

TEST REPORT

Product Name: Conbee III
FCC ID: XVV-CONBEE3
Trademark: Phoscon
Model Number: BN-600115
Prepared For: dresden elektronik ingenieurtechnik gmbh
Address: Enno-Heidebroek-Str 12 Dresden, 01237 Germany
Manufacturer: dresden elektronik ingenieurtechnik gmbh
Address: Enno-Heidebroek-Str 12 Dresden, 01237 Germany
Prepared By: Shenzhen CTB Testing Technology Co., Ltd.
Address: 1&2/F., Building A, No.26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date: Jul. 25, 2023
Sample tested Date: Jul. 25, 2023 to Aug. 21, 2023
Issue Date: Aug. 21, 2023
Report No.: CTB230821010RHX
Test Standards: FCC 47 CFR Part2(2.1093), FCC 47 CFR Part1(1.1310)
FCC 47 CFR Part1(1.1307), ANSI/IEEE C95.1-2019
IEEE 1528-2013 & Published RF Exposure KDB Procedures
Test Results: PASS
Remark: This is SAR test report.

Compiled by:

Zhang Mao cheng

Reviewed by:

Martin Feng

Approved by:

Rita Xiao / Director

Note: If there is any objection to the inspection results in this report, please submit a written report to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. "*" indicates the testing items were fulfilled by subcontracted lab. "#" indicates the items are not in CNAS accreditation scope.

Contents

	Page
1 COVER PAGE.....	1
CONTENTS	2
1. VERSION.....	4
2. PRODUCT INFORMATION AND TEST SETUP.....	5
2.1 PRODUCT INFORMATION	5
3 EQUIPMENT USED DURING TEST	6
3.1 EQUIPMENT LIST	6
3.2 TEST EQUIPMENT CALIBRATION	7
4 SAR INTRODUCTION.....	8
4.1 INTRODUCTION.....	8
4.2 SAR DEFINITION.....	8
5 SAR MEASUREMENT SETUP.....	9
5.1 SAR MEASUREMENT SETUP	9
5.2 DASY5 E-FIELD PROBE SYSTEM	10
5.3 PROBE SPECIFICATION.....	10
5.4 ISOTROPIC E-FIELD PROBE.....	10
5.5 PHANTOMS	11
5.6 DEVICE HOLDER.....	11
6 SAR TEST PROCEDURE	13
6.1 SCANNING PROCEDURE	13
6.2 EXTRAPOLATION	16
6.3 EAR REFERENCE POINT	16
6.4 DEVICE REFERENCE POINTS	16
6.5 TEST CONFIGURATION – POSITIONING FOR CHEEK / TOUCH	16
6.6 TEST CONFIGURATION – POSITIONING FOR EAR / 15 °TILT	18
6.7 TEST POSITION – BODY CONFIGURATIONS.....	18
7 EXPOSURE LIMIT	19
7.1 UNCONTROLLED ENVIRONMENT	19
7.2 CONTROLLED ENVIRONMENT.....	19
8 SYSTEM AND LIQUID VALIDATION	20
8.1 SYSTEM VALIDATION.....	20
8.2 LIQUID VALIDATION.....	22
8.3 TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	23
9 SYSTEM VERIFICATION PLOTS	25
10 TYPE A MEASUREMENT UNCERTAINTY.....	26
11 OUTPUT POWER VERIFICATION	28
11.1 TEST CONDITION:	28
11.2 TEST PROCEDURES:	28
12 EXPOSURE CONDITIONS CONSIDERATION	30

13	RF EXPOSURE.....	错误!未定义书签。
14	SAR TEST RESULTS	31
14.1	TEST CONDITION:	31
14.2	GENERALLY TEST PROCEDURES:.....	31
14.3	SAR SUMMARY TEST RESULT:	32
14.4	MEASUREMENT VARIABILITY CONSIDERATION	33
14.5	SIMULTANEOUS TRANSMISSION SAR ANALYSIS.	34
15	SAR MEASUREMENT REFERENCE	35
16	MAXIMUM SAR MEASUREMENT PLOTS	36
17	CALIBRATION REPORTS-PROBE AND DIPOLE	39
18	SAR SYSTEM PHOTOS.....	40
19	SETUP PHOTOS	41
20	EUT PHOTOS.....	42

1. Version

Report No.	Issue Date	Description	Approved
CTB230821010RHX	Aug. 21, 2023	Original	Valid

2. PRODUCT INFORMATION AND TEST SETUP

2.1 Product Information

Model(s):	BN-600115
Model Description:	N/A
Bluetooth Version:	Bluetooth 5.0
Hardware Version:	0
Software Version:	0
Type of Modulation:	Bluetooth: 2402~2480MHz Zigbee: 2405-2480MHz
Max. RF output power:	BIE: 1M: 8.67dBm 2M: 8.867dBm Zigbee: 8.815dBm
Max.SAR:	0.51 W/Kg 1g Body Tissue
Type of Modulation:	Bluetooth: GFSK Zigbee: O-QPSK
Antenna installation:	Internal antenna
Antenna Gain:	BT : 3.73dBi Zigbee: 3.73dBi
Ratings:	DC 5V by notebook

3 Equipment Used during Test

3.1 Equipment List

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration Date	Calibration Due
Data acquisition electronics	SPEAG	DAE4	881	2023/7/14	2024/7/13
Dosimetric E-field Probes	SPEAG	ES3DV3	3089	2023/7/14	2024/7/13
Dipole	SPEAG	D2450V2	801	2022/9/19	2023/9/18
Communication test set	R&S	CMW500	108058	2023/7/5	2024/7/4
Network analyzer	R&S	ZVB 8	100348	2022/9/20	2023/9/19
Dielectric Assessment Kit	SPEAG	DAK-3.5	/	/	/
power meter	Agilent	E4419B	N10149	2023/7/5	2024/7/4
MXA signal analyzer	Agilent	N5181A	MY49060920	2023/7/5	2024/7/4
RF Power Meter	Agilent	E9301A	MY41495675	2023/7/5	2024/7/4
Amplifier 300-4200MHz	SHW	SHWPA-00300420P30 40-S	22110401	2022/11/17	2023/11/16
Amplifier 2-8GHz	SHW	SHWPA-02000800P30 35-S	202211040001	2022/11/17	2023/11/16
Coupler 2-18GHz	SHW	SHWCP-02001800-20S	202211090001	2022/11/17	2023/11/16
Coupler 500-2GHz	SHW	SHWCP-00500200-20N	202211090001	2022/11/17	2023/11/16

