RF Exposure Statement

Requirement:

According to CFR 15 §1.1307 (b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

SAR Testing:

The average output power under normal worst-case operation of EUT is $18.6 \, \text{mW} < 60/\text{f}(\text{GHz}) \, \text{mW}$ or $24.19 \, \text{mW}$ for d<2.5 cm (general population category). The user is instructed in the product manual to maintain no less than a $20 \, \text{cm}$ separation distance from this device. Per the calculations below, SAR measurements are not necessary.

Health Hazard:

The following table summarizes the power density at a distance of 20 cm as calculated from FCC OET Bulletin 65.

Potential Health Hazard Radiation Level

Worst Case	Ant.Gain	Po	EIRP***	EIRP***	S_{20cm}
	(dBi)*	(dBm)	(dBm)	(mW)	(mW/cm^2)
802.15.4	1	-0.7	0.3	1.07	0.0002
802.11b	-0.8	12.7	12.7	18.62	0.0037
802.11g	-0.8	10.6	10.6	11.48	0.0022

^{*}Gain value computed in associated test report.

The following equations were used in calculating duty cycle and power density (S).

$$EIRP(mW) = Po(mW) \cdot 10^{\frac{Gain(dB)}{10}}$$

$$S(mW/cm^2) = \frac{EIRP(mW)}{4 \cdot \Pi \cdot R(cm)^2}, R = 20 \text{ cm}$$

^{**} Conducted power output measured with radio transmitting at maximum duty and data rate possible

^{***}Note: EIRP employed in calculation is the greater of the average conducted output power and the EIRP.