

TEST REPORT

Applicant:	Trane US, Inc.
Address of Applicant:	6200 Troup Highway, TYLER, Texas 75707, United States
Manufacturer/Factory:	Computime Electronics (Shenzhen) Company Limited
Address of Manufacturer/Factory:	Yuekenguangyu Industrial Park,Kangqiao Road 88#, Danzhutou Community, Nanwan Street office,Longgang District, Shenzhen, China.
Equipment Under Test (E	EUT)
Product Name:	Color WIFI/ Z-wave thermostat
Model No.:	TCONT850AC52UC, ACONT850AC52UC, TZON1040AC52ZB, AZON1040AC52ZB
Trade Mark:	TRANE
FCC ID:	XVR-CONT8506
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.249
Date of sample receipt:	October 08, 2022
Date of Test:	October 09-20, 2022
Date of report issued:	October 21, 2022
Test Result :	PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 28

2 Version

Version No.	Date	Description		
00	October 21, 2022	Original		
9	7	9		

Prepared By:

her

Date:

October 21, 2022

Project Engineer

Check By:

Hanson Lunt

Reviewer

Date:

October 21, 2022

3 Contents

		Pa	age
1	cov	ER PAGE	1
2	VER	SION	
2	VEF	(SION	2
3	CO	NTENTS	3
4	TES	ST SUMMARY	4
4			
	4.1	MEASUREMENT UNCERTAINTY	4
5	GE	NERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	6
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	
	5.6	ADDITIONAL INSTRUCTIONS	6
6	TES	ST INSTRUMENTS LIST	7
_			
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT:	
	7.2	CONDUCTED EMISSIONS	10
	7.3	RADIATED EMISSION METHOD	
	7.3.		
	7.4	20DB OCCUPY BANDWIDTH	27
8	TES	ST SETUP PHOTO	28
9	EUT	CONSTRUCTIONAL DETAILS	28
9	EUI		20

4 Test Summary

Test Item	Section in CFR 47	Result	
Antenna requirement	15.203	Pass	
AC Power Line Conducted Emission	15.207	Pass	
Field strength of the fundamental signal	15.249 (a)	Pass	
Spurious emissions	15.249 (a) (d)/15.209	Pass	
Band edge	15.249 (d)/15.205	Pass	
20dB Occupied Bandwidth	15.215 (c)	Pass	

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	Color WIFI/ Z-wave thermostat	
Model No.:	TCONT850AC52UC, ACONT850AC52UC, TZON1040AC52ZB, AZON1040AC52ZB	
Test Model No.:	TCONT850AC52UC	
Remark: All above models a	are identical in the same PCB layout, interior structure and electrical circuits.	
The differences are appeara	ance color and model name for commercial purpose.	
Test sample(s) ID:	GTS202210000004-1	
Sample(s) Status:	Engineer sample	
S/ N:	N/A	
Operation Frequency:	908.42MHz, 916MHz	
Modulation type:	Z-wave	
Antenna Type:	Integral antenna	
Antenna gain:	2dBi(declare by manufacturer)	
Power supply:	AC 24V	

5.2 Test mode

Tron		itting		200
- LIAI	ISH		1 1110) (Ie
			,	

Keep the EUT in continuously transmitting mode.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows: **908.42MHz**:

Axis	Х	Y	Z	
Field Strength(dBuV/m)	90.06	90.35	89.27	
916MHz:				
Axis X Y Z				
Field Strength(dBuV/m)	86.51	87.45	87.21	

5.3 Description of Support Units

Manufacture	Manufacture Description		SN.
N/A	AC-AC adapter	N/A	N/A
Lenovo PC		E40	N/A

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC —Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.5 Test Location

	All tests were performed at:
130	Global United Technology Services Co., Ltd.
	No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan
	District, Shenzhen, Guangdong, China 518102
	Tel: 0755-27798480
	Fax: 0755-27798960
56	Additional Instructions

5.6 Additional Instructions

Test Software	Special test command provided by manufacturer	
Power level setup	Default	