3.2 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

FCC Test Firm Registration Number: 292923

IC Registered No.:25587

CAB identifier: CN0098

4 SAR Introduction

4.1 Introduction

This measurement report shows compliance of the EUT with ANSI/IEEE C95.1-2006 and FCC 47 CFR Part2 (2.1093).The test procedures, as described in IEEE 1528-2013 Standard for IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques(300MHz~6GHz) and Published RF Exposure KDB Procedures

4.2 SAR Definition

- SAR : Specific Absorption Rate
- The SAR characterize the absorption of energy by a quantity of tissue
- This is related to a increase of the temperature of these tissues during a time period.

$$DAS = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

$$DAS = \frac{\sigma E^2}{\rho}$$

$$DAS = c_h \left. \frac{dT}{dt} \right|_{t=0}$$

SAR definition

$$SAR = \frac{\sigma E^2}{\rho}$$

- SAR : Specific Absorption Rate
 - σ : Liquid conductivity
 - $\epsilon_r = \epsilon' - j\epsilon''$ (complex permittivity of liquid)
 - $\sigma = \frac{\epsilon'' \omega}{\epsilon_0}$
 - ρ : Liquid density
 - $\rho = 1000 \text{ g/L} = 1000 \text{ Kg/m}^3$

where:

- σ = conductivity of the tissue (S/m)
- ρ = mass density of the tissue (kg/m³)
- E = rms electric field strength (V/m)

5 SAR Measurement Setup

5.1 SAR MEASUREMENT SETUP

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

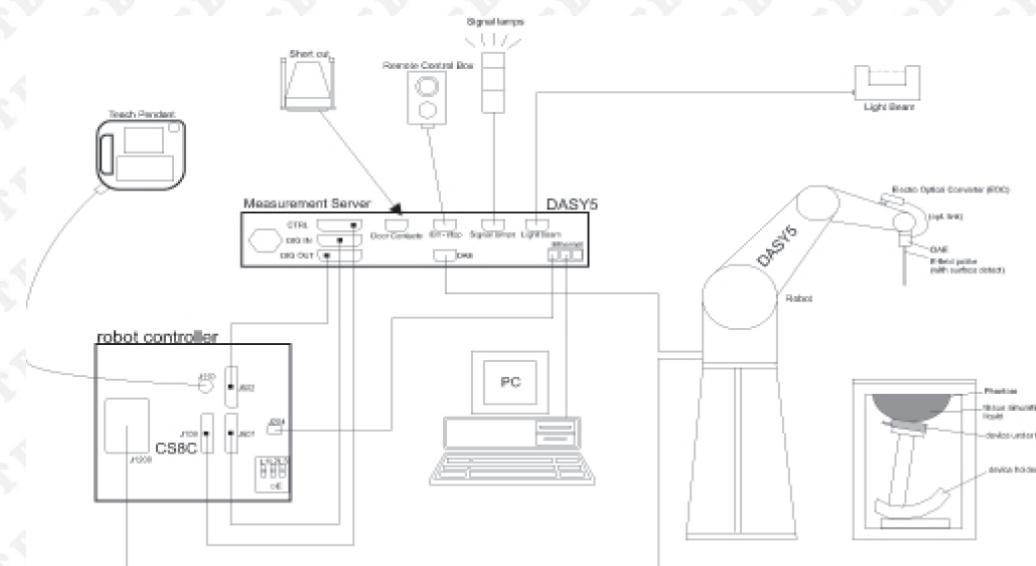
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD- conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE.

The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.


DASY5 software and SEMCAD data evaluation software.

Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc. The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

5.2 DASY5 E-field Probe System

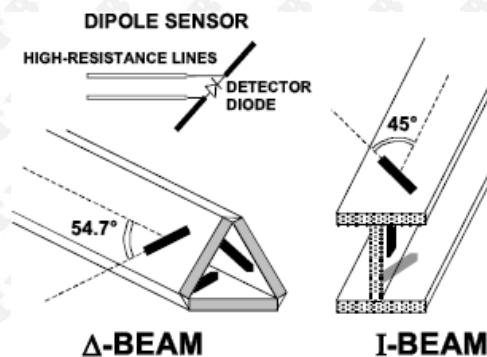
The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

5.3 Probe Specification

Construction Symmetrical design with triangular core
Interleaved sensors
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 4 MHz – 10 GHz
Linearity: ± 0.2 dB (30 MHz – 10 GHz)
Directivity ± 0.1 dB in TSL (rotation around probe axis)
 ± 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range 10 μ W/g – >100 W/kg
Linearity: ± 0.2 dB (noise: typically <1 μ W/g)


Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	General dosimetry up to 10 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

5.4 Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

5.5 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

5.6 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

6 SAR Test Procedure

6.1 Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. $\pm 5\%$.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x5 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR. During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x5 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x5 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [W/kg], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity:	Normi, ai0, ai1, ai2
	Conversion factor:	ConvFi
	Diode compression point:	Dcp <i>i</i>
Device parameters:	Frequency:	f
Media parameters:	Crest factor:	cf
	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcpi}$$

Vi: compensated signal of channel (i = x, y, z) Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter) dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$E - \text{fieldprobes} : \quad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes} : \quad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

Vi: compensated signal of channel (i = x, y, z) Normi: sensor sensitivity of channel (i = x, y, z), [mV/(V/m)²] for E-field Probes ConvF: sensitivity enhancement in solution

a_{ij}: sensor sensitivity factors for H-field probes f: carrier frequency [GHz]

Ei: electric field strength of channel i in V/m Hi: magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR: local specific absorption rate in W/kg Etot:
σ: conductivity in [mho/m] or [Siemens/m] ρ:

total field strength in V/m
equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

6.2 Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the fourth order least square polynomial method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

6.3 Ear Reference Point

Figure 6.2 shows the front, back and side views of the SAM Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

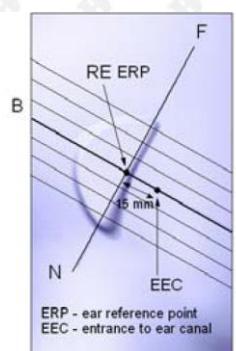


Figure 6.2 Front, back and side view of SAM

Figure 6.1 Close-up side view of ERP's

6.4 Device Reference Points

Two imaginary lines on the device need to be established: the vertical centerline and the horizontal line. The test device is placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" is then located at the same level as the center of the ear reference point. The test device is positioned so that the "vertical centerline" is bisecting the front surface of the device at its top and bottom edges, positioning the "ear reference point" on the outer surface of both the left and right head phantoms on the ear reference point [5].

