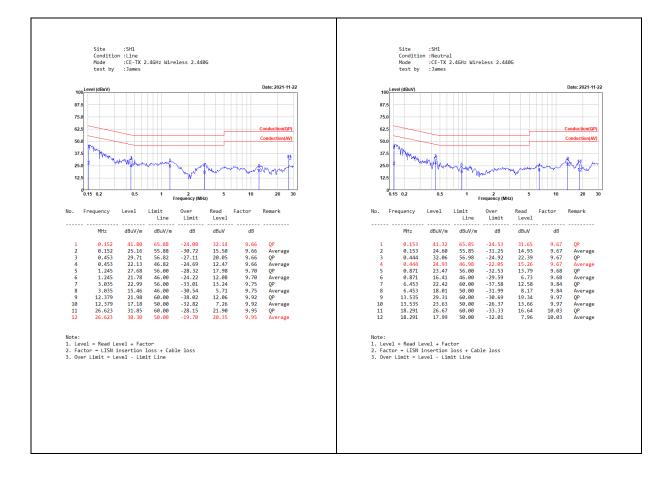
2.1. Test Setup

2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBμV) Limit					
Frequency	Limits				
MHz	QP	AV			
0.15 - 0.50	66-56	56-46			
0.50-5.0	56	46			
5.0 - 30	60	50			

Remarks: In the above table, the tighter limit applies at the band edges.

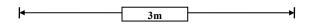
2.3. Test Procedure

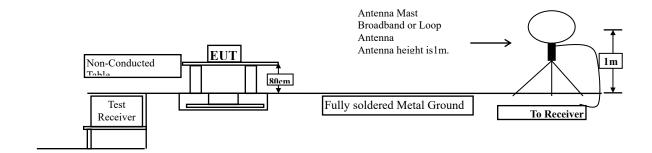

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

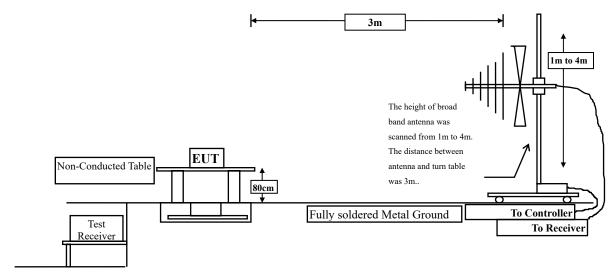
Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.4. Test Result of Conducted Emission

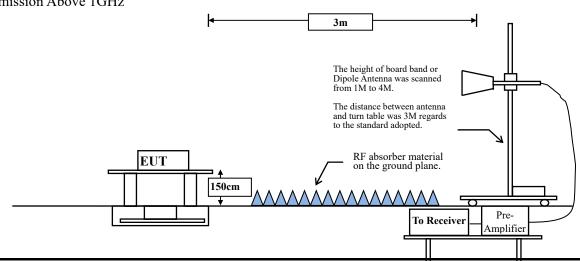




3. Radiated Emission


3.1. Test Setup

Radiated Emission Under 30MHz



Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

Page: 14 of 29

3.2. Limits

> Fundamental and Harmonics Emission Limits

FCC Part 15 Subpart C Paragraph 15.249 Limits						
Frequency	Field Strength of Fundamental		Field Strength of Harmonics			
MHz	$(mV/m @3m)$ $(dB\mu V/m$		(uV/m @3m)	(dBμV/m		
		@3m)		@3m)		
902-928	50	94	500	54		
2400-2483.5	50	94	500	54		
5725-5875	50	94	500	54		
24000-24250	250	108	2500	68		

Remarks : 1. RF Voltage $(dB\mu V/m) = 20 log RF Voltage (uV/m)$

2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits					
Frequency MHz	Field strength	Measurement distance (meter)			
1/1112	(microvolts/meter)	()			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30	30	30			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

3.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested compliance to FCC 47CFR 15.249 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

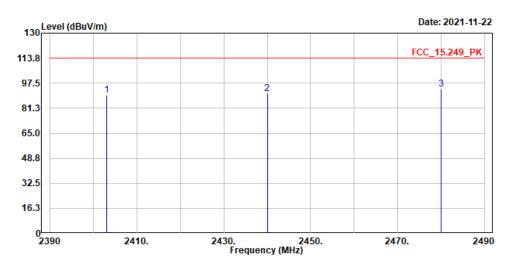
Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