6 Test Instruments list

Rad	Radiated Emission:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 30, 2021	Nov. 29, 2022
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 16, 2022	Oct. 15, 2023
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 16, 2022	Oct. 15, 2023
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 16, 2022	Oct. 15, 2023
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023

Con	ducted Emission					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 24, 2022	April 23, 2023
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 23, 2022	June 22, 2023
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 22, 2022	April 21, 2023
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 28, 2022	April 27, 2023
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 15, 2022	April 14, 2023
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 22, 2022	April 21, 2023
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 2023
			A DECEMBER OF THE STATE OF THE ST	ALCONDUCT TO CO	Collected and a state	a the second second

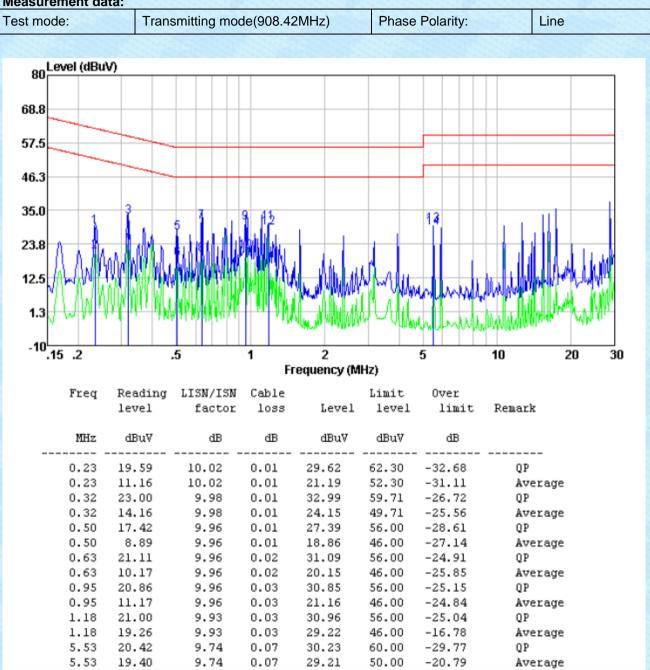
RF C	onducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023

Ger	General used equipment:									
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023				
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023				

7 Test results and Measurement Data

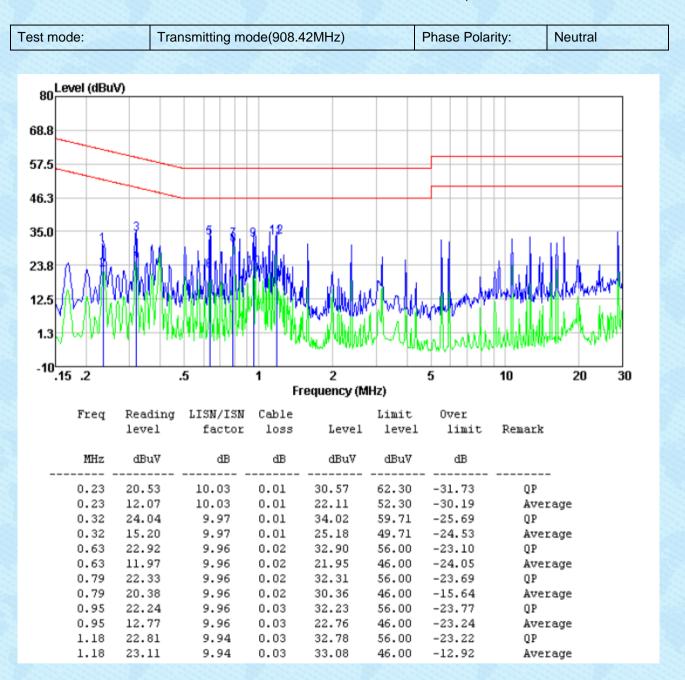
7.1 Antenna requirement:

Antenna requirement:	
Standard requirement:	FCC Part15 C Section 15.203
15.203 requirement:	
shall be used with the device. coupling to the intentional radia	designed to ensure that no antenna other than that furnished by the responsible party. The use of a permanently attached antenna or of an antenna that uses a unique tor, the manufacturer may design the unit so that a broken antenna can be replaced ndard antenna jack or electrical connector is prohibited.
EUT Antenna:	
The antenna is integral antenna	, reference to the appendix II for details.