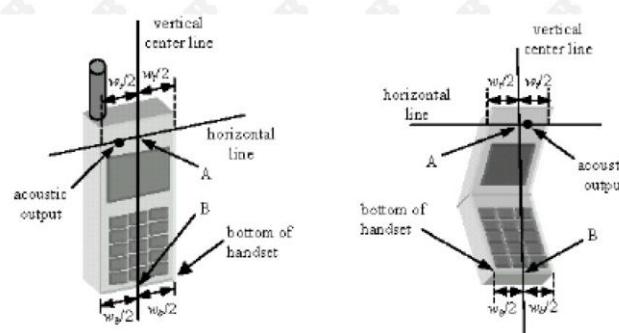
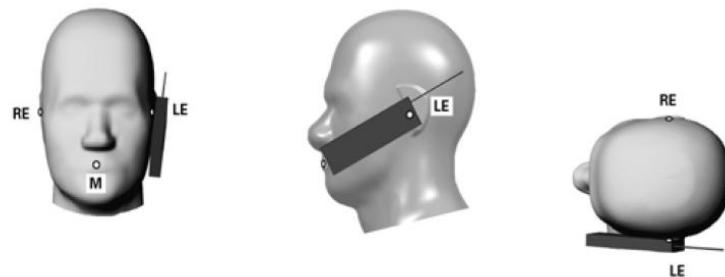
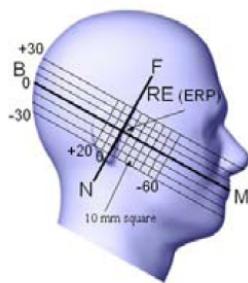



Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

6.5 Test Configuration – Positioning for Cheek / Touch


1. Position the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure below), such that the plane

defined by the vertical center line and the horizontal line of the device is approximately parallel to the sagittal plane of the phantom

Figure 7.1 Front, Side and Top View of Cheek/Touch Position

2. Translate the device towards the phantom along the line passing through RE and LE until the device touches the ear.
3. While maintaining the device in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
4. Rotate the device around the vertical centerline until the device (horizontal line) is symmetrical with respect to the line NF.
5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the device contact with the ear, rotate the device about the line NF until any point on the device is in contact with a phantom point below the ear (cheek). See Figure below.

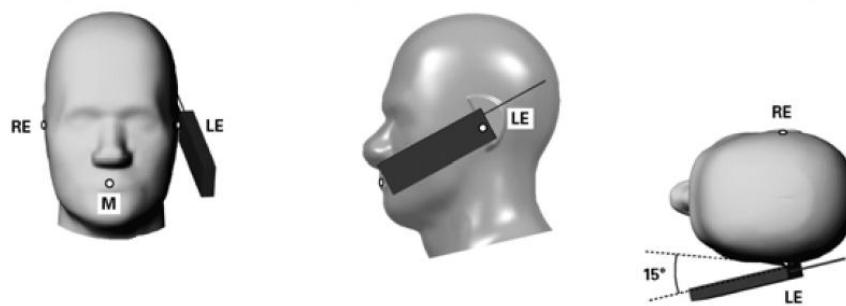


Figure 7.2 Side view w/ relevant markings

6.6 Test Configuration – Positioning for Ear / 15° Tilt

With the test device aligned in the Cheek/Touch Position":

1. While maintaining the orientation of the device, retracted the device parallel to the reference plane far enough to enable a rotation of the device by 15 degrees.
2. Rotate the device around the horizontal line by 15 degrees.
3. While maintaining the orientation of the device, move the device parallel to the reference plane until any part of the device touches the head. (In this position, point A is located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, the angle of the device shall be reduced. The tilted position is obtained when any part of the device is in contact with the ear as well as a second part of the device is in contact with the head (see Figure below).

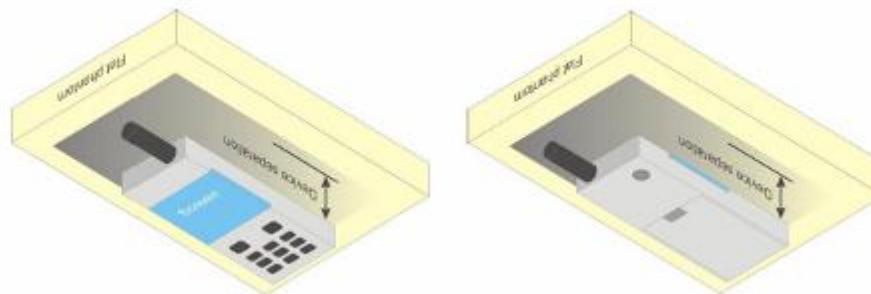


Figure 7.3 Front, Side and Top View of Ear/15° Tilt Position

6.7 Test Position – Body Configurations

Body Worn Position

- (a) To position the device parallel to the phantom surface with either keypad up or down.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 1.0 cm or holster surface and the flat phantom to 0 cm.