3.4. Test Result of Radiated Emission

Product : WIRELESS GAMING KEYBOARD
Test Item : Fundamental Radiated Emission


Test Date : 2021/11/22

Test Mode : Mode 1: Transmit

Site :966-1

Condition :3m ,Horizontal Mode :TX_Fundamental_X

TEST BY : Caster

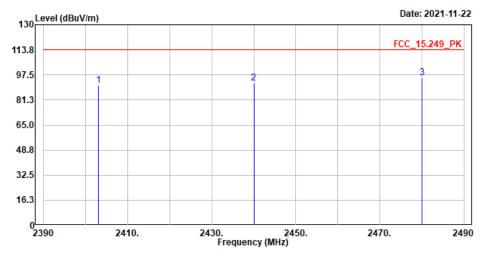
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2403.000	89.67	113.97	-24.30	78.36	11.31	Peak
2	2440.000	90.88	113.97	-23.09	79.60	11.28	Peak
3	2480.000	93.69	113.97	-20.28	82.41	11.28	Peak

Note:

- 1. Level = Read Level + Factor
- 2. Factor = Antenna- Factor + Cable Loss Preamp Factor
- 3. Over Limit = Level Limit Line

Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)
2403	89.67	-24.365	65.305	-28.665	93.970
2440	90.88	-24.365	66.515	-27.455	93.970
2480	93.69	-24.365	69.325	-24.645	93.970

- 1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 5.


Test Date : 2021/11/22

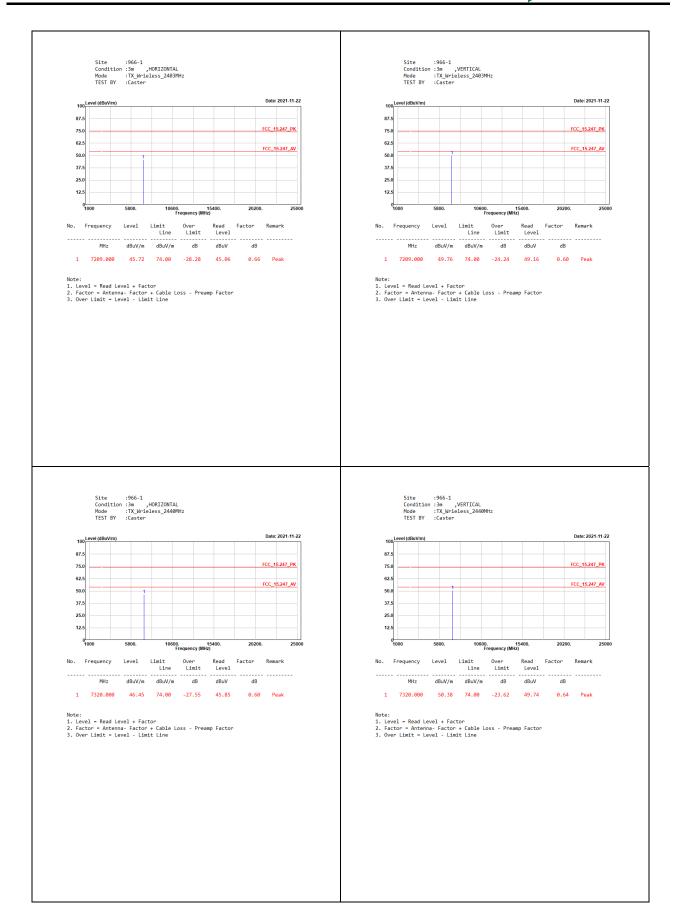
Test Mode : Mode 1: Transmit

Site :966-1

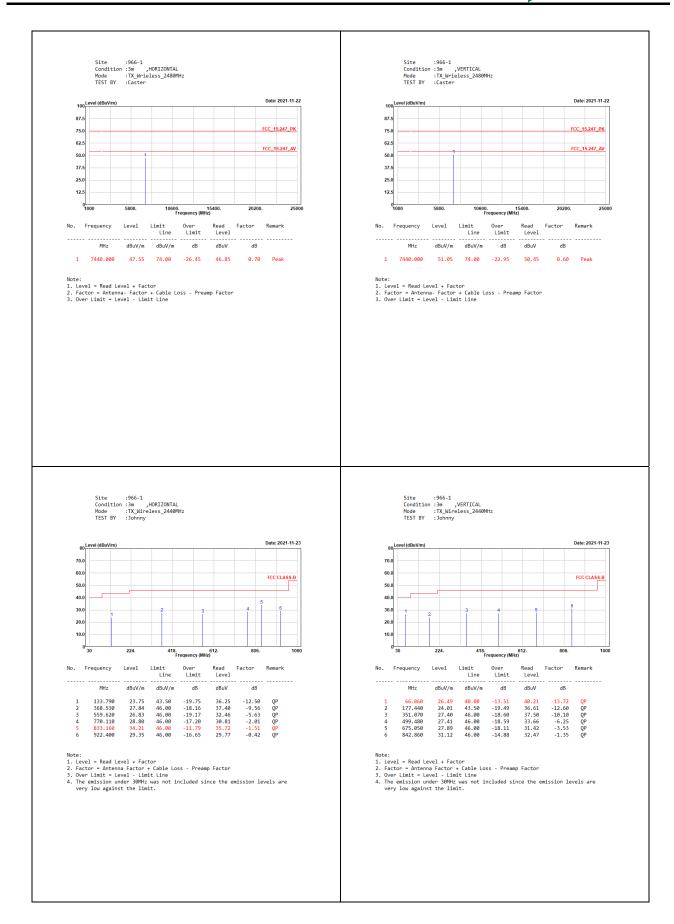
Condition :3m ,Vertical Mode :TX_Fundamental_X