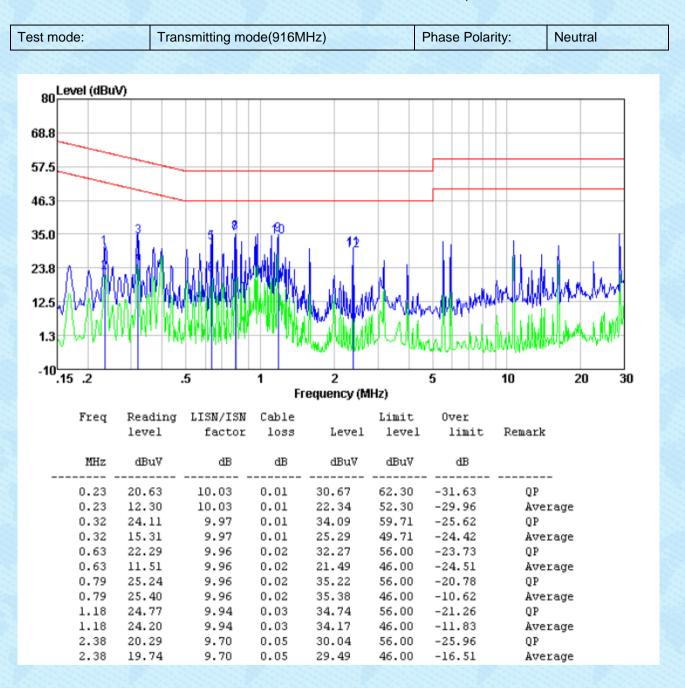
7.2 Conducted Emissions

		and a second and a second and						
Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz	150KHz to 30MHz						
Class / Severity:	Class B							
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	RBW=9KHz, VBW=30KHz, Sweep time=auto						
Limit:		Limit (dBuV)						
	Frequency range (MHz) Quasi-peak Average							
	0.15-0.5 66 to 56* 56 to 46*							
	0.5-5							
	5-30 60 50							
	* Decreases with the logarithm	n of the frequency.						
Test setup:	Reference Plane							
	LISN 40cm 80cm 40cm 80cm Equipment E.U.T Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver						
Test procedure:	 The EUT and simulators ar line impedance stabilization 50ohm/50uH coupling impediate 2. The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10:: 	n network (L.I.S.N.). T edance for the measu also connected to the n/50uH coupling impe- o the block diagram o checked for maximun d the maximum emiss all of the interface ca	This provides a ring equipment. e main power through a edance with 500hm of the test setup and n conducted sion, the relative ables must be changed					
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.: 1 012mbar					
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							


Report No.: GTS202210000004F02

Measurement data:

Report No.: GTS202210000004F02



est mode:	Trar	smitting mod	de(916MH	Hz)	Phase	Polarity:	Line	9
80 Level (dB	uV)							
68.8								
57.5								
57.5								
46.3								
	_							
35.0	1.	5 1 .11	۱.	44			1	
23.8			odilla II.	12		- LL - L		
A A.M	Ant Anti A. L	MMMMK	HANN.					الداد المرا
12.5 W	EALS/IN		AND MAX	V. ANNUAN	What was		hala Mede	MAT
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NAL A PROVINCIAN	MAA KA KA MAA MAA MAA MAA	
A ALA AND	AN PRIMITING	LINN AND A	THE N.		IN 41.77	The second		MA HUMI
1.3	an ku ar	MANNA	Mail	CMM	WW.	hlluth		MA THE
10	AAMAA AM					hlluth		20 3
V I	AAMAA AY	.5	1 Fr	2 requency (M		141111111 5	10	20 3
-10 <mark>.15 .2</mark>	Reading		Fr	_	Hz)	5 Over	10	20 3
10	Reading	.5 LISN/ISN factor	-	_		_	10 Remark	20 3
-10 <mark>.15 .2</mark> Freq	level	LISN/ISN factor	Fr Cable loss	equency (M	Hz) Limit level	Over limit		20 3
-10 <mark>.15 .2</mark> Freq MHz	level dBuV	LISN/ISN factor dB	Cable loss dB	Level dBuV	Hz) Limit level dBuV	Over limit dB		20 3
-10.15 .2 Freq MHz 	level dBuV 	LISN/ISN factor dB 	Cable loss dB 0.01	Level dBuV 29.56	Hz) Limit level dBuV 	0ver limit dB -32.74	Remark QP	
-10.15 .2 Freq MHz 	1evel dBuV 19.53 11.01	LISN/ISN factor dB 	Fr Cable loss dB 0.01 0.01	Level dBuV 29.56 21.04	Hz) Limit level dBuV 62.30 52.30	0ver limit dB -32.74 -31.26	Remark QP Averaç	
-10.15 .2 Freq MHz 0.23 0.23 0.32	1evel dBuV 19.53 11.01 22.98	LISN/ISN factor dB 	Fr Cable loss dB 0.01 0.01 0.01 0.01	Level dBuV 29.56 21.04 32.97	Hz) Limit level dBuV 62.30 52.30 59.71	Over limit dB 	Remark QP Averaç QP	le
-10.15 .2 Freq MHz 	1evel dBuV 19.53 11.01	LISN/ISN factor dB 	Fr Cable loss dB 0.01 0.01	Level dBuV 29.56 21.04	Hz) Limit level dBuV 62.30 52.30	0ver limit dB -32.74 -31.26	Remark QP Averaç	le
-10.15 .2 Freq MHz 0.23 0.23 0.32 0.32	level dBuV 19.53 11.01 22.98 14.18	LISN/ISN factor dB 	Cable loss dB 0.01 0.01 0.01 0.01 0.01 0.01	Level dBuV 29.56 21.04 32.97 24.17	Hz) Limit level dBuV 62.30 52.30 59.71 49.71	Over limit dB -32.74 -31.26 -26.74 -25.54	Remark QP Averag QP Averag	le
-10.15 .2 Freq MHz 0.23 0.32 0.32 0.32 0.50 0.50 0.63	1evel dBuV 19.53 11.01 22.98 14.18 17.76 9.33 21.77	LISN/ISN factor dB 10.02 10.02 9.98 9.98 9.96 9.96 9.96 9.96	Fr Cable loss dB 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	Level dBuV 29.56 21.04 32.97 24.17 27.73	Hz) Limit level dBuV 62.30 52.30 59.71 49.71 56.00	0ver limit dB -32.74 -31.26 -26.74 -25.54 -28.27	Remark QP Averag QP Averag QP	le
-10.15 .2 Freq MHz 0.23 0.23 0.32 0.32 0.32 0.50 0.63 0.63	1evel dBuV 19.53 11.01 22.98 14.18 17.76 9.33 21.77 10.79	LISN/ISN factor dB 	Fr Cable loss dB 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02	Level dBuV 29.56 21.04 32.97 24.17 27.73 19.30 31.75 20.77	Hz) Limit level dBuV 62.30 52.30 59.71 49.71 56.00 46.00 56.00 46.00	0ver limit dB -32.74 -31.26 -26.74 -25.54 -28.27 -26.70 -24.25 -25.23	Remark QP Averag QP Averag QP Averag QP Averag	le le
-10.15 .2 Freq MHz 0.23 0.32 0.32 0.32 0.32 0.50 0.63 0.63 0.95	1evel dBuV 19.53 11.01 22.98 14.18 17.76 9.33 21.77 10.79 21.24	LISN/ISN factor dB 	Fr Cable loss dB 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02	Level dBuV 29.56 21.04 32.97 24.17 27.73 19.30 31.75 20.77 31.23	Hz) Limit level dBuV 62.30 52.30 59.71 49.71 56.00 46.00 56.00 46.00 56.00	0ver limit dB -32.74 -31.26 -26.74 -25.54 -28.27 -26.70 -24.25 -25.23 -24.77	Remark QP Averaç QP Averaç QP Averaç QP Averaç QP	le le le
-10.15 .2 Freq MHz -0.23 0.23 0.32 0.32 0.32 0.32 0.50 0.63 0.63 0.95 0.95	1evel dBuV 19.53 11.01 22.98 14.18 17.76 9.33 21.77 10.79 21.24 11.65	LISN/ISN factor dB 	Fr Cable loss dB 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02	Level dBuV 29.56 21.04 32.97 24.17 27.73 19.30 31.75 20.77 31.23 21.64	Hz) Limit level dBuV 62.30 52.30 59.71 49.71 56.00 46.00 56.00 46.00 56.00 46.00	0ver limit dB -32.74 -31.26 -26.74 -25.54 -28.27 -26.70 -24.25 -25.23 -24.77 -24.36	Remark OP Averag OP Averag OP Averag OP Averag OP Averag	le le le
-10.15 .2 Freq MHz 0.23 0.32 0.32 0.32 0.32 0.50 0.63 0.63 0.95	1evel dBuV 19.53 11.01 22.98 14.18 17.76 9.33 21.77 10.79 21.24	LISN/ISN factor dB 	Fr Cable loss dB 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02	Level dBuV 29.56 21.04 32.97 24.17 27.73 19.30 31.75 20.77 31.23	Hz) Limit level dBuV 62.30 52.30 59.71 49.71 56.00 46.00 56.00 46.00 56.00	0ver limit dB -32.74 -31.26 -26.74 -25.54 -28.27 -26.70 -24.25 -25.23 -24.77	Remark QP Averaç QP Averaç QP Averaç QP Averaç QP	le le le le