7 Exposure limit

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

7.1 Uncontrolled Environment

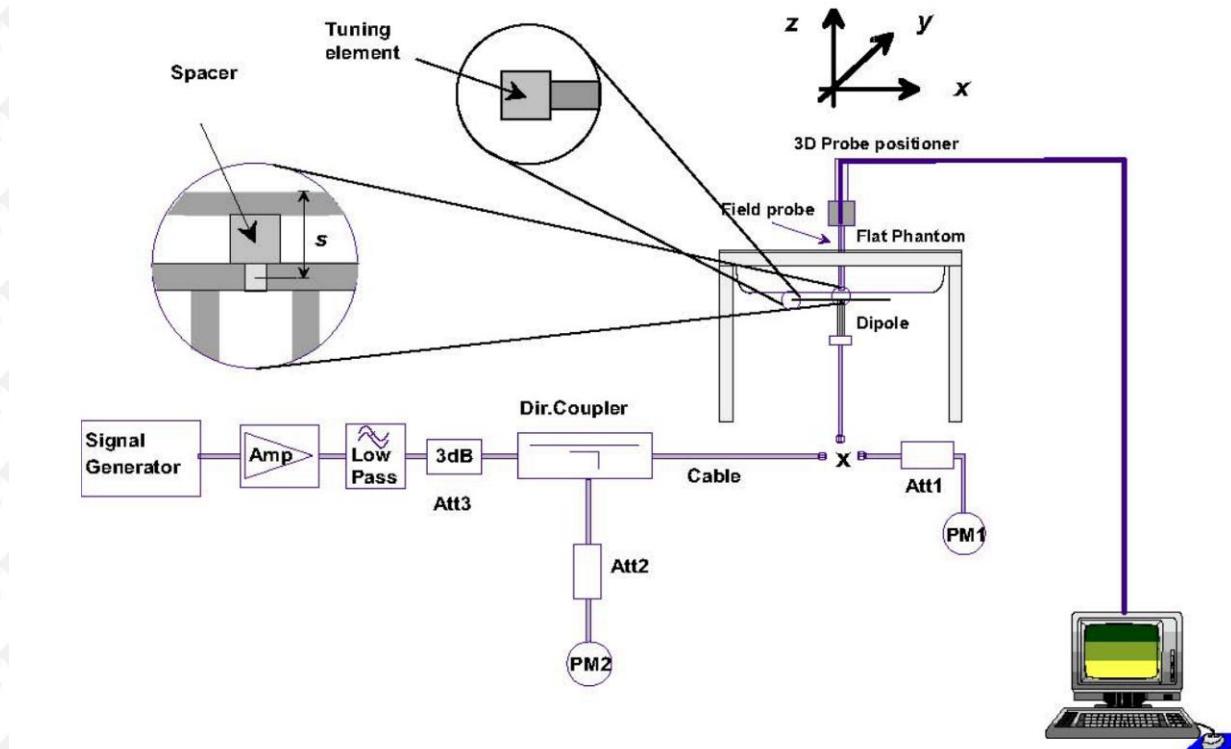
Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00


¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8 System and liquid validation

8.1 System validation

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

1. Signal Generator
2. Amplifier
3. Directional Coupler
4. Power Meter
5. Calibrated Dipole

The output power on dipole port must be calibrated to 30 dBm (1000 mW) before dipole is connected.

Numerical reference SAR values (W/kg) for reference dipole and flat phantom

Frequency (MHz)	1g SAR	10g SAR	Local SAR at surface(above feed-point)	Local SAR at surface(y = 2 cm offset from feedpoint)
300	3.02	2.04	4.40	2.10
450	4.92	3.28	7.20	3.20
750	8.49	5.55	12.6	4.59
835	9.56	6.22	14.1	4.90
900	10.9	6.99	16.4	5.40
1450	29.0	16.0	50.2	6.50
1800	38.4	20.1	69.5	6.80
1900	39.7	20.5	72.1	6.60
2000	41.1	21.1	74.6	6.50
2450	52.4	24.0	104	7.70
2600	55.3	24.6	113	8.29
3000	63.8	25.7	140	9.50

Table 1: system validation (1g)

Measurement Date	Frequency (MHz)	Liquid Type (head/body)	1W Target SAR1g (W/kg)	Measured SAR1g (W/kg)	1W Normalized SAR1g (W/kg)	Desired Tolerance (%)	Actual Tolerance (%)
2023-8-18	2450	head	52	14	56	±10	7.7

Note: system check input power: 250mW.

8.2 liquid validation

The dielectric parameters were checked prior to assessment using the HP85070C dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

KDB 865664 recommended Tissue Dielectric Parameters

The head and body tissue parameters given in this below table should be used to measure the SAR of transmitters operating in 100 MHz to 6 GHz frequency range. The tissue dielectric parameters of the tissue medium at the test frequency should be within the tolerance required in this document. The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

The head tissue dielectric parameters recommended by IEEE Std 1528-2013 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in 1528 are derived from tissue dielectric parameters computed from the 4-Cole-Cole equations described above and extrapolated according to the head parameters specified in 1528.

Target Frequency	Head/Body Tissue	
	MHz	ϵ_r
150	52.3	0.76
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
915	41.5	0.98
1450	40.5	1.20
1610	40.3	1.29
1800-2000	40.0	1.40
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
5800	35.3	5.27

8.3 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head.

Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Table 2: Recommended Dielectric Performance of Tissue

Recommended Dielectric Performance of Tissue												
Ingredients (% by weight)	Frequency (MHz)											
	750		835		1800		1900		2450		2600	
Tissue	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	40.52	51.83	41.45	52.4	55.2	70.2	54.9	40.4	62.7	73.2	54.8	68.1
Salt (NaCl)	1.61	1.52	1.45	1.4	0.3	0.4	0.18	0.5	0.5	0.04	0.1	0.01
Sugar	57.67	46.45	56.0	45.0	0.0	0.0	0.0	58.0	0.0	0.0	0.0	0.0
HEC	0.1	0.1	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Bactericide	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	0.0	0.0
DGBE	0.0	0.0	0.0	0.0	44.5	29.4	44.92	0.0	0.0	26.7	45.1	31.8
Dielectric	40.93	54.32	42.54	56.1	40.0	53.3	39.9	54.0	39.8	52.5	39.0	52.5
Conductivity	0.87	0.95	0.91	0.95	1.40	1.52	1.42	1.45	1.88	1.78	1.96	2.15

Table 3: Dielectric Performance of Head Tissue Simulating Liquid

Temperature: 21°C , Relative humidity: 57%				
Frequency(MHz)	Measured Date	Description	Dielectric Parameters	
			ϵ_r	$\sigma(\text{s/m})$
2450	2023-8-18	Target Value $\pm 5\%$ window	39.2 37.24—41.16	1.80 1.71—1.89
		Measurement Value	37.97	1.88