TEST BY : Caster

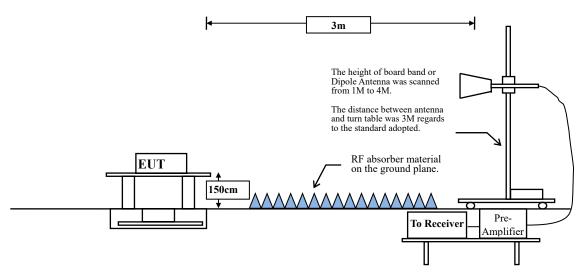
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2403.000	90.56	113.97	-23.41	79.83	10.73	Peak
2	2440.000	92.28	113.97	-21.69	81.36	10.92	Peak
3	2480.000	95.66	113.97	-18.31	84.44	11.22	Peak


Note:

- 1. Level = Read Level + Factor
- 2. Factor = Antenna- Factor + Cable Loss Preamp Factor
- 3. Over Limit = Level Limit Line


Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)
2403	90.56	-24.365	66.195	-27.775	93.970
2440	92.28	-24.365	67.915	-26.055	93.970
2480	95.66	-24.365	71.295	-22.675	93.970

- 1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 5.



4. Band Edge

4.1. Test Setup

RF Radiated Measurement:

4.2. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits					
Frequency MHz	Field strength	Measurement distance (meter)			
1,1112	(microvolts/meter)	(11001)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30	30	30			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

4.3. Test Procedure

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

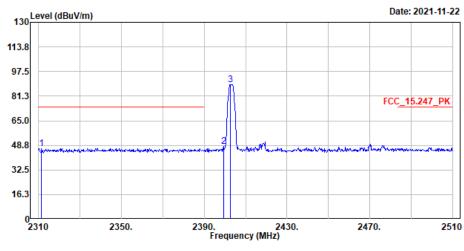
Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

The bandwidth setting below 1GHz and above 1GHz on the field strength meter is 120 kHz and 1MHz, respectively.

4.4. Test Result of Band Edge

Product : WIRELESS GAMING KEYBOARD
Test Item : Fundamental Radiated Emission

Test Date : 2021/11/22


Test Mode : Mode 1: Transmit (2403MHz)

Site :966-1

Condition :3m ,Horizontal

Mode :TX_2.4G wrieless_2403Mhz

TEST BY : Caster

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2311.400	46.77	74.00	-27.23	35.80	10.97	Peak
2	2399.400	47.85	74.00	-26.15	36.53	11.32	Peak
3	2402.600	88.86			77.55	11.31	Peak

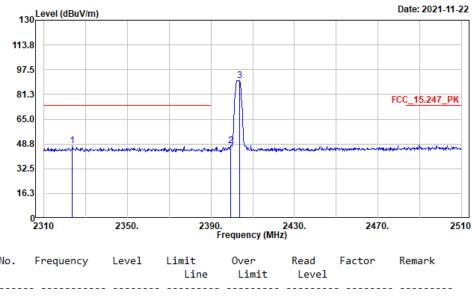
Note:

- 1. Level = Read Level + Factor
- 2. Factor = Antenna- Factor + Cable Loss Preamp Factor
- 3. Over Limit = Level Limit Line

Emaguamay	Peak	Duty Cycle	Average		Average Limit	
Frequency	Measurement	Factor	Measurement	Margin (dB)	$(dB\mu V/m)$	Result
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$			
2311.4	46.77	-24.365	22.405	-31.595	54.000	Pass
2399.4	47.85	-24.365	23.485	-30.515	54.000	Pass
2402.6	88.86	-24.365	64.495			Pass

- 1. Average Measurement=Peak Measurement + Duty Cycle Factor
- 2. The Duty Cycle is refer to section 5.