Report No.: GTS202210000004F02

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Radiated Emission Method

_	.5 Radiated Lillission we						1000			
	Test Requirement:	FCC Part15 C Section	on 15	5.209						
	Test Method:	ANSI C63.10:2013	1.11							
	Test Frequency Range:	9kHz to 10GHz						1972		
	Test site:	Measurement Distar	nce: 3	3m						
	Receiver setup:	Frequency	E	Detector RI		BW VBW		Value		
		9KHz-150KHz	Qu	lasi-peak	2001	Hz 600H		z G	uasi-peak	
				lasi-peak	9KH	łz	30KH	z C	uasi-peak	
		30MHz-1GHz	Qu	lasi-peak	120K	Hz	300KH	Hz C	uasi-peak	
		Above 1GHz		Peak	1MF	lz	3MH:		Peak	
3				Peak	1MF	14 Mar	10Hz		Average	
	Limit:	Frequency	1.76	Limit	(dBuV/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3m)		emark	
	(Field strength of the fundamental signal)	902-928MHz	2		94.0	0		QF	P Value	
	Limit: (Spurious Emissions)	Frequency		Limit (u\	//m)	V	alue		isurement istance	
		0.009MHz-0.490M	IHz	2400/F(k	(Hz)		QP		300m	
		0.490MHz-1.705M	IHz	24000/F((KHz)		QP		30m	
		1.705MHz-30MH	lz	30		QP		30m		
		30MHz-88MHz		100		QP				
		88MHz-216MHz		150			QP			
		216MHz-960MH		200			QP	12:22	3m	
		960MHz-1GHz		500		QP				
		Above 1GHz		500 5000			erage Peak			
	Limit: (band edge)	Emissions radiated of harmonics, shall be fundamental or to th whichever is the less	atten e gei	de of the sp luated by at heral radiate	ecified	freq 50 dE	uency b 3 below	the lev	el of the	
2	Test setup:	Below 30MHz								
		Tum Table	T-	< 3m > Test A um Table.	ntenna lm Receiver					
		Below 1GHz								
1						12.2				