9 System Verification Plots

System Check-2450

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.88$ S/m; $\epsilon_r = 37.97$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: ES3DV3 - SN3089; ConvF(4.7, 4.7, 4.7) @ 2450 MHz; Calibrated: 2023/7/14

Modulation Compensation:

Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 2.0, 32.0$

Electronics: DAE4 Sn881; Calibrated: 2023/7/14

Phantom: SAM 1; Type: QD000P40CD; Serial: TP:xxxx

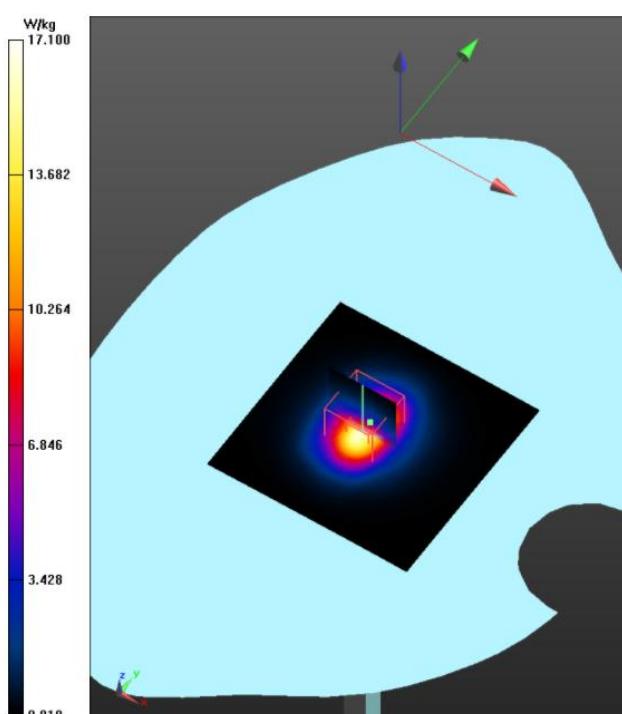
DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

System Performance Check at 2450MHz/d=5mm, Pin=250mW, dist=4.0mm (ES-Probe)/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 17.1 W/kg

System Performance Check at 2450MHz/d=5mm, Pin=250mW, dist=4.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.01 V/m; Power Drift = -0.20 dB


Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.49 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 48.5%

Maximum value of SAR (measured) = 16.0 W/kg

10 Type a Measurement Uncertainty

The component of uncertainty may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainty by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observations is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table below :

Uncertainty Distribution	Normal	Rectangle	Triangular	U Shape
Multi-plying Factor(a)	$1/k(b)$	$1 / \sqrt{3}$	$1 / \sqrt{6}$	$1 / \sqrt{2}$

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
(b) k is the coverage factor

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B -sum by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %.

The COMOSAR Uncertainty Budget is show in below table:

DASY5 Uncertainty

Measurement uncertainty for 300MHz to 3GHz averaged over 1 gram/ 10 gram

Error Description	Uncert. value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi) vef f
Measurement System								
Probe Calibration	±6.0 %	N	1	1	1	±6.0 %	±6.0 %	∞
Axial Isotropy	±4.7 %	R	$\sqrt{3}$	0.7	0.7	±1.9 %	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	R	$\sqrt{3}$	0.7	0.7	±3.9 %	±3.9 %	∞
Boundary Effects	±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Linearity	±4.7 %	R	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	∞
System Detection Limits	±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Modulation Response	±2.4 %	R	$\sqrt{3}$	1	1	±1.4 %	±1.4 %	∞
Readout Electronics	±0.3 %	N	1	1	1	±0.3 %	±0.3 %	∞
Response Time	±0.8 %	R	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	∞
Integration Time	±2.6 %	R	$\sqrt{3}$	1	1	±1.5 %	±1.5 %	∞
RF Ambient Noise	±3.0 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
RF Ambient Reflections	±3.0 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
Probe Positioner	±0.4 %	R	$\sqrt{3}$	1	1	±0.2 %	±0.2 %	∞
Probe Positioning	±2.9 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
Max. SAR Eval.	±2.0 %	R	$\sqrt{3}$	1	1	±1.2 %	±1.2 %	∞
Test Sample Related								
Device Positioning	±2.9 %	N	1	1	1	±2.9 %	±2.9 %	145
Device Holder	±3.6 %	N	1	1	1	±3.6 %	±3.6 %	5
Power Drift	±5.0 %	R	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
Power Scaling	±0 %	R	$\sqrt{3}$	1	1	±0.0 %	±0.0 %	∞
Phantom and Setup								
Phantom Uncertainty	±6.1 %	R	$\sqrt{3}$	1	1	±3.5 %	±3.5 %	∞
SAR correction	±1.9 %	R	$\sqrt{3}$	1	0.84	±1.1 %	±0.9 %	∞
Liquid Conductivity (mea.) DAK	±2.5 %	R	$\sqrt{3}$	0.78	0.71	±1.1 %	±1.0 %	∞
Liquid Permittivity (mea.) DAK	±2.5 %	R	$\sqrt{3}$	0.26	0.26	±0.3 %	±0.4 %	∞
Temp. unc. - Conductivity BB	±3.4 %	R	$\sqrt{3}$	0.78	0.71	±1.5 %	±1.4 %	∞
Temp. unc. - Permittivity BB	±0.4 %	R	$\sqrt{3}$	0.23	0.26	±0.1 %	±0.1 %	∞
Combined Std. Uncertainty						±11.2 %	±11.1 %	361
Expanded STD Uncertainty						±22.3 %	±22.2 %	

11 Output Power Verification

11.1 Test Condition:

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The base station simulator was connected to the antenna terminal.

2. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ± 1.5 dB.