Test Date : 2021/11/22


Test Mode : Mode 1: Transmit (2403MHz)

Site :966-1

Condition :3m ,VERTICAL

Mode :TX_2.4G wrieless_2403Mhz

TEST BY : Caster

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2323.600	47.71	74.00	-26.29	37.03	10.68	Peak
2	2399.600	47.81	74.00	-26.19	37.09	10.72	Peak
3	2403.600	90.19			79.46	10.73	Peak

Note:

- Level = Read Level + Factor
- 2. Factor = Antenna- Factor + Cable Loss Preamp Factor
- 3. Over Limit = Level Limit Line

Eraguanav	Peak	Duty Cycle	Average		Average Limit	
Frequency	Measurement	Factor	Measurement	Margin (dB)	$(dB\mu V/m)$	Result
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$			
2323.6	47.71	-24.365	23.345	-30.655	54.000	Pass
2399.6	47.81	-24.365	23.445	-30.555	54.000	Pass
2403.6	90.19	-24.365	65.825			Pass

- 1. Average Measurement=Peak Measurement + Duty Cycle Factor
- 2. The Duty Cycle is refer to section 5.

Test Date : 2021/11/22

Test Mode : Mode 1: Transmit (2480MHz)

Site :966-1

Condition :3m ,HORIZONTAL

Mode :TX_2.4G wrieless_2480Mhz

TEST BY :Caster

No.	Frequency	Level			Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	2480.600	92.74			57.16	35.58	Peak
2	2483.600	49.28	74.00	-24.72	13.70	35.58	Peak

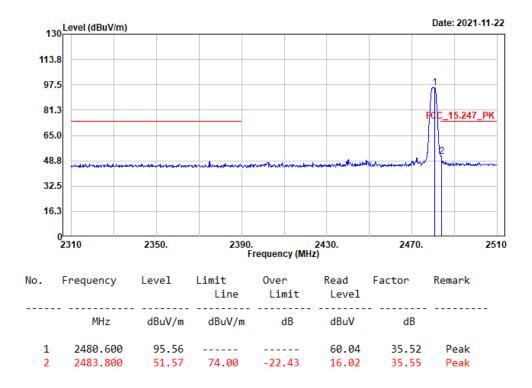
Note:

- 1. Level = Read Level + Factor
- 2. Factor = Antenna- Factor + Cable Loss Preamp Factor
- 3. Over Limit = Level Limit Line

Frequency (MHz)	Peak Measurement (dBμV/m)	Duty Cycle Factor (dB)	Average Measurement $(dB\mu V/m)$	Margin (dB)	Average Limit $(dB\mu V/m)$
2480.6	92.74	-24.365	68.375	-	
2483.6	49.28	-24.365	24.915	-29.085	54.000

- 1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 5.

Test Date : 2021/11/22


Test Mode : Mode 1: Transmit (2480MHz)

Site :966-1

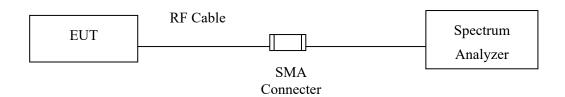
Condition :3m ,VERTICAL

Mode :TX_2.4G wrieless_2480Mhz

TEST BY :Caster

Note:

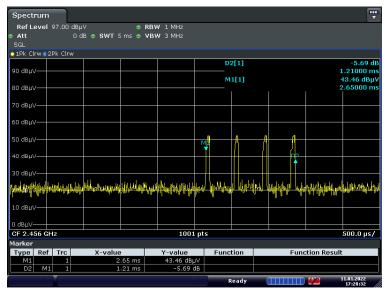
- 1. Level = Read Level + Factor
- 2. Factor = Antenna- Factor + Cable Loss Preamp Factor
- 3. Over Limit = Level Limit Line


Frequency (MHz)	Peak Measurement (dBμV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBμV/m)
2480.6	95.56	-24.365	71.195		
2483.8	51.57	-24.365	27.205	-26.795	54.000

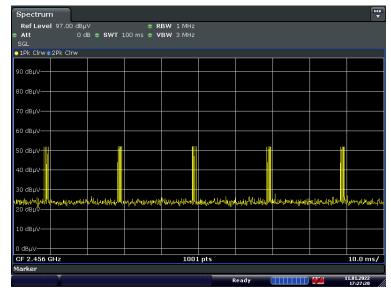
- 1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor
- 2. The Duty Cycle is refer to section 5.

5. Duty Cycle

5.1. Test Setup



5.2. Test Result of Duty Cycle


Product : WIRELESS GAMING KEYBOARD

Test Item : Duty Cycle Data

Test Mode : Mode 2: Normal mode

Date: 11.JAN.2022 17:28:33

Date: 11.JAN.2022 17:27:21

Time on of 100ms= 1.21ms*5= 6.05ms

Duty Cycle=6.05ms / 100ms=0.0605

Duty Cycle correction factor= 20 LOG 0.0605= -24.365dB

Duty Cycle correction factor -24.365 dB

6. EMI Reduction Metho	d During Co	mpliance Testing
------------------------	-------------	------------------

No modification was made during testing.