< 3m > Test Antenna < 1m 4m > EUT. Turn Table 2 < 80cm Turn Tables Receiver+ Preamplifier. Above 1GHz < 3m Test Antenna+ < 1m ... 4m > FUT. Turn Table+ <150cm> <1 Receiver+ Preamplifier+ Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test environment: 25 °C Humid.: 52% Press.: Temp.: 1 012mbar **Test Instruments:** Refer to section 6.0 for details

	Report No.: GTS202210000004F02
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

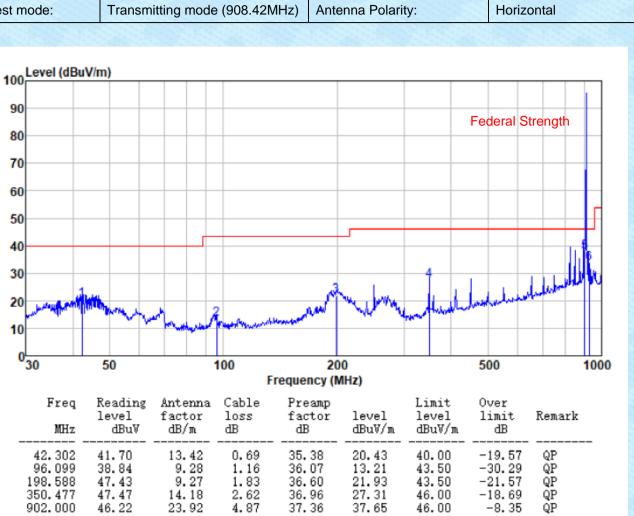
9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

7.3.1 Field Strength of The Fundamental Signal and spurious emissions

	valua
U	value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
908.42	95.24	23.97	4.88	37.36	86.73	94.00	-7.27	Vertical
908.42	98.86	23.97	4.88	37.36	90.35	94.00	-3.65	Horizontal
916.00	92.02	24.03	4.91	37.36	83.60	94.00	-10.40	Vertical
916.00	95.87	24.03	4.91	37.36	87.45	94.00	-6.55	Horizontal



30MHz-1GHz

928.000

41.89

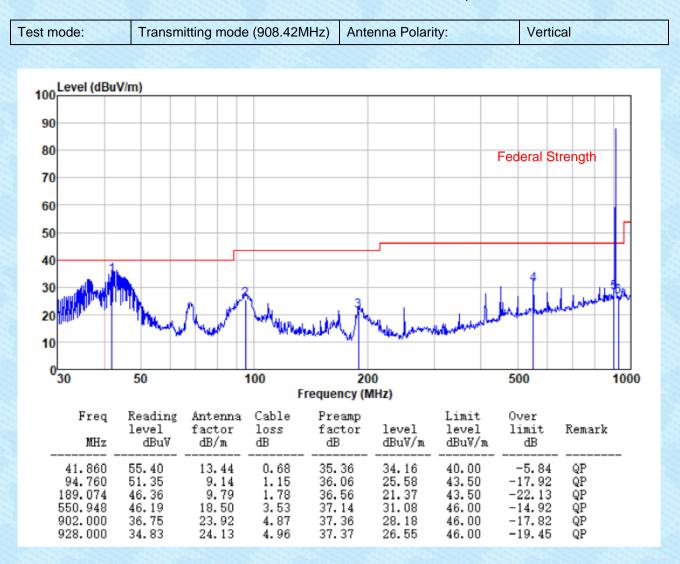
Test mode:

24.13

4.96

37.37

33.61


46.00

-12.39

QP

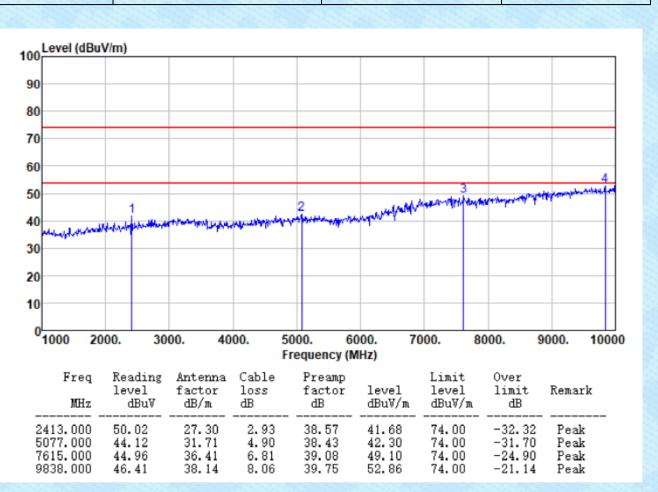
Report No.: GTS202210000004F02

Report No.: GTS202210000004F02

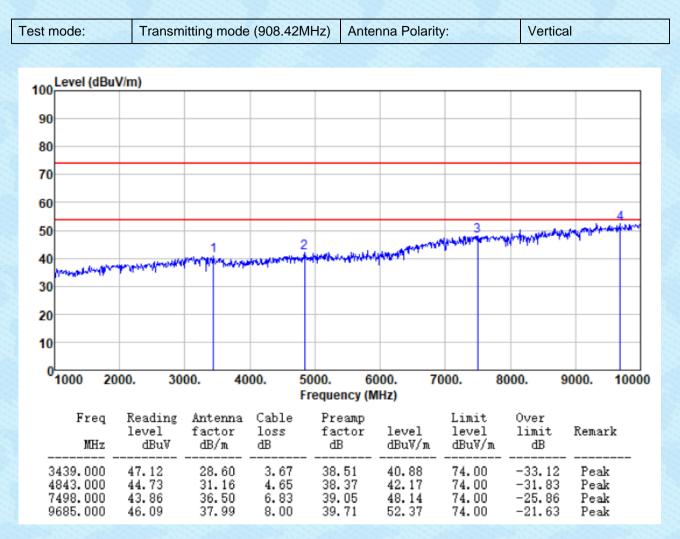
Trans	smitting mo	de (916MHz)	Antenna	a Polarity:		Horizo	ontal	
uV/m)								
					Federa	al Stren	gth	
								Г
							ll.	
1			A.	1	4		w. Inder Juli	2
	2 2		Nº M	ului ulu	a Margaret			
Mar Mary South and So	A Land	Un Munammed	M 1	Add a second of the second of				
MT Mary Made and	an merecan	Veryd Mary an ar an ar an ar an		and the analysis of the second states and				
50	a marine	100	200	an inger and an	50)0		1000
		Frequ	iency (MHz)					1000
50 Reading level dBuV	Antenna factor dB/m	Frequ Cable P loss f	iency (MHz) reamp actor le	Lim evel lev BuV/m dBu	it Ov el li)0 ver imit dB	Remark	1000
			Transmitting mode (916MHz) uV/m) Image: Ima			uV/m)	uV/m)	