3. Environmental Conditions

Temperature 23°C

Relative Humidity 53%

Atmospheric Pressure 1019mbar

4. Tested By : Martin Feng

11.2 Test Procedures:

Mobile Phone radio output power measurement

1. The transmitter output port was connected to base station emulator.

2. Establish communication link between emulator and EUT and set EUT to operate at maximum output power all the time.

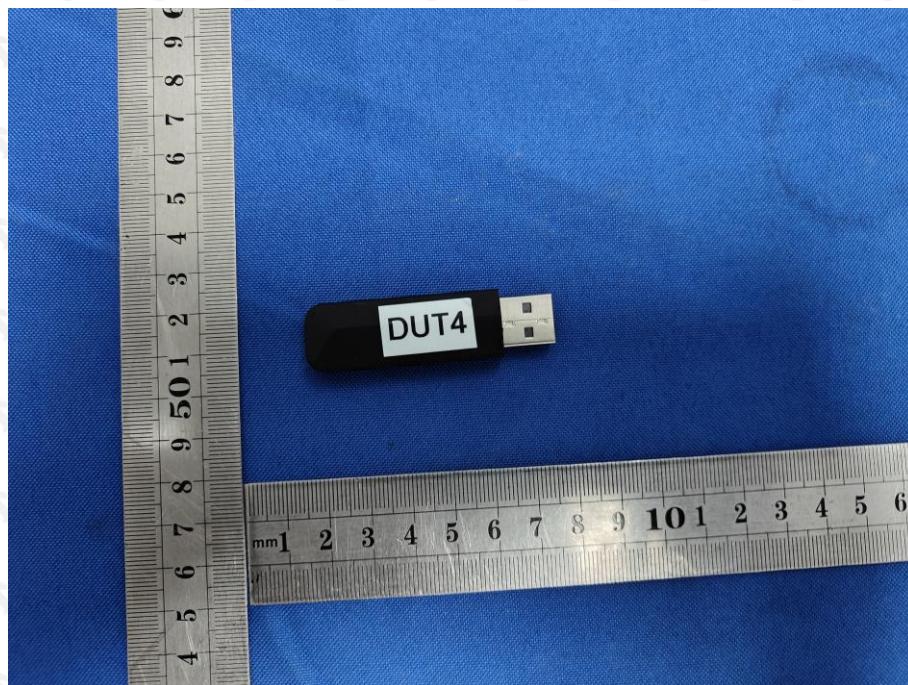
3. Select lowest, middle, and highest channels for each band and different possible test mode.

4. Measure the conducted peak burst power and conducted average burst power from EUT antenna port.

BLE Measurement Result (1M)

Channel number	Frequency (MHz)	Average Output Power(dBm)	Tune up limited(dBm)
0	2402	8.67	8.0±1
19	2440	8.534	8.0±1
39	2480	7.394	8.0±1

BLE Measurement Result (2M)


Channel number	Frequency (MHz)	Average Output Power(dBm)	Tune up limited(dBm)
0	2402	8.867	8.0±1
19	2440	8.572	8.0±1
39	2480	7.421	8.0±1

Zigbee Measurement Result

Channel number	Frequency (MHz)	Average Output Power(dBm)	Tune up limited(dBm)
0	2405	8.815	8.0±1
7	2440	8.296	8.0±1
15	2480	7.445	8.0±1

12 Exposure Conditions Consideration

EUT antenna location:

Note:

1. Body SAR assessments are required.
2. Per KDB 447498 D02 SAR Procedures for Dongle Xmtr v02r01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user, which is 5 mm for body SAR, such as Horizontal-Up, Horizontal-Down, Vertical-Front, Vertical-Back SAR test are required.

13 SAR Test Results

13.1 Test Condition:

1. SAR Measurement

The distance between the EUT and the antenna of the emulator is more than 50 cm and the output power radiated from the emulator antenna is at least 30 dB less than the output power of EUT.

2	Environmental Conditions	Temperature	23°C
		Relative Humidity	57%
		Atmospheric Pressure	1019mbar
3	Tested By : Martin Feng		

13.2 Generally Test Procedures:

1. Establish communication link between EUT and base station emulation by air link.
2. Place the EUT in the selected test position. (Cheek, tilt or flat)
3. Perform SAR testing at middle or highest output power channel under the selected test mode. If the measured 1-g SAR is ≤ 0.8 W/kg, then testing for the other channel will not be performed.
4. When SAR is <0.8 W/kg, no repeated SAR measurement is required

13.3 SAR Summary Test Result:

SAR Values of BLE(1M)

Test Positions		Channel		Test Mode	Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)		Plot No.
		CH.	MHz		Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	
Body (5mm Separation)	Horizontal-Up	Low	2402	GFSK	9	8.67	0.399	0.43	--
	Horizontal-down	Low	2402	GFSK	9	8.67	0.475	0.51	1
	Vertical-Front	Low	2402	GFSK	9	8.67	0.465	0.50	--
	Vertical-Back	Low	2402	GFSK	9	8.67	0.266	0.29	--

SAR Values of BLE(2M)

Test Positions		Channel		Test Mode	Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)		Plot No.
		CH.	MHz		Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	
Body (5mm Separation)	Horizontal-Up	Low	2402	GFSK	9	8.867	0.396	0.41	--
	Horizontal-down	Low	2402	GFSK	9	8.867	0.475	0.49	2
	Vertical-Front	Low	2402	GFSK	9	8.867	0.442	0.46	--
	Vertical-Back	Low	2402	GFSK	9	8.867	0.264	0.27	--

SAR Values of Zigbee

Test Positions		Channel		Test Mode	Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)		Plot No.
		CH.	MHz		Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	
Body (5mm Separation)	Horizontal-Up	Low	2405	GFSK	9	8.815	0.387	0.40	--
	Horizontal-down	Low	2405	GFSK	9	8.815	0.479	0.50	3
	Vertical-Front	Low	2405	GFSK	9	8.815	0.448	0.47	--
	Vertical-Back	Low	2405	GFSK	9	8.815	0.265	0.28	--

13.4 Measurement variability consideration**No Repeated SAR**

13.5 Simultaneous Transmission SAR Analysis.**No Simultaneous Transmission SAR**

14 SAR Measurement Reference

References

- [1] FCC 47 CFR Part 2 “Frequency Allocations and Radio Treaty Matters; General Rules and Regulations”
- [2] IEEE Std. C95.1-2019, “IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0Hz to 300 GHz”, 2019
- [3] IEEE Std. 1528-2013, “IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:Measurement Techniques”, June 2013
- [4] FCC KDB 447498 D01 v06, “Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies”, Oct 2015
- [4] FCC KDB 865664 D01 v01r04, “SAR Measurement Requirements for 100 MHz to 6 GHz”, Aug 2015.
- [5] FCC KDB 865664 D02 v01r02, “RF Exposure Compliance Reporting and Documentation Considerations” Oct 2015
- [6] FCC KDB 447498 D02 SAR Procedures for Dongle