Report No.: GTS202210000004F02

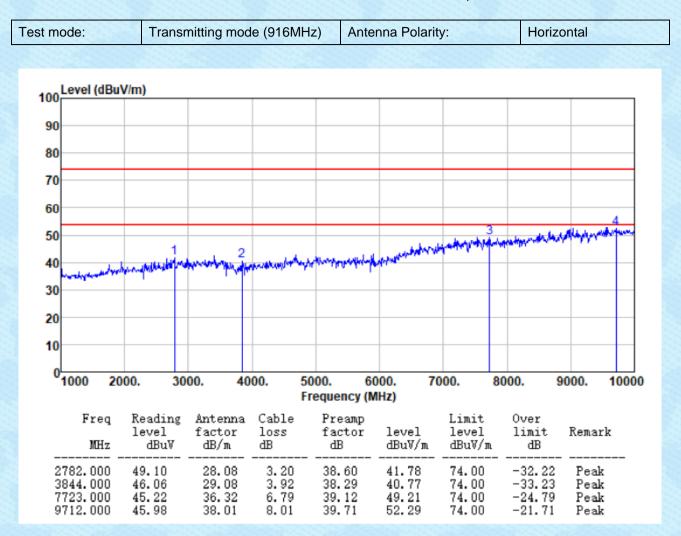
est mode:	Transmi	tting mode	(916MHz)	Ante	nna Polarity	/:	Vertica	al
100 Level (dBu)	//m)							
90								
80						Fe	deral Stre	ength
70								
60								
50								
40 1								
30			4	3			4	
20		a sta		I MAL		a hurren and	mand	
10	* *	1 Walter	An deal	<i>₩</i> ₩° ¥	Wayper			
0 <mark></mark> 30	50		100 Fr	20 equency (N			500	1000
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBu∛/m	Over limit dB	Remark
42.600 93.768 190.405 550.948 903.309 929.008	54.14 52.16 49.19 43.83 34.52 33.67	13.42 9.03 9.71 18.50 23.93 24.14	0.69 1.14 1.79 3.53 4.87 4.96	35.38 36.05 36.57 37.14 37.36 37.37	32.87 26.28 24.12 28.72 25.96 25.40	40.00 43.50 43.50 46.00 46.00 46.00	-7.13 -17.22 -19.38 -17.28 -20.04 -20.60	QP QP QP QP QP QP QP QP


Above 1GHz

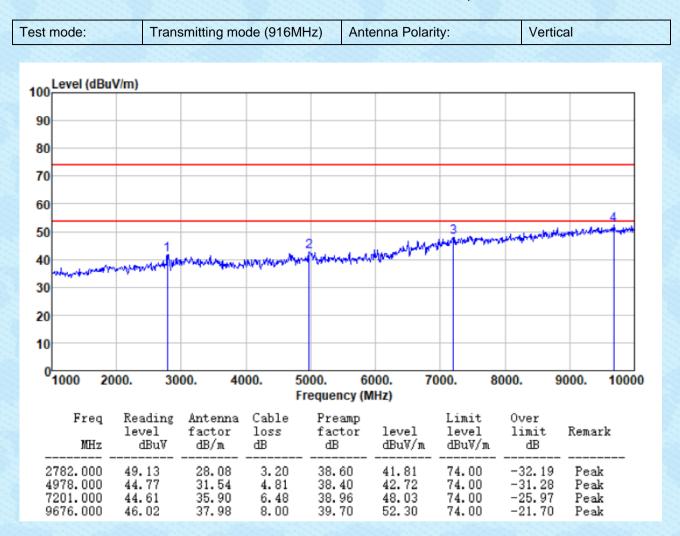
Test mode:


Hz) Antenna Polarity:

Horizontal



Report No.: GTS202210000004F02



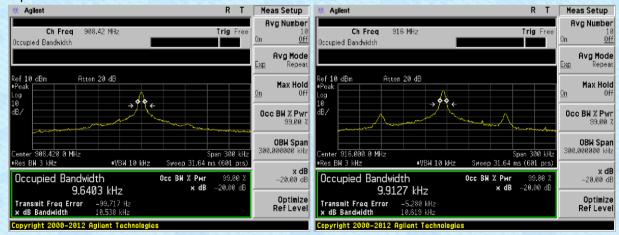
Report No.: GTS202210000004F02

Report No.: GTS202210000004F02

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

FCC Part15 C Section 15.249/15.215 Test Requirement: Test Method: ANSI C63.10:2013 Limit: Operation Frequency range 902MHz~928MHz Test setup: Spectrum Analyzer E.U.T Non-Conducted Table **Ground Reference Plane Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass


7.4 20dB Occupy Bandwidth

Measurement Data

908.42MHz

Operation Frequency	20dB bandwidth(kHz)	Result
908.42MHz	10.538	Pass
916MHz	10.619	Pass

Test plot as follows:

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----