15 Maximum SAR measurement Plots

Plot 1

Communication System: UID 0, BLE (0); Communication System Band: BLE; Frequency: 2402 MHz; Communication System PAR: 0 dB; PMF: 1.12202e-005

Medium parameters used: $f = 2402$ MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 37.14$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: ES3DV3 - SN3089; ConvF(4.7, 4.7, 4.7) @ 2402 MHz; Calibrated: 2023/7/14

Modulation Compensation:

Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 2.0, 32.0$

Electronics: DAE4 Sn881; Calibrated: 2023/7/14

Phantom: SAM 1; Type: QD000P40CD; Serial: TP:xxxx

DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

KA2308100007X Softdog/H-UP/Area Scan (51x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 0.519 W/kg

KA2308100007X Softdog/H-UP/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.04 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.475 W/kg; SAR(10 g) = 0.233 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 46.3%

Maximum value of SAR (measured) = 0.528 W/kg

Plot 2

Communication System: UID 0, BLE (0); Communication System Band: BLE; Frequency: 2402 MHz; Communication System PAR: 0 dB; PMF: 1.12202e-005

Medium parameters used: $f = 2402$ MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 37.14$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: ES3DV3 - SN3089; ConvF(4.7, 4.7, 4.7) @ 2402 MHz; Calibrated: 2023/7/14

Modulation Compensation:

Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 2.0, 32.0$

Electronics: DAE4 Sn881; Calibrated: 2023/7/14

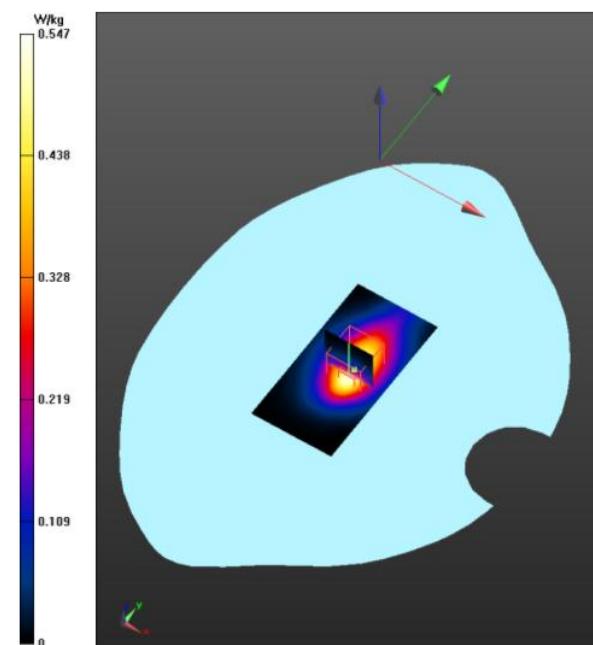
Phantom: SAM 1; Type: QD000P40CD; Serial: TP:xxxx

DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

KA2308100007X Softdog/H-UP/Area Scan (51x101x1): Interpolated grid: $dx=1.000$ mm, $dy=1.000$ mm
Maximum value of SAR (interpolated) = 0.547 W/kg

KA2308100007X Softdog/H-UP/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 17.23 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.475 W/kg; SAR(10 g) = 0.235 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 46.2%

Maximum value of SAR (measured) = 0.530 W/kg

Plot 3

Communication System: UID 0, zigbee (0); Communication System Band: zigbee; Frequency: 2405 MHz; Communication System PAR: 0 dB; PMF: 1.12202e-005

Medium parameters used (interpolated): $f = 2405$ MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.03$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: ES3DV3 - SN3089; ConvF(4.7, 4.7, 4.7) @ 2405 MHz; Calibrated: 2023/7/14

Modulation Compensation:

Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 2.0, 32.0$

Electronics: DAE4 Sn881; Calibrated: 2023/7/14

Phantom: SAM 1; Type: QD000P40CD; Serial: TP:xxxx

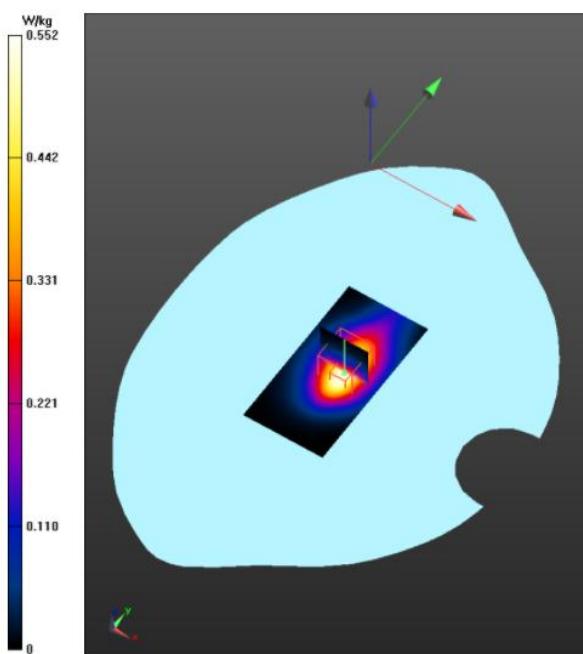
DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

KA2308100007X Softdog/H-UP/Area Scan (51x101x1): Interpolated grid: $dx=1.000$ mm, $dy=1.000$ mm

Maximum value of SAR (interpolated) = 0.552 W/kg

KA2308100007X Softdog/H-UP/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 17.43 V/m; Power Drift = -0.09 dB

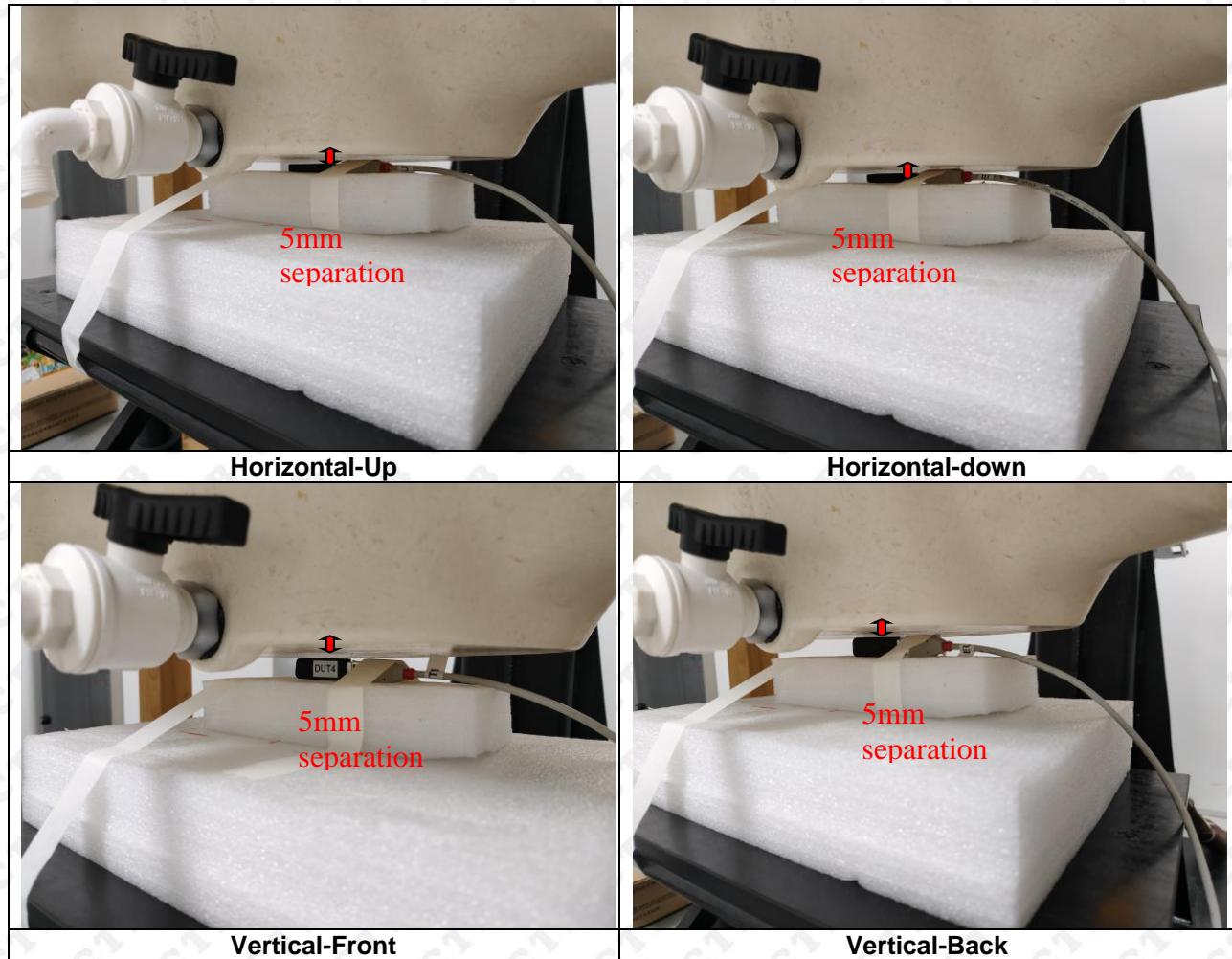

Peak SAR (extrapolated) = 1.09 W/kg

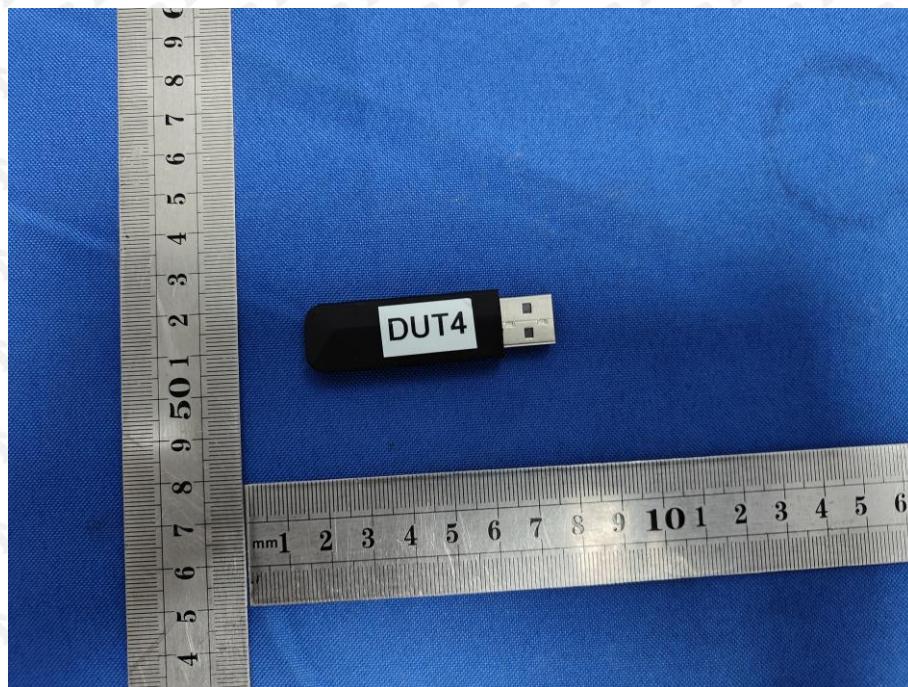
SAR(1 g) = 0.479 W/kg; SAR(10 g) = 0.236 W/kg

Smallest distance from peaks to all points 3 dB below = 11 mm

Ratio of SAR at M2 to SAR at M1 = 48.9%

Maximum value of SAR (measured) = 0.528 W/kg


Note: All mode were tested and passed and only showed the worst case in this report.


16 Calibration Reports-Probe and Dipole

The Probe, Dipole and DAE calibration please refer to the Attachment.

17 SAR System Photos

18 Setup Photos

19 EUT Photos**Front Side****Back Side****=====End of report=====**